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ABSTRACT

In this paper, we present an inverse analysis to estimate the
thermal boundary conditions over a two-dimensional radiant
enclosure from the knowledge of the measured temperatures for
some points on a solid object within the enclosure. The
conduction heat transfer in the solid object and the radiative
heat transfer between the surface elements of the enclosure are
formulated by the finite volume method and the net radiative
method, respectively. The resultant set of nonlinear equations,
including the energy equation for the solid object, the energy
conservation along the boundary surface of the solid object, and
the radiative exchange between surface elements of the radiant
enclosure, are solved by the Newton’s method. The inverse
method for estimation of boundary conditions over the radiant
enclosure surface is solved by the conjugate gradient method
through minimizing an objective function which is expressed as
the sum of square residuals between measured and estimated
temperatures for some sampling points on the solid object. The
performance of the present technique of inverse analysis is
evaluated by several numerical experiments, and the effects of
some parameters, such as the number and the positions of
sensors, and the measurement errors over the accuracy of the
inverse solution are investigated. The results show that the
temperature profile over the wall of the radiant enclosure can
be recovered accurately, even for sharp gradient profiles and
noisy input data.

INTRODUCTION

Inverse heat transfer problems are concerned with the
determination of the thermal properties, the initial condition,
the boundary conditions, and the strength of heat source from
the knowledge of the temperature or heat flux measurements
taken at the interior or the boundary points of the domain. They
have been widely used in many design and manufacturing
applications, especially when direct measurements of the
surface condition are not possible. Many studies of the inverse
problems with conduction and radiation have been reported [1-
5]. Inverse problems have also received much attention in
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recent years for the cases with multimode heat transfer [6,7]. A
comprehensive study of inverse heat transfer problems has been
reported in [8].

NOMENCLATURE

Direction of descent

Error

Objective function

Geometric configuration factor

1
=

Number of elements over the bottom wall of the radiative
enclosure
Number of sampling points on the solid object
/m?] Heat flux
Number of radiative surfaces
Sensitivity coefficient
Temperature
Number of finite volumes over the solid object
Measured temperature of sampling points on the solid
object
Number of surface elements over the boundary surface of
the solid object

- T
— e

g
ALALL L
n=0

N
o

Special characters

B [-1 Search step size
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[ [K] Unknown elemental temperature over the surface of the
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K [W/mK] thermal conductivity
o [W/m? Stefan-Boltzman constant
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(S} [-1 Normal distributed random variable
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In the present work, we deal with the inverse problem of
estimating the boundary conditions over the boundary surface
of a radiant enclosure by measuring the temperatures of some
points on a solid object within the enclosure. The applications
may be seen in manufacturing, thermal treatment and food
industries where we are interested to know the strength of
radiant heaters located on the wall surface of the radiant oven
by the measurement of temperatures over some points of
product surface.

Heat is transferred in the solid object by conduction, and the
dominant mode of heat transfer in the enclosure is radiation.
The solid object is subdivided into control volumes and the
boundary surface of the solid object and the radiant enclosure
are subdivided into surface elements.

For the direct problem, the conduction heat transfer in the
solid object is formulated by the finite volume method, and the
radiation heat transfer between surface elements are formulated
by the net radiation method. The complete set of nonlinear
equations is then solved by Newton’s method. For the inverse
problem, the temperature distribution over some parts of
boundary surface of the radiant enclosure is regarded as
unknown, and the temperatures for some sampling points over
the solid object are considered to be available by the
measurement. The conjugate gradient method is used for
minimization of the objective function which is defined as the
sum of square deviations between the measured and estimated
values of temperatures on the solid object.

Finally, the performance and the accuracy of the present
method for recovering the boundary temperature distribution
over the radiant enclosure from the knowledge of measured
temperatures of solid object is examined by considering some
examples with different temperature distributions over the
radiant enclosure. The effects of the location of sensors and
noisy input data on the accuracy of the inverse solution are
investigated by several numerical experiments.

DESCRIPTION OF PROBLEM
Consider a two-dimensional square enclosure A, and the
square solid object B within it, as depicted in Figure 1.
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Figure 1 Two-dimensional square enclosure A, and the
square solid object B within it
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All the internal walls of the enclosure A, and the boundary
surfaces of the solid object B are diffuse-gray. The enclosure
filled with a transparent medium. All the thermal properties are
assumed to be constant. Heat is transferred by radiation
throughout the enclosure A, and is transferred in the solid
object B with conduction. The side walls of the enclosure are at
constant temperature of 7, =300K and the top wall of the

enclosure is kept insulated. No boundary condition is specified
over the bottom wall of the enclosure. The aim of the inverse
problem is to find the boundary conditions over the bottom wall
of the enclosure from the knowledge of measured temperatures
for some sampling points on the solid object B.

DIRECT PROBLEM

The steady state conduction heat transfer in the square solid
object B is governed by the Fourier’s law of conduction as
follows:

V-(«VT)=0 (1)

Equation (1) is solved by the finite volume method. In this
method, the domain of interest is subdivided into ¥V finite
volumes. Writing energy balance for all finite volumes leads to
a set of V linear algebraic equations, which can be solved by
conventional solvers such as LU decomposition approach,
provided that the boundary conditions over all boundary
surfaces are known. However, here no boundary conditions are
known a priori. Hence, the number of unknowns is V +Z,
where Z is the number of surface elements over the boundary
surface of the solid object B.

The radiative exchange for surface elements can be
described by the following equation [9]
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where R is the total number of radiative surface elements in the
enclosure and F,_; is the geometric configuration factor which

can be calculated by the Hottel’s crossed-string method [10].
Here, 5, is the Kronicker delta defined by
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The boundary conditions over the boundary surfaces of the
enclosure may be written as follows

q(x.)=0.0 (4a)
T(0.)=T(Ly) =T, (4b)
T(x0)=Y g, 8,(x—x,) (4c)

where 9, is the Dirac delta function, x,, is the mean location
of the m-th element on the wall surface and ¢, ’s are the known
coefficients.



If the elemental temperatures over the boundary surfaces of
the solid object B are specified, then the set of R equations (2)
can be solved to calculate the unknown elemental temperatures
or heat fluxes. However, since no boundary condition is known
over the boundary surfaces of the solid object B, the number of
unknowns is increased to R+ Z .

As discussed above, we conclude that the conduction heat
transfer equation through the solid object medium and the
radiative transfer equation in the enclosure cannot be solved
independently. Considering the interface condition over all the
boundary surface elements of the solid object made by the
following equation

oT.
Kk—=+q =0, z=1,....7Z
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where n, is the normal direction to the boundary surface

element z, we now have a set of total V' + R+ Z nonlinear
equations with the same number of unknowns. Because of
nonlinearity due to the fourth power of temperatures in the
radiative transfer equation, the conventional solvers of linear
set of algebraic equations cannot be used for solving the set of
equations. Hence, the set of equations must be solved through
an iterative approach, such as Newton’s method. The Newton’s
method for solving the set of nonlinear equations is described
in detail in [11], and will not be repeated.

INVERSE PROBLEM

For the inverse problem, the temperature distribution over
the bottom wall of the radiant enclosure is regarded as
unknown, and the measured values of temperatures for some
sampling points are available for the analysis. The objective
function is expressed by the sum of square residuals between
the estimated and measured values of temperatures for
sampling points over the solid object as follows:

F(@)=[Y -T(@)]'[Y -T(®)] (6)

where @ :{ I,...,(pM} is the vector of unknown parameters.
Y={Y,..,Y} and T(®)={T(®),...,T,(®)} are the vectors

of measured and estimated temperatures of sampling points on
the solid object, respectively. M and N are the number of
elements over the bottom wall of the enclosure and the number
of sampling points on the solid object, respectively.

The CGM is an iterative procedure in which at each
iteration a suitable step size, S, is taken along a direction of

descent, d, in order to minimize the objective function, so that
O =@ - p'd’ (7)

where the subscript v is the iteration number. The direction of
descent can be determined as a conjugation of the gradient
direction, Vf, and the direction of descent from the previous

iteration as follows:

d' =V (®)+yd" ®
where y is the conjugation coefficient given by
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with »°=0 )

The gradient direction is determined as:
V@) =-2[s"| [y -T(@") (10)

where S is the sensitivity (or Jacobian) matrix. The elements of
the sensitivity matrix are:

LT
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The estimated temperatures can be linearized with a Taylor
series expansion and then the minimization with respect to step
size, f", is performed to yield the following expression for the

step size:

,_Is @) [ren)-v]
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(12)

SENSITIVITY PROBLEM
To minimize the objective function given by equation (6),

we need to calculate the sensitivity coefficients, S , given by

v
mn 2

equation (11). Differentiation of governing equation of heat
transfer in the solid object with respect to ¢! leads to

V-(kVT))=0 (13)
where VT!=0T/d¢! . Similarly, differentiation of radiative

transfer equation with respect to ¢, , we obtain:

N §k I-¢ ' N 3
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Here, 7! =0T [0¢, and g, =0dq,/0p, . Differentiation

of the governing equation for the interface boundary condition
with respect to ¢ leads to:

’

s +q" =0 L....Z 15
K—= =0, z=1,...,
on q,.: (15)

Differentiation of boundary conditions over the boundary
surface elements of the enclosure with respect to ¢, leads to

, 0q(x,1
g (o) = 24D (163)
op,
, - _or, _
T,0,y)=T,(L,y) = P 0 (16b)
T:; (X,O) = 5d (x_xm) (16C)

The set of equations (13)-(15) can be solved in a similar
manner with the direct problem, however, another iterative
procedure is needed because of the presence of T’ in equation

. j
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(14) whose values must be imposed from the solution of the

direct problem. Solving the set of equations (13)-(15), the
values of 7 =0T, /0p! ,n=1,...,N are in fact the components

m

of m-th column in the sensitivity matrix.

STOPPING CRITERION

The stopping criterion for no measurement error is
f(@) <& (17-a)
where & is a small specified positive number. However, for
measurement errors in temperatures, the discrepancy principle
is used [12]
(@) <My’ (17-b)
where £/ is the standard deviation of the measurement errors.

COMPUTATIONAL ALGORITHM

The computational procedure for the inverse problem is
summarized as follows:
Step 1- Set ¥ =0 and assume a set of elemental temperatures
over the bottom wall of the radiant enclosure, ®" , stored at the
nodes of the domain.
Step 2- Solve the direct problem given by equations (1)-(5) and
compute the temperatures for sampling points on the solid
object.
Step 3- Calculate the objective function f(®") given by
equation (6). Terminate the iteration procedure if the stopping
criterion is satisfied, otherwise go to step 4.
Step 4- Solve the sensitivity problem given by equations (13)-
(15) and compute the sensitivity matrix, S” .
Step 5- Compute the gradient direction Vf(®") from equation
(10), then compute the conjugate
coefficient y” from equation (9).

Step 6- Compute the direction of descent d” from equation (8).
Step 7- Compute the search step size S" from equation (12).

Step 8- Knowing f° and d” , compute the new set of
elemental temperatures over the bottom wall of the radiant

enclosure, ®".
Step 9- Replace v by v+1 and go back to step 2.

RESULTS AND DISCUSSION

In order to check the performance and the accuracy of the
present method to recover the boundary temperatures over the
radiant enclosure from the knowledge of the measured
temperatures for some sampling points on the solid object, we
now try to recover three boundary temperature distributions
along the bottom wall of the radiant enclosure. These profiles
are: (i) step distribution, (ii) cosine distribution, and (iii)
triangular distribution. Figure 2 shows these three profiles.

The measured temperatures, Y, (n=1,...,N), are generated

by:

Y, ewsired = Yoo TH O (18)
where © is a normal distributed random variable.
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Figure 2 Three boundary temperature distributions along the
bottom wall of the radiant enclosure

For normally distributed errors, there is a 99% probability
of a value of ® lying in the range —2.576 <® <2.576. The
errors are estimated based on both the relative error, E ,, and

rel >

the root mean square error, E__, which are defined as follows:

rms 3

E,, =|e..-2..)e..x100 (19)
M 1/2

E, = {%Z[(ww ~ 0o )P | % 100} (20)
m=1

The relative error measures the deviation between estimated
and exact values of temperatures for each surface element,
whereas the root mean square error measures the deviation
between estimated and exact values of temperatures over all the
boundary surface elements.

Figure 3 Four cases of sensor positions: (a) 10-1, (b)
10-2, (c) 20-1, (d) 20-2



The inverse estimation is built for two cases with 10 and 20
sensors. In order to examine the effects of the sensor positions
on inverse estimation, we consider two sets of sensor positions
for each case (figures 3a-d). The results are compared for the
case of no measurement error, ¢ =0.
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Figure 4The comparison of the results using four cases of
sensor positions for (a) step, (b) cosine, and (c) triangular
profiles.
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Figures (4a-c) show the comparison of recovered and
desired temperature profiles for cases with different number
and arrangement of sensors. As shown, the cosine and
triangular profiles are well recovered even using 10 sensors,
however, the inverse estimation is less accurate for the case of
step profile. Table 1 shows the values of maximum and root
mean square errors for the cases with different sensors
locations. Although the maximum errors for some cases are
large, however, the values of the root mean square errors are
acceptable for engineering applications.

Table 1- The maximum relative errors and the root mean
square errors for estimation of boundary temperatures over the
bottom wall of the radiant furnace

Profile Sensor Arrangement s rel max
10-1 5.980 16.423

Step 10-2 6.057 17.257
20-1 5.840 16.220

20-2 5.942 16.208

10-1 1.836 5.849

Cosine 10-2 2.167 8.492
20-1 1.822 5.666

20-2 1.350 4.267

10-1 1.179 2.540

Triangular 10-2 1.056 2.372
20-1 1.161 2.474

20-2 0.724 1.797

The effects of the measurement errors are investigated by
comparing the results obtained with different values of standard
deviations of measured data. The measured data are generated
by equation (18) for three standard deviations
of £=0,0.01,0.03. The measurements are built using 20

sensors which are arranged as indicated in figure (3d). Table 2
shows the maximum relative errors and the root mean square
errors for different values of standard deviations. As indicated
the results are still acceptable, even with noisy data. The
reconstructed temperature profiles for noisy measurement data
are compared with the exact temperature profiles in figures (5a-

c).

Table 2 The maximum relative errors and the root mean square

errors for estimation of boundary temperatures over the bottom

wall of the radiant furnace for different values of measurement
error.

Profile Standard deviation of E. s
measurement errors /

1 =0.00 5.942 16.208

Step 1=0.01 6.103 17.025
1=0.03 6.172 17.186

1 =0.00 1.351 4.267

Cosine #4=0.01 2.015 7.084
11=0.03 2.811 8.725

1 =0.00 0.724 1.797

Triangular #=0.01 0.915 2.001
1=0.03 0.920 1.910
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Figure 5 The comparison of the results using different standard
deviations for (2) step, (b) cosine, and (c) triangular profiles.

CONCLUSION

An inverse analysis was built for estimation of boundary
conditions over the wall surface of a radiant enclosure from the
knowledge of measured temperatures on a solid object within
the enclosure. The set of nonlinear equations obtained by
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differencing the conduction heat transfer equation and the set of
net radiation equations were solved by the Newton’s method.
For the inverse problem, the temperature distribution over the
wall surface of the enclosure was regarded as unknown, and the
temperatures measured by sensors for some sampling points
were considered to be available. The conjugate gradient method
was used for minimization of an objective function, which is
defined as the sum of square deviations between measured and
estimated values of temperatures for sampling points on the
solid object. The sensitivity coefficients were estimated by
solving a set of boundary value problems which were obtained
by differentiation of the governing equations of the direct
problem with respect to elemental temperatures over the
boundary surfaces of the radiant enclosure. The inverse
problem was solved for different locations of the solid object
and different positions of sensors. Comparing the results
estimated using different arrangements of 10 and 20 sensors
show that the results obtained by 10 sensors were less accurate.
The effects of standard deviation of measured data on the
accuracy of the inverse problem were examined by comparing
the results for different values of standard deviations. The
results implied that the recovered boundary conditions over the
radiant enclosure were acceptable, even for noisy data.
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