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ABSTRACT 
Because of the soaring energy prices, many countries have 

shown an increased interest in the utilization of solar energy. 
The optimization of the solar energy collector design plays a 
critical role in the efficient collection of solar energy. Flat-plate 
collectors can be designed in applications that require energy 
delivery at moderate temperatures (up to 100◦C above ambient 
temperature). These collectors use both beam and diffuse solar 
radiation, and do not need to track the sun. They are simple to 
manufacture and install with relatively low maintenance cost 
which make this kind of solar collectors more popular. The 
design of a flat-plate solar collector embraces many 
relationships among the collector parameters, field parameters 
and solar radiation data at any given location.  The shading 
decreases the incident energy on collector plane of the field. 
The multi-objective optimum design of stationary flat-plate 
solar collectors is presented in this work. The clear day solar 
beam radiation and diffuse radiation at the location of the solar 
collector (Miami) are estimated. The maximization of the 
annual average incident solar energy, maximization of the 
lowest month incident solar energy and minimization of the cost 
are considered as objectives.. The game theory methodology is 
used for the solution of the three objective problems to find the 
best compromise solution. The sensitivity analysis with respect 
to the design variables and the solar constant are conducted to 
find the relative influence of the parameters on the design. The 
multi-objective optimum design of stationary flat-plate solar 
collectors under probabilistic uncertainty is also considered. 
The three objectives stated earlier are considered in the 
optimization problem. The solar constant, altitude, typical day 
of each month and most of the design variables have been 
treated as probabilistic variables following normal distribution. 
The game theory methodology is used for the solution of the 
three objective constrained optimization problems to find a 
balanced solution. A parametric study is conducted with respect 
to changes in the standard deviation of the mean values of 
design variables and probability of constraint satisfaction. This 

work represents a novel application of the multi-objective 
optimization strategy, including probabilistic approach, for the 
solution of the solar collector design problem. The present 
study is expected to help designers in creating optimized solar 
collectors based on any specified requirements. 

 
INTRODUCTION 
 Solar energy is by far the Earth's most important 
available energy source that could be utilized. It is estimated 
that thirty minutes of solar radiation falling on earth is equal to 
the world energy demand for one year [1]. But until now solar 
energy has remained as the most expensive energy among the 
various alternative energies. The improvement of the efficiency 
as well as reducing the cost of solar energy system is a current 
topic of interest to many investigators. Several investigations 
focus on research related to new materials for thermal or 
photovoltaic solar panels in order to improve the efficiency [2-
4]. Some researchers [5-8] focus on the design optimization 
based on the existing materials of solar panels in order to obtain 
maximum efficiency and reduced cost for the whole mechanical 
system. Flat-plate collectors are most economical and popular 
among the various types of solar collector systems since they 
are permanently fixed in positions, involve simple construction, 
and require little maintenance. The design of a solar energy 
system is generally concerned with obtaining maximum energy, 
maximum efficiency or minimum cost. The flat plate solar 
collectors are used in many different applications, such as air 
conditioning, industrial processes, domestic water heating and 
space-heating. Figure 1 shows a multi-row flat-plate solar 
collector. An increase in the number of rows and the size of 
solar collector can increase the total solar panel area but it also 
increases the shading area (darker area shown in Figure 1) 
which will decrease the total amount of solar radiation. Hence, 
there are multiple schemes for the optimal deployment of solar 
collectors in any specific area depending on the objective 
chosen. Weinstock and Appelbaum [6] formulated different 
optimization objectives including maximum incident energy on 
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the collector plate, minimum field area for a given incident 
energy, and maximum energy per unit collector area. Hu and 
Rao [9] extended the model and applied a multi-objective 
scheme to consider different objective functions using a 
deterministic formulation.  
.  
 

 
 
Figure 1   Multi-row flat plate collector in a given location  

 
While most of the studies related to the analysis and 

design of solar collectors considered only deterministic 
approaches, this work presents the multi-objective optimization 
of flat plate solar collectors using both deterministic and 
probabilistic approaches. The probabilistic approach is more 
realistic because, in practice, most of the parameters influencing 
the performance of solar collectors are uncertain. For example, 
the incident solar radiation measured in terms of the solar 
constant at any location varies from instant to instant. Only for 
convenience and simplicity, an average value of solar radiation 
is defined not only for each day but also for a typical day of the 
month/year. Available statistical analysis of solar radiation 
measurements acknowledges this variability / uncertainty. In 
addition, in the design and manufacture (or construction) of 
solar collectors, design parameters such as the width and length 
of a flat plate solar collector, distance between any two rows of 
solar collectors and the inclined angle of solar flat plate 
collectors are to be specified using tolerances, such as  
where   is the mean value and   is the tolerance (  
if the manufacturing / construction process follows normal 
distribution) of a design parameter. In the probabilistic 
optimization,  many of the design variables as well as the solar 
constant, altitude and typical day of each month are treated as 
probabilistic variables following normal distribution.  

A sensitivity analysis of the optimal design usually leads 
to the identification of the most and least influential parameters 
of the design. Since most design parameters are subject to 
variation due to random uncertainties, and manufacturing / 
installation errors; the sensitivity analysis results help in 
identifying the parameters that need to be controlled tightly. In 
this work, sensitivity analysis is conducted with respect to 
changes in the standard deviation of the design variables and 
the satisfaction level of the probabilistic constraints. This work 
is expected to help in a more realistic analysis and design of flat 

plate solar collectors. The optimization strategy presented and 
the results are expected to help designers to create optimized 
solar collectors depending on the specific requirements of the 
customers.  

NOMENCLATURE 
 
A [m] Altitude 
ci [-] Weight of objective function i, i = 1, 2, 3 
D [m] Diatance between two collector rows 
fi [-] Objective function i, i = 1, 2, 3 
FiU [-] Worst value in game theory approach 
FC [-] Pareto optimal objective 
Gsc [-] Solar constant 
H [m] Height (or mean value of height) of flat plate solar 

collector  
hS [m] Height of shaded area  
K [-] Number of rows  
Nd          [-]              Typical day for calculating the incident solar energy  
                                in each month 
P, P       [-]               Probability of constraint satisfaction 
 Q         [W/m2]        Solar constant 
S           [-]               Supercriterion 
W          [m]             Width of land 
 
Special characters 
 
β [-] Tilt angle, the angle between the plane of the surface in 

question and the horizontal 
θ [-] Angle of incidence; the angle between the beam radiation 

on a surface and the normal to the surface  
x  [-] Mean value of  x 

xσ  [-] Standard deviation of  x 

FORMULATION OF THE DETERMINISTIC 
OPTIMIZATION PROBLEM 
 Three objectives – the maximization of annual average 
incident energy, the Maximization of average incident solar 
energy for the lowest month, and minimization of cost – are 
considered for optimization. The detailed formulation of these 
objectives are indicated below. 
 
Maximization of annual average incident solar energy  

The problem of optimization of the solar collector design is to 
obtain maximum incident energy on a given horizontal and 
fixed flat-plate collector of dimensions L × W (length × width). 
The solar collector system (Figure 1) includes K rows of solar 
collectors with distance D between two neighboring rows and 
each collector is of length L and height H and inclined at an 
angle β with respect to the horizontal line. The design vector of 
the problem is:  
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The average incident solar energy of the field (for 
maximization) is given by:  

)])(1([ shsh
db db

qqKqqLHQ +−++=   (3) 
and the objective function for minimization is taken as:  

)])(1([)(1
shsh

db db
qqKqqLHQYf +−++−=−=

→

(4) 

The expressions for computing qb, qd,  
sh
b

q , sh
d

q  are given in 
Appendix A. The constraints of the optimization problem can 
be stated as follows. 
The total width (length) of the collectors must be less than or 
equal to the maximum width (length) of the available land:  

0)1(cos ≤−−+ WDKHK β   (5) 
along with 

maxmin LLL ≤≤     (6) 
The distance between two adjacent collector rows (spacing) 
must be larger than the minimum distance specified by the 
relevant standards: 

minDD ≥      (7) 
The height of the collector above the ground may have a 
limitation based on the installation and maintenance 
requirements: 

maxsin hYH ≤β     (8) 

The collector tilt angle is required to vary in the range of 0° to 
90°:  

oo 900 ≤≤ β      (9) 

The number of rows should be more than two but less than a 
specified maximum number, Kmax:  

max2 KK ≤≤      (10) 
 
Maximization of average incident solar energy for the 
lowest month 

In general, the incident solar energy is more in summer 
than in winter; however, consumers need more heat energy in 
winter. It is therefore necessary to consider the maximization of 
incident solar energy for the lowest month as the objective 
function. The design variables and constraints will be same as 
in the case of the optimization problem formulated in section 
2.2. The lowest incident solar energy month from the twelve 
month information can readily be found to evaluate the value of 
the objective function.  Then the objective function for 
minimization is given by 

f2 = - lowest incident monthly solar energy (17)  
 

Minimization of cost    
 Another important objective function in the design of a 
solar collector is to minimize the cost. The design variables are 
same as those indicated in Eq. (7). The objective function (cost) 
to be minimized can be expressed as: 

KHLsWLsCostf 213 +==  (18)  
where s1 is the unit cost of the land and s2 is the unit cost of the 
collector. Note that additional cost components such as those 
associated with piping, heat exchanger, pump and backup 
energy could be added to the objective function if necessary.   
The following additional constraints are considered while 
minimizing f3.  
The daily average incident solar energy in any month should be 
at least 60% of the daily optimum value found in the case of the 
problem described in section 2.2:  

0)])(1([%60 ≤+−++×− shsh
db db

qqKqqLHQ   (19) 
The average incident solar energy for the lowest month should 
be at least 60% of the daily optimum value found in the case of 
the problem describe in section 2.3:  

0)])(1([%60 minmin ≤+−++×− shsh
db db

qqKqqLHQ   (20) 
The dimensions of the solar collector are bounded as: 

21 b
L

Wb ≤≤   (21) 

where b1 and b2 are constants.  
 
Formulation of the probabilistic optimization problem 
 A general deterministic optimization problem can be 
stated in the following general form: 

Minimize or maximize f(
→

X ) with respect to 
→

X ,  
subject to    

mjXg j ,....2,1     ,0)( =≤  (1) 

lkbxa kkk ,....2,1, =≤≤  (2) 

where xk is the kth component of the design vector 
→

X , and ak 
and bk are the lower and upper bounds on the design variable xk, 
respectively.  
When some of the parameters involved in the objective 
function and / or constraints vary about their respective 
mean values, the optimization problem needs to be 
formulated as a probabilistic programming problem. A 
probabilistic nonlinear programming problem can be stated 
as:   

Find X which minimizes f(Y)   (3) 
subject to 

mjpgP jj ,...,2,1,]0[ =≥≤  (4) 
where Y is the vector of N random variables y1,y2,...,yN that 
might include the decision variables x1,,x2,...,x l .  The case 
when X is deterministic can be obtained as a special case of 
the present formulation. Equations (4) denote that the 
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probability of realizing gj(Y) less than or equal to zero must 
be greater than or equal to the specified minimum probability 
p j.  The problem stated in Eqs. (3) and (4) can be converted 
into an equivalent deterministic programming problem as 
Eqs.(5) and (6) by applying the chance constrained 
programming technique [5].  
Find Y which minimizes  

ψσψ 21)( kkYF +=   
(5) 

subject to 

mj
Yy

g
pg

iy

N

i i

j
jjj ,...,2,1,0)(

2/1

2

2

_

1
=≥
























∂

∂
+ ∑

=

σφ

 

(6) 

where k1 and k2 indicate the relative importances of ψ and 

ψσ for minimization with 
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Uncertainty of parameters 
 As stated earlier, the design variables, H, L, D and β 
are random due to the manufacturing tolerances used during 
production / construction of flat plate solar collectors. In any 
given city or location, the altitude (A) may vary, for example, 
when some solar panels are installed near a beach while others 
are installed on the roof of a skyscraper. Thus it becomes 
necessary to treat the altitude as a random variable. The solar 
constant (Gsc) denotes the amount of Sun's incoming radiation 
per unit area, measured on the outer surface of Earth's 
atmosphere in a plane perpendicular to the rays. The solar 
constant includes all types of solar radiation, not just the visible 
light. Several investigators measured the solar constant since 
1884 and found that the solar constant varies between  1318 and 
1548 W/m². At present, the value of the solar constant, as 
measured by satellites, is found to be roughly 1367 watts per 
square meter (W/m²), although the value fluctuates by about 
6.9% during the year (from 1412 W/m² in early January to 
1321 W/m² in early July) due to the variations in the distance 
between Earth and Sun. In fact, the value of the solar constant 
was found to vary by few parts per thousand from day to day 
[12]. Thus the solar constant is considered to be a random 
variable.  

Instead of computing the incident solar energy for each day of 
the month and then finding the average, a typical day of each 
month is chosen in this work in order to reduce the 
computational effort during optimization. Klein [13] used both 
numerical and experimental methods to find a typical day which 
would represent the average radiation of each month as 
indicated in Table 1.   

 

Table 1 Recommended Average Days of Months [21] 

Jan. Feb. Mar. Apr. May Jun. 
17 16 16 15 15 11 
Jul. Aug. Sep. Oct. Nov. Dec. 
17 16 15 15 14 10 

 
In this work, the fifteenth day of each month (the mean value of 
the average days indicated in Table 1) as the typical day for 
calculating value of the incident solar energy per day in any 
month, with 1% ~ 5% of the mean value chosen as the standard 
deviation of the incident solar energy in the formulation of the 
probabilistic optimization problem.   

The conversion of probabilistic objective and constraint 
functions to equivalent deterministic form requires the partial 
derivatives of f and gj with respect to the random variables yk (k 
= 1, 2, …, N) as indicated in Eqs. (23) and (33). These 
derivatives are computed numerically using a finite difference 
scheme in this work.  
 
Solution of  Multi-objective optimization problem 
The problem of multi-objective optimization of the solar 
collector design can be stated in the standard form: Minimize 
the objective functions      
  )(),...,(),( 21

→→→

XfXfXf k    (22) 

with respect to the design vector  
  }{ T

lxxxX ...21=
→

   (23) 
subject to the constraints 

  mjXg j ,...2,1,0)( =≤
→

                                    
(24) 

          lkbxa kkk ,...,2,1, =≤≤                  (25) 
The problem stated in Eqs.(34)-(36) is solved using a modified 
game theory approach in this work. For this, the single objective 
constrained optimization problems are solved using nonlinear 
programming techniques (sequential quadratic programming). 
The omputational procedure for implementing the modified 
cooperative game theory can be stated as follows:  
 
(1) Normalize the objectives so that no objective due to its 

magnitude will be favored. The following normalization 
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procedure gives zero as optimum value and one as the 
worst value of ith objective function:  

)(
)()(

)( *

*

iiiu

iii
ni XfF

XfXf
Xf

−
−

=
  (26) 

where Fiu is the worst value, and )( *
ii Xf  is the optimum 

value of the ith objective.  
(2) Formulate a supercriterion S as the product of deviations of 

all objective functions from their respective worst 
values:     
 )}(1{

1
XfS ni

k

j
−=Π

=

  (27) 

(3) Formulate a Pareto optimal objective FC using a weighted 
sum method as: 

   ∑
=

=
n

i
nii XfcFC

1
)(     (28) 

 where the sum of the weights ci is equal to one. 
(4)Since FC has to be minimized and S has to be maximized, a  
     new objective is constructed as (for minimization): 

    OBJ = FC – S  (29) 
 
      subject to all the constraints. The minimization of OBJ  
      gives the compromise Pareto optimal solution of the multi- 
      objective optimization problem. 
 
2. Illustrative example and numerical results 

A numerical example is considered to illustrate the game theory 
approach for the multi-objective optimum design of stationary 
flat plate collectors. The following data are assumed:  
Lmin = 15m, Lmax = 30m, Hmin = 0.5m, Hmax = 2m, Wmin = 15m, 
Wmax = 30m, Yh max = 2m, Dmin = 0.8m, βmin = 50, βmax = 200, 
Kmin = 50, Kmax = 200, s1 = 100 $/m2, s2 = 100 $/m2. 
The solar collector is assumed to be installed in a specific 
location, Miami (USA), where the latitude is 25.4°N and the 
altitude is 5m, and the solar collector is assumed to face the 
equator (south). The starting design vector is chosen as: 

 [ ] TTKDLHX ]80409.0275.1[==
→

β  
 
 

Table 2 INITIAL DESIGN AND DETERMINISTIC 
SINGLE OBJECTIVE OPTIMIZATION RESULTS 

 
 

4.1 Deterministic optimization 

The initial design and the results of deterministic optimization 
are shown in Tables 1 and 2(a) – (c). It can be seen that the 
height of the collector (H) reached its upper bound in all single 
as well as multi-objective optimizations. The length of the 
collector (L) attained its upper bound and the distance between 
the collector rows (D) attained its lower bound in the case of 
minimizations of f1, f2 and multi-objective optimization. The 
relative weights of the objective functions f1, f2 and f3 at the 
compromise solution achieved by the game theory are 0.8, 0.1 
and 0.1, respectively. This indicates that the first objective 
function (annual solar energy) dominates the compromise 
solution as per the supercriterion used. The multi-objective 
(compromise) solution corresponds to a value of f1 that is 
0.17% worse than the best value and 63.14% better than the 
worst possible value, a value of f2 that is 1.52% worse than the 
best value and 60.34% better than the worst possible value, and 
a value of f3 that is 62.38% worse than the best value and 
12.00% better than the worst possible value. 
 

Table 3 INITIAL DESIGN AND DETERMINISTIC 
MULTI-OBJECTIVE OPTIMIZATION RESULTS  
Parameter H L D β K 

Unit m m m Deg # 
Initial design 1.8 27 0.9 40 80 

Multi-objective 
optimization 2 30 0.8 30 79 

 
 

Table 4 INITIAL DESIGN AND DETERMINISTIC 
MULTI-OBJECTIVE OPTIMIZATION RESULTS 

(WEIGHT OF EACH SINGLE OBJECTIVE 
FUNCTIONS) 

Weights of 
objectives c1 c2 c3 

Unit - - - 
Initial Design 0.3333 0.3333 0.3334 

Multi-objective 
optimization 0.8 0.1 0.1 

 
 

Table 5 INITIAL DESIGN AND DETERMINIST MULTI-
OBJECTIVE OPTIMIZATION RESULTS (OBJECTIVE 

FUNCTION VALUES) 

Item 
f1 w/o 

standard 
deviation 

f2 w/o 
standard 
deviation 

f3 w/o 
standard 
deviation 

Obj    
(FC-S) 

Unit 106×W 106×W 106×$ - 
Initial Design -1.057 -0.8942 0.8786 0.377 

Multi-
objective 
optimum 

-1.3665 -1.0966 1.0758 -
0.1439 

 
 

5 
 

416



4.2 Probabilistic optimization 

Single objective optimization:  Minimization of (  
 
Figures 2 (a) – (c) give the values of ( , (i = 1, 2, 3) at 
optimum solutions found by minimizing ( . It was 
noticed that the variations of the mean values of objective 
functions have almost the same trends as exhibited by Figs. 2 
(a), (b) and (c), respectively. This is because the mean  of 
objective i (i = 1, 2, 3) is much greater than its standard 
deviation,  (i = 1, 2, 3). With an increase in the level of 
constraint satisfaction probability, the absolute values of the 
objective functions decrease because of tighter constraints. It 
can be seen from Figs. 2 (a) – (c) that with increasing values of 
the constraint satisfaction level up to 99% (at constant standard 
deviations of random variables), the change in the objective 
function values is gradual and is less than or equal to about 
10%, whereas at the 99.99997% constraint satisfaction level, 
the optimum values suddenly shoot to a newer levels and as a 
result, the objective function values lie far away from the base 
values. A larger value of the standard deviation of all random 
variables makes the absolute value of each objective function 
decrease rapidly. 
 
Single objective optimization:  Minimization of (  

In this case, the minimization of (  is carried for 
different values of probabilities specified for constraint 
satisfaction using several values of the coefficient of variation 
for all the random variables. It is observed that the 
minimizations of (  and (  exhibited similar 
behaviors. The primary reason for this behavior can be 
attributed to the low altitude of the specific location (Miami) 
used in the numerical computations. For example, the variation 
in the monthly average temperature between summer months 
and winter months is not as significant as for locations such as 
Chicago. The lowest temperate generally recorded in the month 
of January in Miami is between 60 and 76 °F. This is almost 
90% of the yearly average temperature. Gong et al. [13] 
presented the output in winter and the yearly average output of 
a photovoltaic system in Carbondale, Illinois based on different 
designs. The energy output in winter is only 50-70% of the 
yearly average energy output depending on different design. 
Wei et al. [14] compared the solar radiation in two cities of 
China, Kunming (latitude 25.04° N) and Beijing (latitude 
39.55°N). They concluded that the solar collectors in Kunming 
have much less seasonal fluctuation in yearly energy output 
compared to those in Beijing. The present approach and 
methodology can be applied to any location using the 
corresponding solar data.  
 
Single objective optimization:  Minimization of (  

Figures 3 (a) – (c) present the values of (  (i = 1, 2, 3) 
for different values of probability of constraint satisfaction at 
different values for the coefficient of variation of the random 
variables. It has been observed that the variations of the mean 
values of different objectives are found to be similar to those of 
Figs. 3 (a) - (c). This is because the mean value is very high 
compared to the standard deviation for any objective function i.  
When the probability of constraint satisfaction is 50%, all the 
values of , (i = 1, 2, 3), remain the same irrespective of the 
standard deviation of the design variables. However, as 
indicated in Figs. 3 (a) to (c), at any particular value of 
constraint satisfaction including 50%, curves corresponding to 
different values of the standard deviations of the random 
variables lead to different values of , (i = 1, 2, 3) with larger 
standard deviations resulting in larger values. 
With increasing values of probability of constraint satisfaction, 
the absolute values of the objective functions increased because 
of tighter constraints. Larger values of standard deviation of the 
random variables resulted in a rapid increase in the absolute 
values of each of the objectives. The mean values of the 
objective functions,  and , varied between -40% and 0% of 
the respective baseline values and exhibit similar nature 
whereas the value of , is found to have a conflicting behavior 
and varied between 0 and 40% of the baseline value.  
 
Multi-objective optimization using game theory  

The results of multi-objective optimization (using game theory) 
obtained with the coefficient of variation of the random 
variables varying from 1% to 5% are given in Table 3 and with 
the probability of constraint satisfaction varying from 50% to 
99.99997% are given in Table 4.  It is observed that with a 
coefficient of variation of random variables equal to 1%, the 
optimum values of design variables D (distance between two 
neighboring rows of collectors) attained its lower bound value 
and the design variables H (height of collector) and L (length of 
solar collector) attained their upper bound values when the 
probability of constraint satisfaction is 50%. As the probability 
of constraint satisfaction increased from 50% to 99.99997%, 
the optimum values of these design variables deviated gradually 
from their respective bounds. The optimum value of the tilt 
angle of the collector (the design variable β) increased 
gradually from 30º to 34º and the optimum number of rows of 
collectors (the design variable K) essentially remained constant 
at 79 as the probability of constraint satisfaction increased from 
50% to 99% and slightly reduced to 78 as the probability of 
constraint satisfaction finally increased to 99.99997%.  
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Table 6 EFFECT OF VARIABILITY ON MULTI-OBJECTIVE 
OPTIMIZATION  
(PROBABILITY OF CONSTRAINT SATISFACTION: 95%) 
 

 
†: Units: 106 W for f1, 106 W for f2, 106 $ for f3. 

The annual average incident solar energy decreased from 
1.3665 × 106 W to 1.1974 × 106 W and the average incident 
solar energy for the lowest month also decreased from 1.0966 × 
106 W to 0.9814 × 106 W and the cost of the solar collector 
decreased from $ 1.0758 × 106  to $ 0.9624 × 106 as the 
probability of constraint satisfaction increased from 50% to 
99.99997%. The maximum value of game theory objective, - 
(FC - S), also decreased from 0.1407 to 0.1320 as the 
probability of constraint satisfaction varied from 50% to 
99.99997%. 
An observation on the variation of the weights (c1, c2, c3) used 
in the Pareto optimal solutions indicated that f1 is dominant in 
all the multi-objective optimization problems. The weight of the 
objective function of f1 is found to drop from 80% to 71% with 
an increase in either the standard deviation of the random 
variables or the probability of constraint satisfaction. The 
increase in the weight of the second objective function (f2) is 
found to be very small (10% to 11%). In the case of f3, the 
increase in the weight (c3) is relatively large (10% to 16%).  
Figures 4 (a) – (c) give the values of 

ifif σ+ , (i = 1, 2, 3) at 
the optimum solutions obtained by multi-objective optimization. 
It has been observed that the mean values of the three objective 
functions exhibited trends similar to those of corresponding 
Figures 4(a) – (c). The reason is that the mean value is much 
larger than the standard deviation for each objective function.  
 

 
Table 7 CONSTRAINT SATISFACTION PROBABILITY ON 
MULTI-OBJECTIVE OPTIMIZATION 
(COEFFICIENT OF VARIATION (c.v.) OF UNCERTAIN 
PARAMETERS: 0.01) 

 
 
In Figs. 4 (a) to (c), when the probability of satisfaction is 50%, 
different objective functions have different standard deviations 
and hence the curves start at different points on the vertical axis.  
Although a 50% constraint satisfaction with relatively larger 
standard deviation can result in superior energy output, it may 
not be suitable for practical applications. With an increase in the 
probability of constraint satisfaction, the absolute values of the 
objective functions decrease because of tighter constraints.  
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Figure 2. PROBABILISTIC SINGLE OBJECTIVE 

OPTIMIZATION; MINIMIZATION OF   

 
 

 
 
 

 

 

 
 

Figure 3. PROBABILISTIC SINGLE OBJECTIVE 

OPTIMIZATION; MINIMIZATION OF   
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Figure 4. PROBABILISTIC MULTI-OBJECTIVE 

OPTIMIZATION (GAME THEORY); VARIATION OF 

OBJECTIVE FUNCTIONS 
 
3. Conclusion 

The multi-objective optimum design of flat-plate solar 
collectors is presented with a consideration of solar radiation 
with shading effect. Three objectives, namely, the maximization 
of the annual average incident solar energy, the maximization of 
the lowest month incident solar energy and minimization of the 
cost, are considered. Game theory methodology is used for the 
solution of the three objective constrained optimization 
problems to find a balanced solution. The solution represents 
the best compromise in terms of the super-criterion selected. 
Numerical results are obtained at a specific location (Miami, 
USA). Most of the design variables and the altitude, solar 
constant and typical day of each month are treated as random 
variables following normal distribution in the probabilistic 
approach example. When the probability of constraint 
satisfaction is 50%, all the design variables remain the same as 
the determinist optimum solution irrespective of standard 
deviation values of the design variables. The standard deviation 
of each of the random parameters is varied from 1% to 5% of 
the respective mean values to find the influence of uncertainty 
on different objective functions. The numerical results are given 
to show the influence of the level of probability of constraint 
satisfaction and the coefficient of variation of the random 
variables. It is observed that the absolute value of each 
objective function is decreased with an increase in either the 
probability of constraint satisfaction or the coefficient of 
variation of the random variables. Better objective function 
values can be obtained with a lower value of probability of 
constraint satisfaction, but it might not be suitable (safe) for 
practical applications. A relatively higher constraint satisfaction 
(like 99.9997%) would result in worse objective function 
values. The results of the present study help designers in 
producing optimum solar collectors based on customer 
requirements. As seen from the present results, there is a trade-
off between the absolute values of the various objectives and 
the probability of constraint satisfaction. From practical point of 
view, an increase in the overall objective implies improvement 
in a combination of annual energy output, winter energy output 
and cost of manufacture. With a higher probability of constraint 
satisfaction, the manufacture has to sacrifice the energy values 
as well as the profit if the costs of raw and processed materials 
are relatively large.  
 
Acknowledgment 
 
The author would like to thank Dr. Yi Hu for his help in 
preparing this paper. 

REFERENCES 
 
[1] Appelbaum, J. and Bany, J., 1979, “Shadow Effect of 
Adjacent Solar Collectors in Large Scale Systems,” Solar 
Energy, 23, pp. 497-507. 
[2] Bany, J. and Appelbaum, J., 1987, “The Effect of Shading 
on the Design of a Field of Solar Collectors,” Solar Cells, 20, 
pp. 201–228. 
[3] Weinstock, D. and Appelbaum, J., 2004, “Optimal Solar 
Field Design of Stationary Collectors,” Journal of Solar Energy 
Engineering, 126, pp. 898-905. 
[4] Hu, Y. and Rao, S.S., 2009, “Game Theory Approach for 
Multi-objective Optimal Design of Stationary Flat-Plate Solar 
Collectors,” Engineering Optimization, 41(11), pp. 1017-1035. 
[5] Rao, S.S., 2009, Engineering Optimization: Theory and 
Practice, 4th Edition, Wiley, Hoboken, New Jersey.  
[6] Frohlich, C., 2006, “Solar Irradiance Variability Since 
1978,” Revision of the PMOD Composite During Solar Cycle 
21, Space Science Reviews, 125(1-4), pp. 53-65.  
[7] Klsin, S.A., 1977, “Calculation of Monthly Average 
Insolation on Tilted Surfaces,” Solar Energy, 19, pp. 325.  
[8] Hottel, H.C., 1976, “Simple Model for Estimating the 
Transmittance of Direct Solar Radiation through Clear 
Atmospheres,” Solar Energy, 18(2), pp. 129-134.  
[9] Nash, J., 1953, “The Bargaining Problem,” Ecomertrica, 18, 
pp. 155-162. 
[10] Rao, S.S. and Hati, S.K., 1979, “Game Theory Approach 
in Multi-criteria Optimization of Function Generating 
Mechanism,” ASME J. Mech. Des., 101(3), pp. 398-406.  
[11] Rao, S.S. and Freiheit, T.I., 1991, “A Modified Game 
Theory Approach to Multi-objective Optimization,” ASME J. 
Mech. Des., 113, pp. 286-291. 
[12] Weather Channel, 2009, http://www.weather.com/ 
[13] Gong, X.Y. and Kulkarni, M., 2005, “Design Optimization 
of a Large Scale Rooftop Photovoltaic System,” Solar Energy, 
78(3), pp. 362-374. 
[14] Wei, S.X., Li, M., Zhou, X.Z., 2007, “A Theoretical Study 
on Area Compensation for Non-directly-south-facing Solar 
Collectors,” Applied Thermal Engineering, 27(2-3), pp. 442-
449. 
[15] Iqbal, M., 1983, An Introduction to Solar Radiation, 
Academic Press Inc., New York.  
[16] Liu, B.Y.H. and Jordan, R.C., 1960, “Interrelationship and 
Characteristic Distribution of Direct, Diffuse and Total Solar 
Radiation,” Solar Energy, 4(3), pp. 1-19. 
 

ANNEX A 
CALCULATION OF SOLAR RADIATION 

 
Since the atmospheric condition and air mass always change, 
the scattering and absorbing radiation also vary with time; thus 
it is difficult to accurately estimate the amount of solar 
radiation.   It is therefore necessary to define a standard “clear” 
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sky and calculate the hourly radiation that would be received on 
a horizontal surface under these standard conditions at a given 
location. Hottel [8] provided a method of estimating the beam 
radiation transmitted through clear atmosphere, which takes into 
account the zenith angle. The transmittance of the standard 
atmosphere for beam radiation can be determined for any zenith 
angle and any altitude up to 5 km. The clear-sky beam radiation 
is given by: 

boncnb GG τ=  

where )
365

360cos033.01( nGG scon +=   (30) 

and Gsc  is the solar constant (a value of 1367 W/m2 (Iqbal [15]) 
is used for Gsc  in this work). The clear-sky horizontal beam 
radiation can be determined as  

zbonb GG θτ cos=   (31) 
Liu and Jordan [16] developed an empirical relationship 
between the transmission coefficient for beam and diffuse 
radiation for clear days:  

bd ττ 294.0271.0 −=   (32) 

zdond GG θτ cos=   (33) 
The shaded and un-shaded irradiation per unit area (Eq.(22)) 
are:  

)])(1([ shsh
db db

qqKqqLHQ +−++=  (34)
 

where the yearly beam and diffuse irradiations per unit area of 
an unshade collector (first row) and shaded collectors (rows 2 
through K) can be computed using the procedure indicated by 
Hu and Rao [4].
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