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Synopsis

This article investigates the complex problem of a budgeting process for a
large mining operation. Strict adherence to budget infers that financial
results align with goals. In reality, the budget is not a predetermined entity
but emerges as the sum of the enterprise’s operational plans. These are
highly interdependent, being influenced by unforeseeable events and
operational decision-making.

Limitations of stochastic simulations, normally applied in the project
environment but not in budgeting, are examined and a model enabling
their application is proposed. A better understanding of budget failure in
large mines emerges, showing that the budget should be viewed as a
probability distribution rather than a single deterministic value.

The strength of the model application lies with the combining of
stochastic simulation, probability theory, financial budgeting, and
practical scheduling to predict budget achievement, reflected as a
probability distribution. The principal finding is the interpretation of the
risk associated with, and constraints pertaining to, the budget.

The model utilizes a four-dimensional (space and time) schedule,
linking key drivers through activity-based costing to the budget. It offers a
highly expressive account of deduction regarding fund application for
budget achievement, emphasizing that ’it is better to be approximately
right than precisely wrong’.
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Introduction

mining methodology, is: ‘Why does the budget
of a mine become so far removed from reality
that it ends up being useless?’

The extraction of minerals is an expensive
endeavour, with budgets often amounting to
billions of rands, and unlike a manufacturing

with each production year. There are also
factors unique to mining that make the

volatility of commodity markets and surety of
the mineral reserves. The usual approach to
dealing with these challenges is to use a
rigorous budgeting process.

The budget is the single most important
document that regulates the production of a
mine. All the strategies, tactics, and plans are
ultimately based on attaining the targets set in
the budget. Investors and executive managers
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One of the biggest questions confronting senior
management of a mine, regardless of its size or

process, is based on a resource that is depleting

environment challenging, including the extreme
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of resource companies judge performance and
make decisions primarily based on the budgets
of the mines. The budget, however, is expressed
in exact amounts, which obscure (or ignore) the
variability of the mining environment.

Deviations from the budget are often waived
as uncontrollable elements or force majeure
such as more rain than expected, unfavourable
exchange rates, or strikes. Revisions to the
underlying inputs (physical standards) that
drive the budget are sometimes considered, but
then such physical standards are also stated as
exact values, ignoring their inherent variability.
Random and seasonal fluctuations are
aggregated into single values and treated as
deterministic. Interdependability and
accompanying (common-mode) risk is
neglected. The result is that the budget does not
have a fair chance of accurately forecasting
reality.

The budgeting process for a large mine is
especially complicated and arduous, needing
detailed inputs from every department over a
six-month period before it is finally compiled.
Although management does measure the
budget carefully, its action is only retrospective
—i.e. the fact is known only after the budget has
failed (either negative or positive) — and the
autopsy then turns into finding a scapegoat.
Decisions about the application of scarce capital
sometimes appear to be somewhat arbitrary.
There is no decision-making methodology
established that dictates where funds applied
(spent) will have the greatest impact on the
budget.

The importance of increasing the confidence
in achieving the budget, while simultaneously
giving the assurance that the budget is accurate
and ‘strict’ enough, cannot be over-emphasized.
This article proposes a methodology that
addresses the lack of budgeting accuracy by
addressing the inherent uncertainty in a mining
operation.
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Methodology

To achieve the necessary budget accuracy, a detailed
modelling tool is required. The model should be able to
replicate the actual mining both in time and actual spatial
translation - Ze. travelling distances and specific physical
attributes must be coupled to the mine layout and assets
utilized, taking cognisance of the particular equipment fleet
and uniqueness of the beneficiation process, as well as the
specific geological factors that govern the resource. The
model should be able to replicate the budget from first
principles to within 1% accuracy.

Once the detailed tool is in place and calibrated, the key
operational performance drivers of the budget are
determined. These are the drivers that have the most
influence on the budget, and also have the largest variance.
The main concept is that if two or more key drivers (that
have a large impact) have large variances (as opposed to
their budget assumptions) and are interdependent of each
other, the probabilities of each can be multiplied to give a
new probability. This new probability will have a larger
'spread’ than either of the individual drivers. This leads to
instability in terms of budget achievement.

The problem with the above is that if too many drivers
with too large a spread are chosen, the resultant probability
will be unrealistic and unusable, Z.e. multiplication of a lot of
fractions quickly approaches zero (this is in all probability the
main reason why stochastic simulation is unsuccessful in the
budget process and is therefore never applied). It is therefore
clear that the key drivers must be carefully selected. These
drivers should be compiled from different secondary
probabilities that can be influenced (or manipulated) to
optimize the distribution of the primary probability.

This leads to the investigation of how these first-order
(prime) probabilities can be influenced or manipulated to
increase confidence, so the budget can be achieved. The
logical deduction is that it will be mostly through the
application of money, Z.e. to fix something, buy more, pay
someone to do it, efc. This culminates in the final objective,
to provide a realistic budget, expressed as a probability distri-
bution, and show where scarce capital should be applied to
achieve the optimum return.

The basic assumption is that all parameters that can
influence the budget will conform to some type of probability
distribution. The following distributions were considered:
triangular, normal, and Weibull. These will be sufficient to
describe any deviation. Due to the ability of a three-
parameter Weibull distribution to closely approximate a
normal distribution, the normal distribution was ignored.

Probabilistic logic and ‘stochasticity’

The basic aim of probabilistic logic is to make use of
probability theory in combination with logic. Probability
theory is used to handle uncertainty, while deductive logic is
used to exploit structure. One of the problems with
probabilistic logic is that it tends to multiply the computa-
tional complexities of the probabilistic and logical
components, resulting in an answer that is too vague to have
practical meaning. Jesang (2009) remarks that probabilistic
logic by itself finds it impossible to express input arguments
with degrees of ignorance as, for examples, reflected by the
expression ‘I don’t know'. The generally accepted practice, to

> 532 JUNE 2015 VOLUME 115

provide values without supporting evidence, will generally
lead to unreliable conclusions, often described as the
‘garbage in - garbage out’ syndrome.

Risk and uncertainty

Risk (and the chance of loss), Ze. in the event that the
situation can lead to both favourable and unfavourable
outcomes, is the probability that the event outcome will be
unfavourable, Z.e. an unwanted event, while uncertainty is the
indefiniteness associated with the event, Z.e. the distribution of
all the possible outcomes. Uncertainty is an intangible value
(Elkjaer, 2000).

The main problem with the budget is that it uses only point
estimates. Discrete estimates by themselves, are insufficient for
good decisions (US Air Force, 2007) or a good budget.

The underlying probability distributions inherent to the
production process will influence the outcome, for example no
two trucks travel at exactly the same speed - and no two shifts
produce exactly the same saleable product. It is therefore
obvious that the answer to achieving the budget lies in the
uncertainty of these cornerstones of production, which must be
understood so that the probability of success may be improved
(or positively influenced).

It is clear that the single deterministic point value for a
budget is a fallacy, since the chance of achieving it exactly in a
highly complex environment is zero. As SAP® is widely used in
large mining environments, Table 600, which is a summary of
the main cost buckets of the budget, was analysed as a first
step. This was further distilled by using a standard Pareto
analysis to determine the most important cost buckets. A
Monte Carlo simulation was then used to give the distribution
of outcomes. (This simulation failed, as is explained below).
From the literature it is clear that Monte Carlo simulation is
used mainly for capital budgeting of large projects (Clark,
2010). Such simulations are concerned with the cost of the
project, while this model concentrates on the uncertainty
inherent in the production process and regards cost fluctu-
ations as risk Z.e. uncontrollable (but explainable), for example,
price increases in diesel, electricity, etc.

The cost buckets were then combined to describe the cost
function, broken down into fixed and variable cost. Income
(through product sales) was added to allow the results to be
expressed as a net profit (prior to tax and cost of capital). The
probability distributions were assumed to be triangular with a
lowest, highest, and most probable value (US Air Force, 2007).
This methodology did not work, since the multiplication of
uncertainty leads to a wider spread of probabilities - to the
extent that it is clearly an irrational approach and most
probably is the reason why Monte Carlo simulation is not used
in the standard budgeting process.

A different approach was indicated, and the
drum-buffer-rope (DBR) production planning methodology
from the theory of constraints (TOC), as originally proposed by
Eliyahu M. Goldratt in the 1980s, was considered.
Schragenheim and Dettmer (2000) summarize the drum-
buffer-rope as striving to achieve the following:

» Very reliable due-date performance

» Effective exploitation of the constraint

» As short a response time as possible, within the
limitations imposed by the constraints.

The problem with the DBR methodology is that although
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the beneficiation plants (specifically the tipping bins of these
plants) are normally defined (through TOC) as the bottleneck,
the analogy is not a true one as the mining process differs from
the manufacturing production process. It should rather be
described as a trail run with a specific obstacle that all the
runners have to cross. It is clear that if trucks are seen as a
buffer, the logical response would be to over-truck the
constraint. However, in the analogy of trail running, this is the
worst possible decision. More athletes trying to cross the same
obstacle at the same time results in more interference with
each other and a slower throughput.

Envision athletes on a trail run. Some run faster and some
slower. Some stumble and block others. There is no rope
(communication once the athletes are running), and this is
exactly the problem with production haul trucks. Breakdowns,
bad road conditions or secondary work on the road,
intersections efc. cause unpredictable delays that can be
handled only by stochastic methods.

The logical solution is to express the budget as a
probability distribution through examining the effect of the
inputs in a logical way. By managing these distributions, the
final shape and position of the budget distribution may be
influenced.

The understanding of the difference between the risk and
uncertainty clearly indicates that the focus must be on
‘controllable factors’, as the assumption that these factors may
be influenced by money (i.e. either men, material, or
equipment), holds true. This will also allow the model to
indicate to management where to optimally apply funds to
have maximum impact on the achievement of the budget.

The examination of the system through the above leads to
defining the 'heartbeat’ of the operation - ROM must move,
and for a large surface (open pit) mine it should be on wheels -
i.e. trucks. So by measuring and understanding the truck cycle,
the inherent uncertainty can be quantified as a probability
distribution. These distributions can be manipulated through
the application of money and will directly influence the
production and therefore attain the budget.

Analysis of the problem

The budget needs to be expressed not as a single number, but
as a range within a probability distribution. The position of the
budget point relative to the median is important, Ze. a budget
above the median indicates a greater chance of failure, and
below a greater chance of success. The shape of the distri-
bution is also important, as a narrow spread implies a greater
chance of success, while a broader spread equates to a higher
risk environment with a greater chance of failure (Figure 1).

The variability (distribution) of most of the key drivers can
be changed through the application of funds - Z.e. training of
personnel, appointing more personnel, buying and commis-
sioning more production units, or better maintenance to
improve reliability. However, not all key drivers can be
influenced through application of money, for example,
geological variability. Furthermore, the interdependence
obscures the relationships between the drivers to the extent
that is impossible to define the value of changing an individual
driver without detailed modelling.

The detailed modelling tool must accurately simulate the
schedule that will supply the activities to be priced for the
budget - activity-based costing — and the model must not
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break down under probabilistic simulation, but keep the
integrity of the mine plan and three-dimensional geographical
exploitation intact. The main inputs to any mining budget are
derived primarily from the past, namely: historical costs and
performance, strategy with regard to exploitation, stripping,
equipment replacement, and marketing. Normally, the mine
will have a life-of-mine pit shell that outlines the mineable
area. Within these limits, the mine will then develop a
schedule.

The most important driver of the schedule and hence the
budget is the market forecast. It is of no, or very little, use to
produce product that cannot be sold. Constraints imposed by
infrastructure such as rail or harbour capacity are normally
viewed as part of the overall marketing plan. A great deal of
time is spent on price forecasts - for the very obvious reason
that it is imperative to know what prices will be realized.

Next, the market plan is married to the production
constraints or bottleneck, normally the plant capacity. The
beneficiation plant is usually the largest capital investment,
and has a fixed production ceiling that limits the total
throughput.

The schedule is then broken down into base components.
Firstly, the ROM tonnages from the different mining benches
are determined and allocated to different beneficiation plants,
honouring the spatial constraints. Secondly, the specific
metallurgical characteristics of the material to be delivered to
the plants are calculated - namely yield, plant efficiency, and
other modifying factors like misplaced material, ezc.

The calculations are based on physical standards and
norms with the assumption that physical standards are
changeable and can be influenced by the amount of money
available, whereas norms are a given. Utilization through shift
rosters and number of operators employed is then added to the
equation. Broadly speaking, the budget may be divided into
two distinct parts, namely CAPEX (sustainable and other) and
OPEX (salaries, electricity etc.)

The correct way to cost a schedule is to link the tonnages
to the activities. This is commonly referred to as activity-based
costing (ABC). This results in a budget that tries to reflect
reality. However, the shortcoming is that it is based on fixed
events - Z.e. events that are supposed to occur. No exceptions
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Figure 1 -- Probability distribution - shape and size
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are allowed in the budget. In reality, nothing is absolutely fixed
and this is nowhere more apparent than in the intricate and
highly complex environment of a big mining operation.

The only way to address this is by way of a different
approach, and this leads to the introduction of risk and
uncertainty, which logically implies the use of stochastic
modelling of the budget to reflect uncertainty within the
predicted cash flow.

To find the significant (i.e. key) drivers of the budget, a
classical Pareto analysis was done on the budget’s main cost
buckets (Figure 2).

The following analysis demonstrates the complexity of the
problem. For example, the cost of diesel is influenced through
price fluctuations, over which the mine has no control.
However, if it is influenced by production, Ze. higher
production will require more diesel, but if there are better
standards (fewer litres per ton produced), the mine will require
less diesel than budgeted. It is therefore clear that a different
approach is required to find the real drivers that will meet the
requirements of a distribution that can be manipulated.

In re-examining the approach, the following alternative
view of the process is proposed. The process (in a mining
environment) can now be summarized as follows:

» The budget utilizes assets (production units) to mine
and to supply ROM to the plant
» The plant beneficiates and delivers product to be sold.

To use any asset for continuous production, three things
are required, namely capital, utilization, and maintenance. In
using the assets, the main drivers that will influence the
budget can now be stated as:

» Capital. Only three things can happen to capital
expenditure - it may be replaced, sustained, or increased

» Use of assets. Assets are either being used or
maintained. If they are in use, they can be used produc-
tively. The level of utilization will depend on the skills
level of the people and the number of full-time
employees (FTEs). Both may be changed by applying
more money Ze. more people can be employed, or they
can be trained better. The same basic argument can be
applied to maintenance. More money can be spent on
better maintenance (replace before failure etc.),
employing more FTES, and/or training them better.
Figure 3 shows the detail.

Pareto Analysis

Explosives

Maintenance_—

Diesel

Plant yield (which provides the link between the budget
and the geology) is one of the most important drivers in a
budget, as the quantity and quality of the product drives the
total income stream of a mine. In the geological environment,
boreholes are drilled to set spatial parameters. As an example,
for a coal mine, coal from the boreholes is analysed in a
laboratory to determine a washability curve that gives the
various qualities at specific densities. The information is then
spatially configured through a database coupled to a geological
model. The model uses different types of growth algorithms,
statistical methods etc. to predict the information in-between
the boreholes — normally given in a grid (or block) format.
Since the predictions are not absolute but rather an approxi-
mation of the truth, this imparts a ‘probability’ flavour to the
process. It should be noted that the interpretation of
washability gives a singular deterministic value for a specific
block of coal. However, as the analysis is done in a laboratory,
there will be a difference in the results, as the operational
procedure (i.e. production) occurs under dynamic conditions. It
is sufficient to note that the yields will rarely be better than
expected. The next problem is caused by the operational
procedure followed in product bed-building. Production beds
are normally required to conform to very strict quality specifi-
cations. It is standard practice, to build a product bed with a
slightly higher than required quality, as it is easier to add low-
grade material rather than above-grade in the beneficiation
environment. When the bed is of too high a grade, nobody
worries, and there may even be some bonuses. However, if the
bed is out of specification on the ‘poor’ side, the company may
incur large penalties or even rejection of the product by the
customer. Because of this principle, and coupled to the fact that
the beneficiation curve is not linear, it is common knowledge
that one never gains on the upswing what is lost on the
downswing. The schedule determines the time when a specific
mining block will be beneficiated.

The methodology proposed here, is to take cognisance of
the ‘stochasticity’ and to introduce variability with a triangular
stochastic distribution as suggested by Clark, Reed, and
Stephan (2010). With this triangular distribution, the Arena®
model will simulate operator error and variability, which will
represent reality much closer than utilizing a single
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Figure 2 - Pareto analysis of main cost buckets
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Figure 3 - Interaction of Table 600 with the production process
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deterministic value. As expected, the yield will form a distri-
bution around the budget figure.

Although the uncertainty assumed for the evaluation of the
Derekdy copper deposit (Erdem et al., 2012) demonstrates a
probability curve of NPV, it ignores the time component in
relation to the actual mining of the deposit. This is a serious
shortcoming, as a financial budget is by default a forecast of
monetary flow over time. The mining operator can influence
this to a large extent - for example, high-grading early on will
increase the NPV, etc.

The geology and other mining conditions are given inputs
to the budget. These are accessed through the mining
schedule, which links time-based production outcomes to the
budget. This is done with scheduling software (XPAC®), where
the yield and plant relationships that will exist sometime in the
future are derived through a time-based production schedule.
The resultant product mix will impact on logistics and
marketing constraints if more than one product is sold. This
solution may then be used to calculate the revenue or income,
culminating in the final budget figure, expressed as a net
profit.

The above description is a somewhat simplified version of
the actual process, but based on logic and demonstrably
accurate enough to deal with the myriad of confusing interrela-
tionships that exist in such a complex environment.

Rigidity of the mine plan

The development or mining of an open pit follows very strict
rules, Z.e. the pit may be described in terms of a series of
consecutive pit shells, governed by the need to keep the slopes
at stable angles and have roads and ramps in place for access
to specific mining blocks. Although some deviations are
possible, for a given budget period the interrelationship
between the different material types will have a fixed
correlation, for example the pit slope has to be maintained, so
the percentage distribution between benches will stay the
same, but with increased production the slope will move faster,
and with decreased production, it will move slower.

The haul truck - defining the heartbeat

A truck carries a payload that is not a fixed tonnage but may
vary considerably. There are specific factors that cause this,
e.g. the load-tray design, loader operator expertise, loose bulk
density of the material (7.e. after blasting) and the type of
material, which all vary considerably for any given pit.
Overloading will lead to spillage, and exceeding the maximum
carrying capability will cause damage to the truck.

A truck moves material from a given point to a fixed
destination — normally from a series of mining benches to a
plant or crushing facility, or in the case of overburden to a
waste dump. A truck haul cycle consists of the following
components: full hauling, queue at bin, tip, empty hauling,
queue at loader, spot, load, and the cycle starts again.

It is clear that there is a rigidly defined or fixed number of
production hours per year, day, or month during which the
truck may be utilized. During this time the truck must operate
not only productively, but also be maintained. Waiting times
(times not spent hauling) should be as short as possible.

Probabilistic methodology

The logic component is clearly defined in the budget process.
Combining this with a probabilistic approach aims to determine:
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» What do the confidence levels look like for a given
budget?

» Could the application of probabilistic logic influence the
inherent risk of non-compliance with the budget?

» Will a stochastic approach allow the budget owner to
establish a target probability with a higher confidence
level?

To answer these questions, the impact on the budget or
the achievement thereof must be simulated in a stochastic
environment. The problem with this statement is that setting
up the model and running it takes up to 40 minutes per run.
A true stochastic simulation would therefore take approxi-
mately 2 years to complete.

Probabilistic cash flow model

From the literature it is clear that stochastic simulation is not
applied to the prime financial budget, but is used to assess
either the risk or the cost associated with large projects.

A systematic approach to modelling of the budget is
needed that will allow simulation of results under a variety of
possible scenarios. In other words, simulated net cash flow
with extreme movements within the controllable budget
inputs, such as fluctuations in the norms and standards that
underpin the budget, is required. In summary, the model
predicts the potential loss or profit in relation to the budget
over a defined period, reflecting a probability distribution for
which a given confidence interval can be assumed for the
achievement (or non-achievement) of the budget. (Budget
risks such as higher inflation, higher diesel prices, underper-
forming assets, and declining revenues cannot be ignored,
since for a large mine the influence of these risks may be
significant enough to threaten the company’s ability to fund
new projects, pay dividends, and impair cash flow).

Model interaction - probabilistic methodology

(Figure 4)

A methodology that will keep the space-time interrelationship
intact, honour the integrity of the mine plan while taking
cognisance of the budget complexity, and meet the simulation
criteria with regard to computing time constraints is needed.

As explained, the initial phase is a modelling tool that
will link the mining schedule to the budget. The Xpac®
model, which drives the tonnage schedule on which the
budget is based, is used to obtain bench information for tons,
hours, cycles, payload, and destination - Z.e. from where
(which blast block) to which plant or overburden dump.

Next, the translation model describes the budget in terms
of tons. Simultaneously, the costing (ABC) model is used to
give inputs to the exposure model for the different variables.
The exposure model balances the bench ratios etc.

The fundamentals and statistics interact to derive a model
with economic logic - in other words, a basic cash flow model
underpinned by logic. The macroeconomic variables or
drivers that have a significant influence on the budget
performance can now be entered and distributions for the
identified drivers applied. Risk is derived from random,
unexpected deviations from the forecasts.

Finally, a stochastic process (an Arena® Dynamic
simulation model) is used to simulate values of the variables
by randomly picking observations from their
variance/covariance matrix.
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Deriving the budget description in a mathematical
expression

The budget f can be described from Xeras® in terms of
fixed (Fc) and variable costs (Vc). The variable costs are a
function of ROM tons, which are a function of operational
performance (OP).

Budget (Pareto-based) cost function f =

Fc_Other + Fc_Salaries + (Vc_Salaries x tons)

+ Fc_Energy + (Vc_Energy x tons)

+ Fc_Diesel + (Vc_Diesel x tons)

+ Fc_Plant Maintenance + (Vc_Plant Maintenance x tons)
+ Fc_Maintenance + (Vc_Maintenance x tons)

+ Fc_Explosives + (Vc_Explosives x tons)

Budget Income f = (AvePrice x tons)

ROM tons can be described by the operational performance
drivers. These drivers can be described by probability distrib-
utions which can be measured and managed and influenced.
The relationship between the operational performance drivers
and tons can be determined with a function. The main
operational performance drivers are:

» Maintenance (availability and utilization)
» Operators (FTEs, skills, production rate)
» Fleet units.

Stochastic simulation

The Arena® Dynamic simulation model was used to simulate
the cash flow model analysis. The objective of the model is to
vary chosen business drivers in order to obtain a net cash flow
distribution for the budget.

The model uses Excel® driver inputs (per destination per
bench) obtained from an Xpac® life-of-mine schedule. Typical
driver inputs like cycle times, bench ratios, payloads, fleet
hours, and physical standards are read in by the model. The
model then uses probability distributions to independently vary
the drivers like cycle times, payloads, and fleet hours, also
making provision for, force majeure events and operator
absence.

The model adjusts the driver values and then ensures that
the fleet size and bench ratio are kept constant in order to
simulate new bench tons and product tons. The model has
product prices per bench, per destination, and per product, and
also has the variable and fixed costs as derived from the Table
600 Budget, in order to calculate a net cost and net income.

Ten thousand variable runs of each independent driver are
simulated and the values are recorded in order to apply a
statistical analysis of the net profit spread using an Excel®
input sheet with built-in formulae for evaluation. Because
Arena® does not use 'time’ in the sense that the scheduling
model does, an extra iteration to limit the total production
hours available had to be implemented. This increased the
complexity of the model without influencing the stability.

The final Monte Carlo model was also expanded to be able
to ‘randomize’ more than one parameter simultaneously so that
influence on the budget of any combination of parameters can
be tested . The interaction between the different environments
and accompanying models is depicted in Figure 4.

Data used

The data for the probability distributions is obtained from the
mine’s history through a sequel server database. Values are
generated fitting Weibull distributions with an Excel®-linked
spreadsheet.
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The curves fitted are three-parameter Weibull curves. The
maximum likelihood estimation (MLE) method is generally
considered to be the best method for estimating the curve
parameters for a two-parameter Weibull curve (balancing
resources and accuracy), but poor with three-parameter
methods (Cousineau, 2009). Therefore the method for
estimating the shape of the distribution is a modified MLE,
which intelligently identifies the offset parameter before
applying the MLE. The accuracy of the resulting curve has
proven to be consistently adequate during testing on real data.
Some results are shown below in graphical format as
probability distribution and cumulative probability distribution
curves.

The following are examples of curve-fitting to real data as
obtained from the dispatch sequel server database: The
payload distribution (depended on the material density) and
total cycle times are shown. Not shown, but fitted, were: empty
hauling time, spot time, queuing, loading, full haul, dump, and
reassign time. From a visual inspection it is clear that the
methodology applied, Z.e. using a three-parameter Weibull
curve-fitting technique, yields the desired results. Typical
results obtained are shown in Figures 5 and 6.

Results

The following results are based on a real case study. The
budget has been normalized so as not to release sensitive
information. The answers are given in profit units, called net
profit, and expressed as millions of rands.

In the analysis that follows, it must be borne in mind that
the budget was completed at least 3 months prior to the start of
the budget year. The cycle time and payload information that
were used were the actual for 3 months into the budget, as well
as the preceding 3 months, i.e. 6 months of real-time data. All
examples refer to a large open pit mine.

Cycle and payload

In this particular example, the mine had a problem, prior to
budgeting, with the standards used cycle times. They either
were under pressure not to drop the physical standards too
much, or did not fully understand the implication of the trend
that they were seeing, or a combination of both. It would

Mine Planning  Probabilistic Stochastic
Environment  Methodology Simulation
Modelling Tool Translation Monte Carlo
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Figure 4 - Model interaction
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Figure 6 - Cycle time data fit

appear that they thought that the longer cycle times could be
countered by increasing the payloads that the trucks were
carrying. In other words, they ‘under-budgeted’ on payloads.

Figures 7 and 8 show the situation. The budget was set at
1862 units (Table I). The effect of the poor cycle times at 50%
results in a target of 1401 - below the budget. It is clear that
the effect of the cycle time deterioration was not apparent when
the budget was compiled. The strategy of countering the poor
cycle time performance with loading (1933 units at 50%) is
obviously not working as the increase in payload moves the
target to only 1554 units compared with a budget of 1862,
clearly indicating that the budget will be at risk.
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Production hours (FMs)

In the following example, the influence of lost production
hours is examined (see Table II). A triangular distribution is
deemed to be the best fit to describe this problem, as depicted
in Figure 10. The mine has on average two trucks down, either
through an accident or an unforeseen rebuild. Section 54
(Mine Health and Safety Act) stoppages cause a loss of on
average four production days. The rest of the loss is made up
of ‘truck standing no operator’ (dispatch code). The fit for the
data is a triangular distribution with a mean of 21 340
production hours, less 10% plus 5% (these events are seen as
a force mgjeure, hence the terminology FM.) The mean drops to
1519 against the budget of 1862, with a very narrow distri-
bution as indicated (Figure 10).

Yield (influence)

Because yield causes a distribution around the budget line
(Figures 9 and 10) it gives a target of only 1802 against the
budget of 1862, as expected.

Murphy (if everything that can go wrong, goes wrong)

It is clear that if all of the above events occur, then the results
(called ‘Murphy’) are catastrophic, with a mean of only 1345
units.

Example of capex optimization

The following example demonstrates the power of the model to
determine where money should be spent. In striving to achieve
the budget, the mine now has the option of:

» Spending R10 million on upgrading the roads and
improving the rolling resistance. This gives a minimum
advantage of 2 minutes per cycle and a maximum of 4
minutes per cycle

» Alternatively, buy two additional trucks for R75 million,
which will add 2 x 5500 hours = 11 000 hours for the
year.

The results are compared in Table Il and Figures 11
and 12.

The mean moves from 1401 to 1542 with two extra trucks,
or 142 units. If the cycle is adjusted by 2 minutes, (through
better roads) it moves to 1570, generating 159 units. A saving
of 4 minutes will give 248 units. It is clear that the better
option will be to spend money on the roads instead of buying
more trucks.

Conclusion

Monte Carlo simulation is not widely used in the industry as a
budgeting tool, although there are a few examples of it being
used mainly for capital budgeting and the prediction of the
variations within the budget. The main reason for it not being
used in the normal budget process is that the multiplication
effect of the distributions of the key budget drivers leads to a
spread in the budget distribution that gives an unreliable
conclusion, or no conclusion at all.

The strength of the probabilistic logic model lies in the
determination of the main drivers (first-order) that are
independent of each other and can be influenced through the
application of money. Probability logic offers a highly
expressive account of deduction of where funds should be
applied to optimally influence the achievement of the budget.

The probabilistic logic model circumvents the original
problem of expressing the budget as a single deterministic

VOLUME 115 JUNE 2015 537 4



Stochastic simulation for budget prediction for large surface mines

Table |
Cycle time and payload *
Base case Cycle Payload Cycle and payload 0
Description R m net profit R m net profit R m net profit R m net profit R m net profit
Low (5%) 1862 1064 1730 1155 -
Mean (50%) 1862 1401 1933 1544 -
High (95%) 1862 1756 2 142 1986 -
Median 1862 1395 1931 1544 -
Mode 1862 1430 1981 1540 -
. 0 indicates a control run
21% 100% : o
Base Case Base Case -7
18% —Cycle —Cycle & Payload il ’ /'f
..... Payload «--HRS/FM 2 !
A 75% ) 1
15% cle & Payload - -Yield '
=+ Murphy 1
12% !
50%
9%
1
]
6% 25% 7 !
. H I
3% . 1
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0% 0% . ’4/ : /7
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Figure 7 - Cumulative probability distribution - cycle time and payload
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Figure 8 - Probability distribution - cycle time and payload

Figure 9 - Cumulative probability distribution - yield and FMs added to
cycle time and payload

50%
Base Case
—Cycle & Payload 2
10/
0% | .. HRS/FM
- -Yield \
30% | —.Murphy '
]
20% \
|
|
10% \
- |
P - | \
0% = LR
o » o )
N N O O
& & g S P

Figure 10 - Probability distribution - yield and FMs added to cycle time
and payload

Table Il
Yield and FMs added to cycle time and payload
Base case Cycle and payload HRS/FM Yield Murphy
Description R m net profit R m net profit R m net profit R m net profit R m net profit
Low (5%) 1862 1154 1472 1731 977
Mean (50%) 1862 1554 1519 1802 1354
High (95%) 1862 1987 1570 1861 1774
Median 1862 1544 1519 1802 1341
Mode 1862 1580 1524 1803 1357
» 538 JUNE 2015 VOLUME 115 The Journal of The Southern African Institute of Mining and Metallurgy
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Table Il
Capex optimization

Base case Cycle Cycle 2 min saving Cycle 4 min saving 2 New trucks + cycle
Description R m net profit R m net profit R m net profit R m net profit R m net profit
Low (5%) 1862 1065 1190 1241 1179
Mean (50%) 1862 1401 1570 1649 1542
High (95%) 1862 1757 1975 2 084 1928
Median 1862 1395 1562 1641 1536
Mode 1862 1397 1545 1643 1545

100% 1
Base Case
—Cycle
75% | Cycle 2min Saving
- -Cycle 4min Saving
- -2 New Trucks + Cycle
50%
25% =
0% -
& $ S &£ 5
& & FH Y S

Figure 11 - Cumulative probability distribution - capex optimization
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Figure 12 - Probability distribution - capex optimization

value by using the related activity-based costing, so that when
standards change the influence is clearly reflected in the new
probability distribution of the budget.

The robustness of the model is guaranteed through the
exploitation part of the model that directly links the deviation
in standards to production. Correcting standards through the
application of men, materials, or money is something that
management has been trained to do and is good at. The impact
and value of changing the standards are directly reflected in
the probability of achieving the budget.

The stochastic model uses real data wherever possible.
Hubbard (2010) makes the point that the model should only
be accurate enough, and states that uncertainty can be
overcome by adding more complexity to the model. This is
precisely wrong in the stochastic modelling environment. The
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robustness of the model proposed lies in the fact that it differ-
entiates between the primary drivers and secondary drivers
which, while appearing to be important, generate so much
noise that the answers become invaluable or worthless.
Testing of a real budget proved the ability of the model and
the value that may be unlocked through this novel approach.
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Acronyms

» Arena® - Simulation software

» _force mgjeure - Act of God, i.e. unforeseen and
uncontrollable

» Murphy - Refers to Murphy’s Law, an adage typically

stated as ‘Anything that can go wrong will go wrong’

SAP® - Enterprise software used in the industry

Table 600 - A generic budget summary used in SAP®

Xeras® - Software from the Rung suite for costing

schedules

» XPAC® - Scheduling software from the Runge suite,
widely used in mine planning

Yvy
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