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ABSTRACT 

Some small territories, like islands and isolated areas, 
actually experience a high penetration rate of PV inside a small 
electricity grid. Moreover, the high amplitude fluctuations of 
PV outputs can destabilize the grid stability. In order to avoid 
the risk of blackout, some countries set up regulatory limits of 
PV integration. In this context, the forecasting of the PV output 
is necessary for the supply-demand balance and for the increase 
of the penetration rate of PV. Previous works on this topic were 
mainly done for large-scale continental grids. Due to the small 
scale of the climatic phenomena, forecasting the solar 
irradiance in insular territories addresses new issues. In order to 
cope with specific plant operations, forecasts must be provided 
with different granularities and horizons. In this work, we will 
focus on day ahead forecasts with an hourly granularity. Day-
ahead forecasts are produced for scheduling of resources and 
commitment of units of production. This paper presents a 
comparison of two post processing models. A Model Output 
Statistics (MOS) and an Artificial Neural Network (ANN) are 
applied to the IFS (Integrated Forecast System) forecasts for the 
insular site of Saint-Pierre in Reunion Island. The small scale of 
the climatic phenomena requires to set up these post processing 
methods differently than in the continental areas. 

 
INTRODUCTION 

Between 2005 and 2011, the French government set up an 
incentive policy in order to develop the electricity production 
from photovoltaic. During this period, the feed-in tariffs 
proposed were specifically high in the overseas territories, as 
Reunion Island [1]. It resulted an exponential increase of the 
installed PV systems. For these small grids, an important 
penetration rate of such a variable means of production can 
destabilize the supply-demand balance. A regulatory limit of 
30% of the instantaneous power produced from intermittent 
renewables (solar, wind and waves) was defined in order to 
avoid this risk [2]. This legal constraint was reached in 2012 in 
Reunion. In this context, the forecast of the PV output power is 
essential in order to guarantee the supply-demand balance. 

First, it will help the grid operator and the PV producers to 
better manage the means of production and storage. Second, it 
will permit to stretch the mandatory limit of 30% and so to 
increase the penetration rate of PV. 

In order to cope with specific plant operations, forecasts 
must be provided with different granularities and horizons [3].  
In this work, we will focus on day ahead forecasts with an 
hourly granularity, so called short term forecasts. Day-ahead 
forecasts are produced for scheduling of resources and 
commitment of units of production. 

Forecasting of global horizontal irradiance (GHI) is the first 
and most essential step in most PV power prediction systems 
[4]. Common operational approaches to short-term solar 
radiation forecasting  is the use of numerical weather prediction 
(NWP) models that infer local cloud information – hence, 
indirectly, transmitted radiation – through the dynamic 
modeling of the atmosphere up to several days ahead [5]. The 
NWPs are used worldwide to forecast the weather and they are 
not initially designed to produce accurate solar irradiance 
forecasts for PV applications. In order to refine the forecasts of 
the NWP, post-processing methods have been applied to the 
global models IFS [6] and GEM [7]. These works were done 
for continental areas. The coarse spatial resolution of the global 
NWP is potentially an issue for the forecasting of solar 
irradiance in insular territories that experience numerous 
microclimates in a reduced area. 

The aim of this work is to compare two different methods of 
post-processing applied to the solar forecasts provided by the 
European Centre of Medium-Range Weather Forecasts 
(ECMWF) for the insular site of Saint-Pierre in Reunion Island. 
These two models of post-processing are the wellknown MOS 
developed by Lorenz et al. [6] and a artificial Neural Network 
(NN) designed by our team. 
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GROUND DATA MEASUREMENTS AND PRE-
PROCESSING 
Solar irradiance measurements 

The weather station is located at Saint-Pierre (21°20 South, 
55°29 East, 75 meters of elevation) in the southern coastal part 
of Reunion Island. The station measures the Global Horizontal 
Irradiance (GHI) every six seconds and the 1-minute averages 
are recorded. The hourly used data correspond to the average of 
the previous 60 minutes of measurements. The solar irradiance 
is measured with a secondary standard pyrometer (CMP11 
Kipp & Zonen).  

Two years of records without missing data, 2012 and 2013, 
were provided for this work. The year 2012 was used for the 
calibration of the models and the year 2013 was used to test the 
models. So all the results presented further in this paper 
correspond to the test year 2013. 

 
Clear sky index 

Solar irradiance is characterized by diurnal and seasonal 
variations. The clear sky index (kt*) is commonly used to 
remove this deterministic component of the GHI. It corresponds 
to the ratio of the measured GHI to the theorical GHI observed 
under clear sky conditions. 

The clear sky irradiance is generated with the BIRD model 
[8]. This simple model performs estimates with acceptable 
accuracy and with only few inputs [9]. The input parameters of 
the BIRD model are set to their climatological means and they 
remain constant. The optical depth of the atmosphere 
components corresponding to Reunion Island were retrieved 
from the AERONET website [10]. 

 
Zenith angle filtering 

Low solar elevations induce complex reflections 
phenomenon and the values of the measured GHI are often not 
reliable. Furthermore, the amount of solar energy received at 
ground level in this condition is not significant. As a 
consequence, data corresponding to a zenith angle (θz) superior 
to 85° are removed. So night times and low solar elevations 
were not taken into account for the calibration and the test of 
the models. 

 
MEASURES OF ACCURACY 

In this paper, we focus on a few measures of accuracy that 
are considered to be the most relevant for the solar forecasting 
[11,12]. We used the mean bias error (MBE – eq. 1), the root 
mean square error (RMSE – eq. 2) and the mean absolute error 
(MAE – eq. 3). In equation 1 to 3, Xforecast,i and Xmeasure,i 
correspond respectively to the forecasted GHI and the 
measured GHI at time i. 
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Relative values of the error measures (rMBE,rRMSE and 
rMAE) will be given in the following sections. Normalization 
is done with respect to mean ground measured irradiance of the 
considered period. 

 
DAY-AHEAD FORECASTING 
Initial ECMWF forecast 

The European Centre for Medium-Range Weather Forecasts 
(ECMWF) is an intergovernmental organization that provides 
operational forecasts. It maintains and runs the numerical 
weather prediction (NWP) model named Integrated Forecast 
System (IFS). NWP models give relatively accurate forecasts 
for horizon superior to 6 hours [5,13]. Initial day-ahead 
forecasts of GHI are the uncorrected values provided by the 
ECMWF. 

In order to supply forecasts that can be used by the grid 
operator for day-ahead scheduling, we retrieved the data 
generated by the IFS at 12h00 UTC (16h00 in Reunion). The 
forecasts correspond to hourly data with a spatial resolution of 
0.125° x 0.125° (approximately 14km x 14km in Reunion).  

 

 
 

Figure 1 Day-ahead forecast error over spatial averaging of 
ECMWF around Saint-Pierre 
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Figure 2 Day-ahead forecast error over the size of the sliding 
window for the calibration of the polynomial function of fourth 

order 
MOS post-processing 

Lorenz et al. showed that the ECMWF forecasts can be 
refined with model output statics (MOS) techniques [6]. Three 
steps of correction are proposed in their work in order to reduce 
the error of the forecast. 

First, the arithmetic average of surrounding pixels can 
potentially reduce the RMSE. For the site of Saint-Pierre, the 
spatial averaging does not improve the forecast accuracy (Fig. 
1). The lowest RMSE is obtained for the nearest pixel. Due to 
the coarse spatial resolution of the ECMWF, each forecast point 
is related to a different microclimate and a very different level of 
irradiance. So the spatial averaging will not be applied. 

Second, for very a low total cloud cover (TCC), the 
forecasted GHI is underestimated. In these conditions, a 
forecast provided with a clear sky model enables to reduce the 
bias. 

Finally, the bias is modeled by a polynomial function of 
fourth order in the clear sky index (kt*) and the cosine of the 
zenith angle (cosθz). The calibration of the polynomial function 
can be done with the historical data [6] or with a sliding 
window covering the last days of measurements [14]. These 
two approaches were compared. The longer is the size of the 
sliding window used to calibrate the polynomial function the 
better is the RMSE (Fig. 2). Thus, the calibration of the model 
was done with the historical data of year 2012 and the test was 
done with the data of the year 2013. 

 
Neural Network post-processing 

Artificial Neural Networks (NNs) are data driven 
approaches capable of performing a non-linear mapping 
between sets of input and output variables. A NN with d inputs, 
m hidden neurons and a single linear output unit defines a non-
linear parameterized mapping from an input vector x to an 
output y given by the following relationship: 
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Each of the m hidden units are related to the tangent 
hyperbolic function ! ! = !! − !!! !! + !!! . The 
parameter vector ! = !! , !!"  governs the non-linear 
mapping and is estimated during a phase called the training or 
learning phase. During this phase, the NN is trained using a 
dataset (called training set) of n input and output examples. The 
second phase, called the generalization phase, consists of 
evaluating the ability of the NN to generalize, that is to say, to 
give correct outputs when it is confronted with examples that 
were not seen during the training phase.  

 Careful attention must be put on the building of the 
model, as a too complex ANN will easily overfit the training 
data. Several techniques like pruning or Bayesian regularization 
[15] can be employed to control the NN complexity. In this 
work, we used the Bayesian Technique in order to 
automatically control the NN complexity and therefore improve 
the generalization capability of the model [16]. 

In our context, a NN is used to model the bias of the NWP 
forecasts in relation with the clear sky index (kt*) and the 
cosine of the zenith angle (cosθz). The MOS-corrected 
ECMWF forecasts are obtained by subtracting the modeled bias 
from the original ECMWF forecasts. 

 
RESULTS 

The computational time of the two tested methods is very 
low and the post-processing of a day-ahead forecast can be 
produced in less than 1 second. Post-processing of the day-
ahead forecasts produced by a NWP permits to improve their 
quality. The bias is efficiently reduced to a value close to 0. 
However the quadratic error is only slightly improved (Table 
1). 

 
Relative error (%) MBE RMSE MAE 
Initial ECMWF -3.99 29.8 21.0 
ECMWF + MOS 0.96 29.3 20.2 
ECMWF + NN 0.81 28.9 20.0 

 
Table 1 Relative errors of day-ahead forecast (mean GHI = 

498.2 W.m-2) 
 
Figure 3 shows the percentage of “good” forecasts for the 

initial ECMWF data and for the two post-processing methods. 
A “good” forecast corresponds to a forecast that enters in the 
same range of clear sky indices as the measured data. Three 
range of clear sky indices are defined. Boundaries of the 
different sky conditions were defined by Reindl et al. for the 
clearness index [17]. In our study, we used the same boundaries 
but they are applied to the clear sky index. They are 
representative of the three types of sky conditions : clear sky, 
cloudy sky and overcast sky. On average, the ECMWF model 
underestimates the solar irradiance with a negative bias (Table 
1). The post-processing techniques allowed to reduce this bias 
by increasing the  number of forecasted clear sky hours. But 
unfortunately, the MOS techniques also reduced the percentage 
of good forecasts in case of cloudy or overcast skies. 

The MOS technique based on the 4th order polynomial 
model is a linear parameterized model while the NN model is 
able to reproduce more complex non-linear relationships 
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between the inputs and the output. The better results obtained 
with the NN confirms that non-linear relationships probably 
exist between the error of the ECMWF model and the selected 
inputs (i.e. Kt* and cosθz). 

 
 

 
Figure 3 Rate of “good” forecast before and after the post-

processing for the 3 different sky conditions 

CONCLUSION  
Forecasting the solar irradiance is mandatory for the non 

interconnected grids that experience an important penetration 
rate of PV. It allows the distribution system operator to 
anticipate the sudden variations of the PV power output and to 
schedule the management of the ressources. 

Day-ahead forecasts are initially produced by NWP models. 
Their accuracy can be refined by using post-processing 
techniques. Two models of post-processing have been applied 
to the ECMWF day-ahead forecasts: MOS and NN. The bias of 
the NWP forecasts is modeled with the clear sky index (Kt*) and 
the cosine of the solar zenith angle (cosθz). Using these inputs, 
both models allow to reduce efficiently the bias of the initial solar 
irradiance forecasted by the NWP. However, this correction 
improves slightly the RMSE. Even if the NN model performs 
better than the MOS, their accuracy remains however very close 
for the study case of la Reunion.  
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