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ABSTRACT

Numerical Simulation of multiphase flows may
be performed in the framework of FEulerian,
Lagrangian, or a hybrid formulation. The present
paper adopts the hybrid scheme to numerically
simulate particle tracking in fluid flow. The
governing equations of mass and momentum for the
fluid phase are written in the Eulerian frame, and the
particle equations are described in a Lagrangian
frame. The numerical descretization is performed,
using the finite volume approach in an unstructured
grid. Particle equations are solved through standard
ODE solvers. The current paper focuses on the
assessment of two efficient tracking algorithms.
Results show that the Blasco-Chorda algorithm is
more suitable in terms of computational time when
fine grids (both triangular and quadrilateral) are used
for the simulation.

NOMENCLATURE

r [m] Location

r(t) [m] Location in time t

X, ¥ [m] Component of location

x(t), [m] Component of location in time t
v(t)

P [-1 Vertex of polygon

n I-] Qutward unit normal of the face
tr [-] Trajectory

t, At Time and time step

dt [m] Trajectory distance

d [m] diameter

p [kg/m’] | Density

w, v |nmv/s| Components of Velocity

U [m/s] Dimensionless velocity

Vv [m/s] Dimensionless velocity component perpendicular to the
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main coordinate direction
p [pa] Static pressure
I Unit tensor
g [m/s?] Gravitational force
k [m’/s’] | Kinetic energy
N [m/s*] Mean strain rate
T [-] Dimensionless time
D [-] Dimensionless diameter
Stk [-] Stokes number
Rho [-] Density ratio
Fr [-] Froude number
G [1/5] Perpendicular gradient
CarCe, | [-] Coefficient terms
Csgn
R main difference between the standard k—& model and the
RNG k-¢ model
Special characters
T [pa] Stress tensor
H [pa.s] Dynamic viscosity
£ [m?/s*] Dissipation raie
Subscripts
! Vertex number
P particle
f fluid
¢ Centroid of the face
eff Effective viscosity
! turbulance
o Mean Inlet velocity
INTRODUCTION

An important issue in the numerical solution of the hybrid
Eulerian-Lagrangian model is to predict the particle location,
especially in complex geometries and unstructured grids. The
particle-locating algorithm plays an important role in improving
computational efficiency for Eulerian-Lagragian computations
of two-phase flows. The Lagrangian trajectory solver may
become very time consuming as a result of the overloaded
particle-locating work. Generally speaking, there are four
approaches proposed to locate particles in irregular grids, i.c.
Cartesian background grid method [1], mapping techniques [2,




3], tetrahedral walk method [4, 5], and face-by-face search
method [6-11]. The first two schemes are based on locating
particles in a regular grid instead of the original irregular
(physical) grid. However, there arc various deficiencics
associated with these methods. For example, inaccuracy and
inefficiency may rise in the calculation of particle trajectory on
the basis of the Cartesian background grid method due to large

variationg in orid cize. and the mannine method ic limited to
variations in gric size, and the mapping methced 1s imted o

structured grids [12]. It has been recognized that such
deficiencies do not exist in the tetrahedral-walk and face-by-
face search methods, which perform point location directly in a
physical grid. The tetrahedral walk method, which locates a
particle based on a tetrahedron enclosed by triangular plane
surfaces, involves a sophisticated tetrahedral decomposition in
structured curvilinear grids containing hexahedral cells or
unstructured hybrid grids containing mixed element types [13].
On the contrary, the face-by-face scarch method approximately
treats non-planar faces as plane surfaces. With such
approximation, the point-locating scheme is simple and easy to
implement, but it may ““force” particles to be trapped near non-
planar faces. In order to obtain a good CPU-time performance
with enough robustness, as summarized by Lohner [4] and
Vaidya et al. [10], various approaches have been proposed to
optimize the search path of point location.

Among the most prominent particle-locating methods are
the ones proposed by Zhou and Leschziner [7] (ZL), Chen and
Pereira [6] (CP), Blasco-chorda [8] and Haselbacher et al.[11].
The most interesting feature of the ZL algorithm is that it can
be implemented very straightforwardly, and requires very small
CPU times [14]. However, due to its simplicity, the ZL locating
algorithm traverses through a larger number of cells than

ch"lr\ﬂ‘r reguired, and can even eet tranned 1 nfinite circular
SIICLY required, anda an even get wrappea in an minie cue

search around the particle cell. The method introduced by
Chen and Pereira [6], also referred as to the directed search,
only examines the cells passed through by a considered
particle, and is thus very beneficial to the determination of
some crucial information for modeling multiphase flow, such as
particle—wall interaction and particle residence time [6, 10, 14].
However, it suffers from some important disadvantages, such as
large CPU times in a general particle-locating context, and not
too-clear extension to 3D grids due to the non-planar faces, as
pointed out by Chorda et al. [8].

Regarding the aforementioned points about the advantages
and drawbacks of these particle-tracking methods, we consider
only the Blasco-chorda and Haselbacher Najjar algorithms
[8,11].

PARTICLE-SEARCH ALGORITHMS

This scction presents a brief summary of the two sclected
particle-tracking algorithms.

1. The Blasco-Chorda Algoerithm (BC Algorithm)

The performance of the proposed particle-locating strategy is
compared with existing ones, and is evaluated on two tests.

1.1. particle-to-the-left test

The algorithm defines an arbitrary 2D convex polygon P by
giving the Cartesian coordinates (x, y) of its vertices ordered
anticlockwise.
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The particle-to-the-left condition, which will be referred to as
P2L, can be checked for each cell face by looking at the z
component of the cross product between the face vector PPy
and the particle vector Pirp(t+At), see Figl.
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F1g .1. Examples of the P2L test
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o0),>0 indicates that the point P, is on the left-hand side of the
cell face.

o<} <0 indicates that the point is on the right-hand side of the
face.

o()=0 indicates that the point is on the face.

1.2 Trajectory-to-the-left test
The face—trajectory intersections detect by the z component of
the cross product of the vectors », (r) P, and Fp () (1 + ALY -

X e-Al) X (l +A1)
L]
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Fig. 2. [llustration of the T2L test

With refer to Fig.2, the expression of the z component of vertex
Iis:

Ly = (%, =%, (1)) (v (t+At) =y (1)) -
(xp(tHA) =%, (0)((% = y5 (1)) @

if L>0 the particle trajectory lies to the left of a given vertex
and if L<O otherwise. For this reason, the computation of the

valuc of Ly will be termed as trajectory-to-the-icft (T2L) test.
The BC algorithm has the following steps:

1. Check if the particle trajectory 5, (r)r, (r+ Ar) CTOSses

one face of the current cell. This is done by applying the T2L
test (Eq. (2)) to the two face vertices and comparing the sign of
the T2L test.

2. If it does, check the P2L test on that face. If the particle
lies to the right of the face (P2L<0), then we have found the
appropriate (i.e., exit) crossing face. Exit the loop and move to
the neighbouring cell that shares that face.

3. Move to the next face and go to step 1.
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4. If the loop over all the cell faces is finished without
fulfilling step 2 then the particle lies within the current cell.

The face—trajectory intersection would be impossible to
compute in the cvent of having a particle trajectory crossing
through a cell vertex. This would make the T2L test fail in the
case of havingan L = 0 value forLor I + 1.

In order to account for this (highly improbable) situation, the

followine modification to the face-intersection is sucoested:
Ioliowing modification the Iace-mtersection 1S suggested:

assume that the face 1-(I+1) is crossed if Lyl <0.

2. The Hasclbacher-Najjar Algorithm (HN Algorithm)

The algorithm is based on tracking a particle along its trajectory
by computing the intersections of the trajectory and the cell
faces.

2.1 Particle-Localization Algorithm

The basic idea of the present particle-localization algorithm is
the following: Assume that the particle is known to be located
in cell ¢, and to move along a given trajectory. Assume further
that we can determine which face of cell ¢, is intersected by the
particle trajectory. If the cell adjacent to the intersected face is
¢y, the particle must pass from cell ¢, into cell ¢,. By applying
this idea repeatedly, we can determine the cell ¢, which
contains the predicted new particle position. A cell is said to
contain a particle location r, if this position satisfies the so-
called “‘in-cell test,”” i.e., if for each face of the cell,

(rery).020 3)
The whole tracking steps may be summarized as:

1 Compute trajectory distance and trajectory:

b =|r, (t-+20)—x, (¢)] 4)
VY S PR S R SN 7 Iz
ir={r, (tTAtj-r, () yat. (2)
2 Compute trajectory-face intersections and then the

minimum intersection of them and the corresponding face (o4,
Omin> [min) 1N the current cell. Note that it is not necessary to
calculate intersections for faces that tr.n<0:
(r,—r,(z)).n
3 @ = (6)
tr.n

4 dt « dt-a

5 If dt=0 then if f;, is not a boundary face get adjacent
cell, else if this face is a boundary face reflect for solid wall. Go
to step 2

6 If dt<O then this cell containing the new position of
particle.

7 Gotostep 1

3.1 Simulation of the flow field

The model used for an isothermal flow simulation solves the
conservation equations for mass (or continuity) and
momentum. The turbulence in the system is solved through a
modified form of the two-equation model. Under steady-state
conditions, the equations for mass and momentum in a general
form are as follows:

Voo, =0 (14)
Vipaiu)=-Vp+V.(7)+pg=0 (15)
where
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2
= py[(Vu,)— Vpu, 1] (16)

where
Hepr=pb Ll

The renormalization group (RNG) k— model is used to model
turbulence effects [13]. This method is similar in the form to
the standard k— model but includes additional terms for &
development that significantly improve the accuracy, especially
for rapidly strained flows.

The kinetic energy and dissipation rate are obtained from the
transport equations given below:

Yp:k) +1‘(Pfkuﬁ) 4 M Tk - (18)
P 0. ™ {(( . )'H : Py

1(p,s) , J9(pike) & B, 0k
18t * aYx, ox; {(( +<55 . 1|€x'l w2

€. $(G)-Caup, (G OR

(20)

The model constants Cie Ca, C, ok and o, were assumed to
have the following values [13]:

o= 1.3, 0, = 1.0,C5. = 1.92,C;; = 144, C, = 0.0845.

The term R is defined as:
PrC‘-'ﬂg‘(l'mw;—
R Uy )k 1)
i H"ﬁﬂ]
where 1, § are constants assumed to have the following values
[13]: me=4.38, Pp=0.012

The term 1; is defined as:

m;=Sik/e (22)
where S;; is expressed as:
Ou;
5, ~( Qg 4 M (23)
ox, ox

] i

The turbulence viscosity is then calculated as:
kZ

W= pC n ?

where C, =0.09 is a model constant.

(24

3.2. The particle equations
The equation of motion for a particle in a Lagrangian
frdmework in dimensionless form may be written as:
U-U, 1.1 07 Ca G v,
Yo, U g 1y 1 0B & g 1y s)
dT Stk Rho Fr* (Rho Stk)’ X,
where the dimensionless paramcters arc calculated using us,
the mean inlet fluid velocity and a length scale h, which
depends on the problem dimensions:
Uf,P =U;p g, .




T=tu,/2h.

D, =d, /2h.

The force terms of equation (25) on the right-hand side are
drag, gravity (and buoyancy) and Saffman lift, respectively.
The coefficient terms in equation (25) are:

C, =1+ Re(’p“7

where Cyr cocfficient used by Clift ct al. [15] to modify the drag
term for ultra-Stokesian drag and the Reynolds number
accounts for the velocity-slip between the particle and fluid .
d u, —u
_dyplu,—u, | -D,|U, U, |Re,
Hy ‘

Equation (25) has three important particle dimensionless
parameters the Stokes number, the density ratio, and the Froude
number defined as:

_ ppdiz’u_f{)
184, (2h)

Small Stokes number particles represent particles with low
inertia which tend to follow the flow.

Rho=2r

2
Generally, most studies which integrate equation (25) consider
a solid-fluid flow which has the condition and all the force
terms except drag and gravity can be ignored.

u 7
(2hg)’"

The Froude number in the present study assumes a constant
acceleration of gravity and length scale similar to most
expetimental studies.
The Saffman lift force was originally derived by Saffman [16]
for low Reynolds numbers. In equation (25) the lift force has
been simplified and is treated simply as an aerofoil lift effect.
The coefficient term Cyn is G/|G| where G is the
perpendicular gradient term. Many studies have improved and
investigated the Saffman lift force, in view of a study by

McLaughlin [17] an additional coefficient has been added C,
described as follows:

Re

”

= Rho,D; Re

0 §<0.25
C={s" 05<0.25
L1 s>1

where the parameter s 1s .
5= (Gvf)l/2 Hup—up|

VERIFICATION

To verify the correct implementation of the aforementioned
algorithms, a particle is tracked within a carrier-flow executing
solid-body rotation with the angular velocity, o, fixed at unity.
The same problem has been studied by Barton [18] and Ruetsch
and Meilburg [19], and its attractiveness lies partly in the
availability of an analytic solution for the particle's outward
spiralling motion associated with its inertia. The particle is

Two phasc flow

released at (xp, yp)=(0,1)and has the velocity components(up,
vp)=(1,0). The fluid velocity is known at any given position (x,

y) in the flow field and can be described as (u)x,(x)y) The

exact solution for the particle path as a function of time is an
cxponentially increasing spiral whose shape depends on the
particle's relaxation time t [18].

TFio 3 chows the analutical eaghition
18,5 S1N0WS Ull alldiyuiCar SO1UCH

trajectories for the respective values of relaxation times t
]

=100.0 [s], 1.0 [s] and 0.01 [s] within the time range
O0<?t<2m[s]. As appears in this figure, both algorithms
show accurate predictions compared to the analytical method.

€ Fevaxt solution T=.01 -
approximate solution =---

5 hExaxt selutien T-1
approximate selution

Exaxt solution T=i00 =-.-.
Fapprowimats selutisn - .-,

S

3k

2K
1F e .
> I ST
v
ok { VN
\ i’ I:.
s i i
|

Fig. 3. Trajectories of three particles with different relaxation times

within solid-body rotation between t=0 and t=2 & (s)

THE PRESENT CASE

Particle tracking in a backward-facing step flow is considered
to assess the two tracking algorithms. The geometry has been
studied by Barton [20] and Armaly [21]. In the present study,
both quadrilateral and triangular computational cells are used
for the simulations. The following non-dimensional parameters
arc uscd for the simulation:

Re=547, Rho=10, Stk=0.13, Fr=0.9

A representative particle is injected at point(0, 3/2 h) with the
same velocity as that of fluid.

Figure 4 shows the particle trajectory of a sample particle. As
appears in the particle trajectory, the recirculation zone behind
the step changes the particie track from its straight path.

A
A

8h 30h X
Figure 4, A sample particle trajector
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Tn order to compare the two tracking approaches, 11 different
simulations have been performed for quadrilateral and
triangular grids, ranging non-dimensional grid sizes from
0.0002 to 0.003. It should bc mentioncd that a small
modification has been done in the implementation of the HN
algorithm to increase its performance, namely the face
corresponding to minimum distance i1s evaluated after the

fonrth cten of the aloarithm

10uUril 5P O1 ¢ i goTiinm.

As both algorithms predict the same trajectory for a particle, the
tracking time is used to compare these two algorithms. Figure 5
compares the ratio of BC to HN computation time for several
quadrilateral meshes. The horizontal coordinate shows the
typical cell length scale. It is observed that for larger cells,
values greater than 0.0003, the tracking time for the BC
algorithm is higher than that of HN. But as the cell size
becomes smaller, the BC algorithm takes less time to track the
particle. This may be attributed to time consumed to perform
the internal test, and time consumed for the intersection of the
particle and the CV faces in algorithms. The same comparison
has been performed for triangular cells, which is depicted in
Figure 6.

14
12 \

1 \—\_&\
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Timeratio

0003 0002 0001 00009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0008 0.0002

celllength

Figure 5.Time ratio(Blasco/Najjar)for quad mesh
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Cell length

Figure 6.Time ratio(Blasco/Najjar)for triangle mesh

Part of the ratio of calculation time of BC to HN is a function
of the ratio of thc number of intersections of the particle with
CV faces (m) to the total number of steps (N} used for the
tracking simulation. By recording these parameters for the
numerical simulations, it is found that a ratio of m/N=0.45
prevails for all simulations. We seek to define a non-
dimensional parameter to have estimation for this ratio for a
general tracking problem. For this reason, we note that the
number of intersections between the particle path and the CVs
faces is proportional to the characteristic length of particle to
the mesh characteristic length. Therefore,
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Ndt

m o ——

Dividing the above expression by (NAt):
m  Ndt y 1

pE— (I —_ —
N NAr |

in which is a measure of the mean velocity of the particle. So it

may be written as:

L 7
N L
At

Therefore:
m u,
—=C -t for quad mesh (24)
N equad

At
m u,
—=C,-= for tiangle mesh (23).
N "l

At

Parameters C1 and C2 are model constants. Work is underway
to find appropriate values for these constants,

CONCLUSIONS

Both tracking algorithms that are implemented show
good accuracy and robustness during the
computations. It was found from the results that the
Blsco-Chorda algorithm may be more time-
consuming for tracking in coarse cells, but as the
grid is refined, the algorithm seems to work better
that the Haselbacher-Najjar. A criterion was set for a
priori compare these two algorithms, but needs
further work to suitably define the model constants.
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