
Blaze-DEM: A GPU based large scale 3D
discrete element particle transport framework

by

Nicolin Govender

A thesis submitted in partial fulfillment
of the requirements for the degree

Philosophiae Doctor (Mechanical Engineering)

in the

Department of Mechanical Engineering
Faculty of Engineering, the Built Environment and Information Technology

University of Pretoria
Pretoria

July 2015

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Abstract

Understanding the dynamic behavior of particulate materials is extremely important to
many industrial processes with a wide range of applications ranging from hopper flows
in agriculture to tumbling mills in the mining industry. Thus simulating the dynamics
of particulate materials is critical in the design and optimization of such processes. The
mechanical behavior of particulate materials is complex and cannot be described by a
closed form solution for more than a few particles. A popular and successful numerical
approach in simulating the underlying dynamics of particulate materials is the discrete
element method (DEM). However, the DEM is computationally expensive and computa-
tionally viable simulations are typically restricted to a few particles with realistic particle
shape or a larger number of particles with an often oversimplified particle shape. It
has been demonstrated for numerous applications that an accurate representation of the
particle shape is essential to accurately capture the macroscopic transport of particulates.

The most common approach to represent particle shape is by using a cluster of spheres
to approximate the shape of a particle. This approach is computationally intensive as
multiple spherical particles are required to represent a single non-spherical particle. In
addition spherical particles are for certain applications a poor approximation when sharp
interfaces are essential to capture the bulk transport behavior. An advantage of this
approach is that non-convex particles are handled with ease. Polyhedra represent the
geometry of most convex particulate materials well and when combined with appropriate
contact models exhibit realistic transport behavior to that of the actual system. However
detecting collisions between the polyhedra is computationally expensive, often limiting
simulations to only a few thousand of particles.

Driven by the demand for real-time graphics, the Graphical Processor Unit (GPU) of-
fers cluster type performance at a fraction of the computational cost. The parallel nature
of the GPU allows for a large number of simple independent processes to be executed in
parallel. This results in a significant speed up over conventional implementations utilizing
the Central Processing Unit (CPU) architecture, when algorithms are well aligned and
optimized for the threading model of the GPU. This thesis investigates the suitability of
the GPU architecture to simulate the transport of particulate materials using the DEM.
The focus of this thesis is to develop a computational framework for the GPU architecture
that can model (i) tens of millions of spherical particles and (ii) millions of polyhedral
particles in a realistic time frame on a desktop computer using a single GPU.

The contribution of this thesis is the development of a novel GPU computational frame-
work Blaze-DEM, that encompasses collision detection algorithms and various heuristics
that are optimized for the parallel GPU architecture. This research has resulted in a new
computational performance level being reached in DEM simulations for both spherical

2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

and polyhedra shaped particles.

In terms of the particle shape there are currently no other freely available codes that
can match the geometrical fidelity in terms of accurate particle shape representation on
the GPU. To the authors knowledge there is only one study on the GPU that takes
particle shape into account with a physics model of similar fidelity to Blaze-DEM. In
that study by Longmore at al. the clumped sphere method is used. Blaze-DEM is able to
simulate 2 orders of magnitude more particles compared to other published results while
being 3 times faster. The only reported implementations for polyhedra are on the CPU
platform. Blaze-DEM is hundreds of times faster compared to CPU codes with physics
models of a similar fidelity and 24 times faster than CPU codes with physics models of a
lower fidelity. For simulations involving spherical particles Blaze-DEM is 5 times faster
than other GPU based codes that have physics models of a similar fidelity.

Acknowledgments

I would firstly like to thank my supervisors, Dr Daniel Wilke and Professor Schalk Kok for
their time and dedication during the course of my PhD which often required late nights
and weekends. I will always value the advice and knowledge you’ll have imparted in my
development as a scientific researcher. I would like to thank the CSIR for the finance
which made this PhD possible. Thank you to my manger at the CSIR Dr Onno Ubbink
for all your support. Thank you to Gail Mokgokong for all your help with administration
at the CSIR. Thank you to Dr Igle Gledhill who guided my initial development into the
research area and continued to motivate me during the course of my PhD. Thank you
to Professor Simon Connell for the support and advice you gave me throughout my post
graduate career. Thank you to Professor Rajamani for inviting me to the University of
Utah and sharing your vast knowledge on discrete element modeling.

Thank you to my parents (Johnson and Margie Govender) for raising me with love and
supporting me in all my endeavors. Thank you for teaching me the value of hard work
and education. Thank you to my girlfriend Prenisha who stood by me throughout my
studies. Thank you to god for the knowledge and grace he has bestowed upon me.

This work was supported in part by CSIR project SRP TA-2011-001. The support
of the NVIDIA Corporation through the donation of GPUs is acknowledged gratefully.
The support of the University of Utah in providing research funds for my stay at the
university to do the work in Chapter 4 is appreciated. The support of Mines-Douai
(France) in providing experimental results against which our of the hopper simulations
in Chapter 2 could be validated is also appreciated.

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Contents

1 Introduction 12
1.1 Particulate materials . 12
1.2 The discrete element method (DEM) . 13
1.3 Computing Aspects . 16

1.3.1 The Graphics Processor Unit (GPU) 16
1.3.2 Parallel computing . 19
1.3.3 Computational implementations of the DEM 21

1.4 Overview . 21

2 Development of a computational framework for the DEM on NVIDIA based
GPUs 23
2.1 Introduction . 23

2.1.1 Background and Motivation . 23
2.2 Collision Detection . 25

2.2.1 Particle representation . 25
2.2.2 Data Storage . 26
2.2.3 Broad-phase Collision Detection 27
2.2.4 Narrow phase . 29

2.3 Contact Resolution . 30
2.3.1 Force Calculations . 30
2.3.2 Numerical Integration . 31

2.3.2.1 Angular Integration . 32
2.4 Computational Implementation . 34

2.4.1 Blaze-DEM framework. 34
2.5 Simulation examples with BLAZE-DEM 36

2.5.1 Numerical Verification of code . 36

4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Contents

2.5.2 Gravity Packing . 37
2.5.3 Hopper flow . 39

2.6 Conclusions . 42

3 Collision detection of convex polyhedra on the GPU architecture for the
DEM 43
3.1 Introduction . 43
3.2 Polyhedra Contact Detection . 43

3.2.1 World Representation . 44
3.2.2 Theoretical Formulation . 45
3.2.3 Polyhedron-Polyhedron Contact Algorithm 46

3.2.3.1 Edge-edge contact detection 47
3.2.4 World-Polyhedron Contact . 49

3.3 Contact Resolution . 50
3.3.1 Normal Force . 50

3.3.1.1 Restorative Force . 50
3.3.1.2 Dissipative Force . 53
3.3.1.3 Contact Evaluation for particle in free fall. 55

3.3.2 Tangential Force . 56
3.4 Numerical Simulation . 57

3.4.1 Polyhedra in a drum . 57
3.4.2 Scaling with particle shape . 58
3.4.3 Algorithm performance . 61

3.5 Conclusion . 63

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU
framework 65
4.1 Introduction . 65

4.1.1 Background and Motivation . 65
4.1.2 Computational Aspects . 66
4.1.3 Additions to BLAZE-DEM framework for mill simulations 66
4.1.4 Force Model . 68

4.1.4.1 Calculation of power drawn by a mill 70
4.1.5 Calibration of model parameters. 70

4.1.5.1 Effect of parameters on charge profile 71
4.2 Experimental validation of GPU DEM for mill simulations. 74

4.2.1 Three-dimensional mill . 74
4.2.1.1 Calibration of model parameters 74
4.2.1.2 Charge motion and power draw 76

5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Contents

4.2.2 Charge motion and power draw for a slice mill 78
4.3 Industrial Mill Simulation . 81

4.3.1 Performance scaling . 84
4.4 Conclusions . 86

5 Conclusion and Future work 87
5.1 Concluding remarks . 87
5.2 Future work . 89

6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Figures

1.1 Examples of particulate materials on various scales. 12
1.2 (a) Discrete and (b) continuum views of particulate materials [1]. 13
1.3 (a) Single sphere, (b) clumped sphere and (c) polyhedron representations

of a corn kernel. 14
1.4 DEM force assumption. 16
1.5 a) Quad core Intel CPU and b) NVIDIA Kepler GPU Chip layouts (196

cores per streaming multiprocessor (SM). 17
1.6 Comparison between CPU and GPU task processing for the case of (a)

different incoming tasks and (b) identical incoming tasks. 18
1.7 Flow chart of DEM simulation procedure. 19
1.8 Domain decomposition on CPUs [2]. 20

2.1 Planar polygon representation. 25
2.2 Particle object representation. 26
2.3 AOS vs SOA data access patterns. 27
2.4 Data representation on the GPU. 27
2.5 Broad phase collision detection grid. 28
2.6 Polyhedra contact types. 30
2.7 Force interaction model. 30
2.8 Error in Energy Conservation. 32
2.9 Results of angular integration depicting (a) angular displacement (rotation

angle) as a function of time and (b) the position of a vertex on the rotating
cube. 33

2.10 BLAZE-DEM Framework. 35
2.11 Verification of numerical integration scheme for different time steps. . . . 37
2.12 Gravity packing for 1 million polyhedra. 38

7

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Figures

2.13 Energy dissipation of damped system packing under gravity (inital velocity
of 1 m.s−1in all directions). 38

2.14 Performance scaling with number of particles on a Tesla K20 GPU for
octahedra (8 face). 39

2.15 (a) Experimental setup indicating the number of particles N in each layer,
discharge angle β and dimensions of the inlet and outlet, (b) particle spec-
ifications. 40

2.16 Flow rate and patterns for (a) polyhedra and (b) spheres. 40
2.17 Hopper flow with 13824 corn shaped polyhedral particles. 41
2.18 Polyhedra arching to restrict flow. 42

3.1 World Object Types. 44
3.2 Polyhedra surface contact types. 45
3.3 Illustration of Theorem 1 in 2D. 46
3.4 (a) Non penetrating Type 2 contact, (b) Penetrating Type 2 contact. . . 47
3.5 Algorithm 1: Polyhedron-polyhedron contact detection. 48
3.6 Check for surface collisions. 49
3.7 Algorithm 2: Polyhedron-world planar surface contact. 49
3.8 (a) Polyhedral particle contact model and (b) Simulation scenario for Sec-

tion 3.3 . 50
3.9 Penetration distance as a function of velocity for a head-on elastic collision.

(Kn = 1× 109 N.cm−1, step size =10−5 s) 51
3.10 Felastic

N as function of penetration depth for a head-on elastic collision.
(Kn = 1× 109 N.cm−1, step size =10−5 s) 52

3.11 Velocity as a function of time step for a head-on elastic collision. (Kn =

1× 109 N.cm−1, step size =10−5 s) . 52
3.12 Normal force as a function of penetration depth for a head-on in-elastic

collision. (Kn = 1 × 109 N.cm−1, KD = 5 × 104 kg.s−1, step size =10−5 s
,V = 2 m.s−1) . 54

3.13 ‖ Felastic
N ‖ − ‖ Fdiss

N ‖ vs velocity (Kn = 1 × 109 N.cm−1, KD = 5 × 104

kg.s−1, step size =10−5 s). 54
3.14 Position vs Time for face contact (Kn = 1 × 109 N.cm−1, KD = 5 × 104

kg.s−1, step size =10−5 s). 55
3.15 Velocity vs Time (Kn = 1 × 109 N.cm−1, KD = 5 × 104 kg.s−1, step size

=10−5 s). 55
3.16 (a) Position vs Time and (b) Velocity vs Time (Kn = 1 × 109 N.cm−1,

KD = 2× 105 kg.s−1, µ = 1.54, KT = 4× 103 kg.cm.s−1, step size =10−5 s). 56
3.17 ‖ FT ‖vs Tangential Velocity (Kn = 1 × 109 N.cm−1, KD = 2 × 105

kg.s−1,µ = 1.54, KT = 4× 103 kg.cm.s−1, step size =10−5 s). 57

8

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Figures

3.18 Dynamic packing of cubes in a drum. 58
3.19 Packing of cubes in a drum (symmetric). 59
3.20 Gravity packing simulation for performance benchmarking. 59
3.21 Computational scaling of polyhedra-world surface contact collision detec-

tion with world surfaces. 60
3.22 Effect of particle shape (number of faces) on the computational cost of

collision detection. 60
3.23 Scaling of polyhedron-polyhedron collision detection with number of par-

ticles (N) for different polyhedra. 61
3.24 Scaling of polyhedron-polyhedron collision detection with number of par-

ticles (N) for Cubes (6 Face) on a K6000 GPU. 61
3.25 Scaling of polyhedra-world planar surface contact algorithm algorithm with

number of particles (N) for Cubes (6 Face) on a K6000 GPU. 62
3.26 Scaling of Broad-Phase algorithm with number of particles (N) on a K6000

GPU. 62
3.27 Frequency plot of the collision type against simulation type for (a) gravity

packing problem, (b) gravity packing in drum without initial velocity, (c)
gravity packing in drum with initial velocity. 63

4.1 (a) Particle-lifter broad-phase collision detection and (b) detailed collision
detection. 67

4.2 Normal and tangential force models depicted by a spring dash-pot system. 69
4.3 Charge profiles for CPU (a) µ = 0.70 and GPU (b) µ = 0.70 (c) µ = 0.60

and (d) µ = 0.40, N= 2916 (radius=2.5 cm). 72
4.4 GPU charge profiles for (a) ε = 0.25 (b) ε = 0.45 and (c) ε = 0.65, N= 2916

(radius=2.5 cm). 72
4.5 (a) CPU and (b) GPU charge profiles. N= 5344 (radius=1.85 cm). . . . 73
4.6 (a) CPU and (b) GPU charge profiles. N= 11664 (radius=1.25 cm). . . 73
4.7 (a) Experiment (b) GPU charge profiles for different values of µ as indi-

cated. N= 168 (20% filling), rpm = 32 (70% of critical speed). 75
4.8 GPU charge profiles for different values of ε as indicated. N= 168 (20%

filling), rpm = 32 (70% of critical speed). 75
4.9 (a) Experiment [3] (b) GPU charge profiles. N= 168 (20% filling), rpm

= 14 (30% of critical speed). 76
4.10 (a) Experiment [3] (b) GPU charge profiles. N= 168 (20% filling), rpm

= 22 (50% of critical speed). 77
4.11 (a) Experiment [3] (b) GPU charge profiles. N= 243 (30% filling), rpm

= 14 (30% of critical speed). 77

9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Figures

4.12 (a) Experiment [3] (b) GPU charge profiles. N= 243 (30% filling), rpm
= 22 (50% of critical speed). 78

4.13 Power draw for (a) 25% and (b) 35% loading between experiment [4], GPU
and CPU simulations. 79

4.14 (a) Experiment [4] (b) GPU and (c) CPU charge profiles. N= 169 (35%

filling), rpm = 17.50 (30% critical speed). 80
4.15 (a) Experiment [4](b) GPU and (c) CPU charge profiles. N= 120 (25%

filling), rpm = 40.81 (70% critical speed). 80
4.16 (a) Experiment [4] (b) GPU and (c) CPU charge profiles. N= 169 (35%

filling), rpm = 58.30 (100% critical speed). 81
4.17 (a) Experiment [4] (b) GPU and (c) CPU charge profiles. N= 169 (35%

filling), rpm = 93.30 (160% critical speed). 81
4.18 Lifter design Los Bronces semi-autogenous mill. 82
4.19 (a) Initial conditions N= 139392 (41% filling) (b) Charge profile of Los

Bronces mill (colored by particle size as indicated in Table 4.6). 83
4.20 (a) Total power draw (b) Power distribution over time of Los Bronces mill. 84
4.21 (a) Initial conditions N=4× 106 (35% filling) (b) steady state profile (or-

thogonal view) (c) steady state profile (isometric view). 84
4.22 Scaling of GPU code with number of particles for ball mills on a Kepler

GPU. 85
4.23 (a) 2D steady state profile, N=6744 (b) Steady state profile for a slice 10%

of the length, N=385534. 86

5.1 World geometry representations. 88
5.2 Incorrect surface selection. 90

10

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Tables

1.1 Theoretical of CPU and GPU parallel solutions. 20

2.1 Hardware Specifications. 34

3.1 Analysis of particle velocities for a head-on elastic collision. 53
3.2 Parameters used in simulations for non-linear force model. 57
3.3 Comparison to other GPU codes (SD: Spring-Dashpot (Normal), NIT:

Non-Incremental Tangent, IT: Incremental Tangent, IV: Impulse Velocity). 63

4.1 Untuned model parameters used in simulation for a 2D mill. 71
4.2 Tuned model parameters used in simulation for a 2D mill. 73
4.3 Average error in power for various parameter combinations for a 3D mill. 76
4.4 Power draw with experiment and GPU DEM for 3D mill. 78
4.5 Model Parameters used in simulation for slice mill. 79
4.6 Charge distribution for Los Bronces mill. 82
4.7 Model Parameters used in simulation of Los Bronces mill. 82

11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1

Introduction

1.1 Particulate materials

From asteroids moving in space to sand covering the earth, particulate materials are
all around us (Figure 1.1)[5]. Understanding the macroscopic behavior of particulate
materials is essential to understanding the conditions that results in an avalanche or rock
falls, potentially saving hundreds of human lives. Understanding this behavior could lead
to reducing the energy consumption in many industrial processes such as the mixing of
powders to make tablets to the crushing of ore in a ball mill.

Figure 1.1: Examples of particulate materials on various scales.

The macroscopic behavior of particulate materials is complex. Corn flowing in a hopper
can behave like a liquid pouring out with ease, while having the ability to stop without
any intervention, behaving like a solid. It comes as no surprise then that the underlying
dynamics cannot be described by a single theoretical model as the system exhibits both
fluid and solid behavior. Thus numerical simulation is an attractive option to gain insights
into this complex macroscopic behavior.

12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

Numerical simulation of particulate materials.
There are two general approaches than can be used to model particulate materials, namely
continuum and discrete approaches.

1. Continuum approaches assume that the material being modeled completely occupies
the space in which it is contained in as depicted in Figure 1.2(b). In a continuum
approach the system is represented by a set of partial differential equations that are
solved over a spatial domain resulting in physical properties being averaged over a
finite volume. This averaging makes continuum methods only valid for particulate
systems comprised of very small particles which responds to forces in a way that is
typical of viscous fluids [6]. Sand is an example of a particulate system that can be
accurately modeled with a continuum approach, as demonstrated by Herrmann and
Luding [7]. However, if we want to predict when corn in a hopper will stop flowing,
a continuum approach will predict smooth flow and thus not provide the required
fidelity in the physics to understand the conditions that lead to blocking. Thus the
application of continuum methods to model particle dynamics is limited as they
do not model the inter-particle interactions which result in the complex behavior
that governs particulate flow. However, the restrictive assumptions of a continuum
model allows for large scale problems to be solved computationally efficiently.

2. Discrete approaches on other hand captures this complex macroscopic behavior as
the material is modeled on the particle level as illustrated in Figure 1.2(a). How-
ever this detail comes at a very large computational cost compared to continuum
methods. Thus the primary focus of this work is to decrease the computational cost
of a discrete approach while maintaining a high fidelity model of the physics.

Figure 1.2: (a) Discrete and (b) continuum views of particulate materials [1].

1.2 The discrete element method (DEM)

The discrete element method (DEM), which was described by Cundall and Strack in 1979
[8], is one of the most successful discrete methods in simulating particulate materials. The

13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

DEM was originally developed for solving problems in geotechnical engineering, but has
been employed to model particulate materials in a variety of fields [9, 10, 11, 12].

The DEM requires all particles in the system to be checked for contact at each time step,
which involves a considerable number of calculations depending on particle geometry and
number of particles [13] in the system. To reduce the computational cost, the particle
shape is often approximated by a sphere (Figure 1.3(a)), for which contact detection
is trivial. This approximation however may result in the model exhibiting unrealistic
mechanical behavior, as discussed by Latham and Munjiza [14, 15]. The clumped-sphere
(Figure 1.3(b)) approximation [16] provides a better description of shape by using a
number of spheres to represent a particle. However, this approach is limited in the
number of particles and introduces non-physical artifacts into the simulation, as discussed
by Horner [17]. Polyhedral shaped particles, depicted in Figure 1.3(c), can capture details
in particle shape well and hence exhibit realistic transport behavior to that of the actual
system [18, 19]. However, the number of polyhedral particles that can be simulated on
typical workstation computers in a realistic time frame is limited, as discussed by Mack
et al. [20], in which only 322 polyhedra are simulated. This limitation is due primarily
to the complexity of collision detection and larger memory storage requirements of the
polyhedra.

Figure 1.3: (a) Single sphere, (b) clumped sphere and (c) polyhedron representations of a corn
kernel.

Once the particles that are in contact is determined, the resultant forces acting on
the particles can be calculated. The combined Finite Element Method and Discrete
Element Method (FEM-DEM) approach by Munjiza [21] offers a high fidelity model
using the fully coupled inter-particle kinetics and particle material response to calculate
the contact forces. As with all numerical simulations there is a trade-off between model
accuracy and computational speed. In Munjiza’s paper [21], the number of particles that
can be modeled is limited due to the large computational cost of the associated FEM
simulations and the solution of the coupled dynamic equilibrium problem associated
with multiple bodies being simultaneously in contact. This allows for the simulation
of weakly coupled problems in typical bulk flow analysis to strongly coupled problems

14

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

associated with the compaction of particles. This study focusses only on typical bulk
flow problems that allows for some assumptions to be made without significant loss of
accuracy, but drastically benefit the computational efficiency of the numerical model.
In this study we assume only binary contact to resolve the associated contact forces
on particles. In addition we consider the original model for force calculation in DEM
simulations proposed by Cundall et al. [22]. The force is described by a spring-dashpot
coupled in parallel, which offers an appropriate model fidelity for the problems under
consideration that is computationally efficient as opposed to the computational expensive
FEM-DEM numerical models [4, 8, 10, 20, 23]. Once the forces are calculated an explicit
integration scheme such as velocity Verlet or forward Euler is often used to determine the
resultant motion of all particles in the system. Since the aim of this study is to develop
a modular framework that will allow us to easily implement different force models based
on the type of problem being simulated we do not advocate the use of a particular force
model in this thesis. In Chapter 2 we used a linear force model that was used by other
researchers [24, 25] to conduct similar validation of their Graphical Processor Unit (GPU)
DEM codes. In Chapter 3 we used a non-linear (Hertzian) force model that was suggested
by Hromnik et al. [26] in his thesis on GPU DEM. Finally in Chapter 4 we used the force
model [3, 10, 27] that has been widely used by researchers for tumbling mills.

Specifics of DEMmodel used in this study
An assumption in many DEM simulations is that particles are considered to be perfectly
rigid for the duration of collision contact. In reality perfectly rigid particles do not exist,
as all bodies will experience (to some extent) local deformations during contact. These
deformations however occur on a time scale which is much smaller than what is required
for capturing the macroscopic behavior of a system. Thus it is often sufficient to use a
constitutive law, such as a linear spring, to model contact forces. Computing the time
evolution of the system requires us to solve simultaneously Newton’s equations of motion
for all contacting particles, which on current hardware (2015) is only possible for a few
thousand rigid bodies [28]. Hence, we assume that there are only binary contacts between
particles at any given time as depicted in Figure 1.4, in addition to limiting ourselves
to explicit time integration schemes. The total force acting on a particle is obtained by
summing the individual contributions of all the binary contacts of a particle per time
step. This is a good approximation of reality provided the particles are of a similar size
and move very little during a time step.

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

Figure 1.4: DEM force assumption.

In summary the assumptions that we make are:

1. Rigid bodies with point contact,

2. Explicit integration,

3. Local short-range interactions,

4. Non-incremental friction model and

5. Limited to explicit time integration.

These assumptions result in a system that is completely decoupled and can be expressed
as a Lagrangian type process in which we are able to simulate the motion of individual
particles independently of each other [8], resulting in our algorithm being ideally suited
to the GPU.

1.3 Computing Aspects

A computer needs to perform two main tasks mainly (1) logical operations and (2) data
processing. Traditionally the CPU handled both tasks. The introduction of the graphical
based operating system windows with Graphical User Interfaced (GUI) applications and
games in the early 90s resulted in a greater demand for more sophisticated graphical
output. This resulted in the creation of a co-processor designed to execute some of the
graphical tasks that was previously performed on the CPU. The NVIDIA GeForce graph-
ics card released in 1999 was marketed as the worlds first consumer Graphics Processor
Unit (GPU) and performed the remaining graphical tasks that was still performed on the
CPU.

1.3.1 The Graphics Processor Unit (GPU)

Figure 1.5 shows the hardware design of the CPU and GPU processor chips. We see a
major difference in the number of cores and threads present on each chip. The graphical

16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

operations required to render images to a screen involves simple algebraic operations
(addition, subtraction and multiplication) to be performed for every pixel on the screen.
The GPU is required to be a massively parallel processor as the typical screen has millions
of pixels that need to be simultaneously updated to render visual information for display
to the user. Thus the GPU hardware design is such that it be made up of mostly
Arithmetic Logic Units (ALUs), enabling it to perform these arithmetic operations in
parallel. The CPU on the other-hand is designed to do a variety of different tasks such as
running an operating system while being able to perform arithmetical operations. Thus
its main goal is to complete a single task as quickly as possible so that it can process the
next task.

Figure 1.5: a) Quad core Intel CPU and b) NVIDIA Kepler GPU Chip layouts (196 cores per
streaming multiprocessor (SM).

As an example, consider the analogy of transporting 60 people across the English
channel (20km) in an hour. The options are to use a ferry or the road. Suppose the car
can hold a maximum of 4 people traveling at a speed of 120km/h and the ferry 60 people
at a speed of 20km/h. The car takes just 6 minutes to make the trip while the ferry takes
an hour. However the car can only transport 40 people in an hour while the ferry takes
60 people in this time. This is termed as latency and throughput. The CPU, which is
like the car, is designed to complete a single task in the shortest possible time (reduce
latency). The GPU on the other hand is like the ferry and is concerned with how much
work is done for a given amount of time (increase throughput). This difference is a direct
result of the different native designs and purposes of these devices. It is important to note
that in this analogy we are conducting the same task for each person i.e. transporting
them across the channel.

In the mid 2000s with the introduction of the NVIDIA Geforce 8 series cards, con-
sumer GPUs finally had their own dedicated memory and programmable units. This
effectively made the GPU a large scale parallel processor that could perform operations
other than graphics processing and gave rise to the term General Purpose Graphics Pro-
cessor Units (GPGPU). In this thesis we exploit the computational power of the GPU
via the NVIDIA developed CUDA programming model [29], which allows us to issue

17

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

commands to the GPU from C++ code as opposed to a graphics language like OpenGL.
The CUDA programming model batches threads into blocks (max 1024 threads) for exe-
cution on a streaming multiprocessor (SM). Threads within blocks can access fast shared
memory with each thread in turn having access to its own 32 bit registers (fastest mem-
ory available). CUDA allows us to create thousands of thread blocks containing millions
of threads which get scheduled for execution on the hardware as SMs become available
(we don’t have control of the execution order of blocks). The execution of a block will
only complete once all threads within the block have reached an end point. This is very
important and requires us to design algorithms that require similar times to complete for
all threads to best utilize the parallelism on the GPU.

The GPU has two memory spaces: on-chip memory (shared memory and registers)
which are very fast but limited in size (48 KB) and scope; and off-chip memory (global-
memory) which is much larger (typically 2-24 GB) and can be accessed by all SMs as
well as the CPU. Global-memory is however about one hundred times slower than on-
chip memory and can cause major performance degradation if not used efficiently and
correctly. Figure 1.6 illustrates the type of tasks that each unit excels at in computational
performance. The limited GPU outperforms the versatile CPU in spite of the considerably
lower clock rate when processing identical tasks.

Figure 1.6: Comparison between CPU and GPU task processing for the case of (a) different
incoming tasks and (b) identical incoming tasks.

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

Thus the parallel power of the GPU is only useful for a class of problems termed Single
Instruction Multiple Data (SIMD) problems where there are a large number of tasks
which are independent of each other. Furthermore memory transactions and CPU-GPU
communication must be kept to a minimum as it can cause major bottlenecks.

1.3.2 Parallel computing

Since DEM simulations are compute bound, the number and complexity of simulated
particles has scaled with increased computational power over the past three decades. In
the last few years the trend of increasing clock speed has stopped due to the physical
limitation of materials and physics. While computational power still scales with Moore’s
Law, this scaling is now achieved through increasing the number of computing cores on
a single chip. This means that algorithms which execute in serial no longer see any
performance benefit.

A general indication of the suitability of an algorithm to parallel execution is the
presence of a loop where each iteration is independent of the other. These tasks can then
be executed in parallel. The flow-diagram in Figure 1.7 describes the various steps in the
DEM process that we model.

Figure 1.7: Flow chart of DEM simulation procedure.

The steps colored in blue have been implemented on the GPU by various groups
[13, 26, 30, 31] as they are naturally independent and not memory intensive. They
are therefore well suited to the threading and memory model of the GPU. However the
collision detection step (red) which is required for polyhedra has not been implemented
at all on the GPU while there are very few CPU implementations [18, 20, 32]. This is due
to the computationally intensive algorithms which cannot be easily expressed as inde-
pendent tasks and the additional associated memory requirements in the case of a GPU
implementation. All the algorithms used in Blaze-DEM which are discussed in detail in

19

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

Chapter 3 are designed such that they can be executed as SIMD tasks. Even when a
certain part of the algorithm can be executed more efficiently in serial, we use the GPU
as the cost of memory transactions between the CPU and GPU is much greater than
computation time required for executing the algorithm.

While most scientific CPU codes are now parallel, the CPU is still only a multi-core
processor with the Intel Xeon chip having 12 cores on a single chip. Thus parallelism is
limited to domain decomposition [33] as depicted in Figure 1.8. In a dynamic environment
particles move through multiple domains requiring interchange of data between processors
which is time consuming. Furthermore particles are still processed in a serial loop on each
CPU core. The GPU however is a many core processor enabling parallelism at particle
level, with each particle having its own thread.

Figure 1.8: Domain decomposition on CPUs [2].

Table 1.1 depicts the theoretical performance of a Xeon CPU and Tesla GPU for the
task of performing computations for 10 millions particles. In spite of the considerably
higher clock rate the CPU can only launch 12 threads per cycle while the GPU can
launch 53284 threads per cycle. This gives the GPU an enormous edge over the CPU
in DEM calculations which are data parallel resulting in a speed up of 500 when taking
into consideration cost and power consumption. Furthermore the thread scheduling is
done automatically on the GPU by CUDA which removes the burden of ensuring effective
parallel computation from the programmer. This also makes the same code scalable on
future GPU hardware thus increasing performance without changing the code.

Table 1.1: Theoretical of CPU and GPU parallel solutions.
CPU GPU

Intel® Xeon® Processor E7-8857 NVIDIA® Tesla® K80
3.0 GHz x 12 cores 1.0 GHz x 26 SM 53284 threads

Typical compute time for 106 particles
subdomains: 106/12 = 83× 105particles per core 106 threads are created (one per particle)

3 computations per cycle (3GHz) 1 computations per cycle (1GHz)
Time for 106 particles= 83×105

3
= 27777 s Time for 106 particles= 106

53284
= 18.76 s

20

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

1.3.3 Computational implementations of the DEM

Thirty years after the first DEM code BALL [8] simulated a few hundred two dimensional
disks, current DEM codes are capable of simulating millions of particles in a variety of
environments. There are several commercial DEM packages (PFC by Itasca, EDEM
by DEM Solutions, and Rocky by Granular Dynamics) and in-house packages such as
BLOCKS3D by the University of Illinois, Y-DEM by Queen Mary University and Millsoft
[3] by the University of Utah that simulate particulate materials using the DEM. There are
also open-source packages such as LIGGGHTS which are capable of simulating particulate
materials.

While there has been some development from the academic sector with DEM imple-
mentations of spherical particles on the GPU [25, 26, 30, 31], there has been very little
development in terms of polyhedra particles. To the best of the author’s knowledge the
only effort thus far has been using triangles in 2D by Zhang et al. [34]. Although the GPU
is an ideal match for DEM simulations the current learning curve associated with GPU
development is high as the technology is fairly new compared to the traditional CPU
platform. Furthermore only an efficiently implemented GPU DEM solution will yield
significant performance benefits over the CPU. To the best of the author’s knowledge
there are no published works on large scale simulations of polyhedra using the GPU.

The main contribution of this thesis is the development of a novel modular GPU
computational framework Blaze-DEM encompassing heuristics and collision detection
algorithms optimized for the parallel GPU architecture. This thesis demonstrates that
by using the GPU with algorithms optimized for its parallel threading model (i) tens of
millions of spherical particles and (ii) millions of polyhedral particles can be simulated in
a realistic time frame on a single desktop computer. A major benefit of the Blaze-DEM
framework is the modular nature in which the framework was designed. This allows
us to easily implement different force models that are apporiate for the problem being
simulated, as demonstrated by the three contact models used in this thesis. Furthermore
this modular nature allows for integration with external codes to simulate multi-physics
problems such as fluid interaction and particle breakage.

1.4 Overview

The following 4 chapters document the author’s contribution as a postgraduate student
in the Department of Mechanical and Aeronautical Engineering at the University of
Pretoria. Each chapter is self-contained and is based on a published ISI journal paper. In
Chapter 2 of this thesis we introduce the novel GPU framework Blaze-DEM and validate
the numerical stability and physical accuracy of the code. We then demonstrate the
importance of particle shape by comparing the spherical particle representation to that

21

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1 Introduction

of polyhedra. In Chapter 3 the detailed algorithms and heuristics for collision detection
are presented followed by a detailed validation of the physics model and performance
evaluation of the code. In Chapter 4 the flexibility of the framework is demonstrated with
an application to an industrial problem. The industrial problem entails the simulation of
tumbling mills to obtain power draw and profile of the dynamics within the mill. Finally,
the study is concluded and recommendations for future work are offered in Chapter 5.

22

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2

Development of a computational framework for

the DEM on NVIDIA based GPUs

2.1 Introduction

2.1.1 Background and Motivation

Transport processes involving Granular Media (GM) occur in many areas of science and
engineering over a variety of length scales. Thus understanding the dynamical behavior
of GM is central to a large number of engineering disciplines with applications in mining,
agriculture and various other fields [9, 10, 11, 12]. Methods belonging to the Discrete
Element Method (DEM) family which treats granular material as a system of individual
particles, as opposed to a continuum description which averages particle properties, has
shown the most promise [23]. The DEM approach which uses a local constitutive law
to determine the forces between two contacting particles and consequently the resultant
motion of all particles in the system, was described by Cundall and Strack [8]. The
DEM is however computationally expensive as all particles in the system have to be
checked for contact at each time step. This involves a considerable number of calculations
depending on the particle geometry and number of particles [13]. To reduce computational
cost, particle shape is often approximated using spheres, for which contact detection is
trivial. This approximation however results in the system exhibiting different mechanical
behavior to reality as discussed by Latham and Munjiza [14, 15]. The clumped-sphere
approach [16] provides a better description of shape by using a number of spheres to
represent a particle. However, this approach is limited in the number of particles and
introduces non-physical artifacts into the simulation, as discussed by Horner [17].

In modeling GM correctly there are two general aspects that must be taken into con-

23

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

sideration:

1. Particle shape.

2. Detailed physics interaction between particles.

The Graphics Processor Unit (GPU) offers cluster type performance on a desktop com-
puter at a fraction of the cost, and is well suited to computations that can be executed
in parallel resulting in a performance benefit over the traditional CPU [35]. Radeke
and Glasser [13] utilize the GPU to simulate powder mixing taking into account de-
tailed particle interactions between spherical particles. They report that a one minute
simulation of one million spherical particles requires 96 hours computing time using a
single GPU. Longmore et al. [25] take into account particle shape by using multiple
spheres to represent a sand grain with simple particle particle interactions and are able
to simulate 256 thousand sand grains at 120 frames per second (FPS) on the GPU. This
significant improvement in performance suggests that detailed particle interactions which
requires particle contact history is costly on the memory constrained GPU. Thus our
DEM framework focuses on the accurate representation of particle shape while using
simplified interaction models that are suited to parallel implementation. Such a model
finds application in particle flow problems where a simplified physics model can capture
the dynamical bulk behavior of the system [24, 25].

Polyhedral shaped particles represent most GM accurately and hence exhibit similar
mechanical behavior to that of the actual system [19, 20]. However, the number of
polyhedral particles that can be simulated on current CPUs is limited [32, 36], with
the largest simulations containing at most a few hundred thousand convex polyhedra
[18]. In Nassauer and Liedke’s work, 800 polyhedra are simulated with detailed particle
interactions (1 FPS) using a parallel CPU implementation. To the best of the author’s
knowledge there has been no GPU implementations for polyhedral shaped particles. This
chapter is intended to be a feasibility study to illustrate a new performance level of DEM
by utilizing a physics model that is suited to the GPU while taking into account detailed
particle shape. Blaze-DEM requires 3 minutes computational time for a one minute
simulation of one million spheres (55 FPS), and 150 minutes for one million convex
polyhedra (including graphics rendering) on a single GPU (0.9 seconds per time-step)
using the simple physics model described by Longmore et al. [25] and Bell et al. [24]. In
this chapter we develop a GPU orientated DEM environment and determine if it is useful
in simulating hopper flow problems.

24

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

2.2 Collision Detection

2.2.1 Particle representation

By restricting our analysis to only convex particles we can represent a polyhedron as a
collection of half-spaces fi(n, c), as illustrated in Figure 2.1. The half-space subtended
by a face of a convex polyhedron partitions R3 space into two distinct regions. The first
region fi(n, c) ≤ 0 contains the entire polyhedron, while the second region fi(n, c) > 0

is an infinite half-space in the direction indicated by the normal to the face [37]. We
summarize this result as :

The half-space subtended by a face of a convex polyhedra completely partitions
space into two distinct regions:

The region fi(n, c) ≤ 0 as indicated in Figure 2.1, containing the entire poly-
gon.

The region fi(n, c) > 0 an infinite half-space in the direction indicated by the
normal to the plane.

Figure 2.1: Planar polygon representation.

The choice of faces to define a polyhedron means that we only need to store the vertices
vi, i = 1, ..., n, face normals nj, j = 1, ...m and face centroids cj, j = 1, ...m. Each particle
type is stored as a Particle_Object as illustrated in Figure 2.2. Vertex information
is stored as an array of vectors (vertex_list). We store each face plane as face struct
which contains the normal and centroid of the face. We also store the indices of the
vertexes (vertex_order) that make up the face as references to vertex_list, which is

25

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

required for narrow phase collision detection. This minimalistic representation allows us
to place data structures in the faster limited constant memory (48 KB) on the GPU, as
depicted in Figure 2.2. We hard code the maximum number of features to 32 due to
the small size of constant memory. The radius of a sphere that bounds the polyhedra is
stored in the variable bound_R which we will use for culling in the broad phase.

Figure 2.2: Particle object representation.

2.2.2 Data Storage

The major bottleneck on the GPU is memory utilization. We thus need to ensure that we
keep memory transactions to a minimum and utilize the different memory spaces available
on the GPU to achieve the best possible performance. For each particle we need to store
4 kinematic parameters (position P, velocity V, orientation Q and angular velocity ω).

The only option we have for storing this information on the GPU is global memory,
which is very slow. However we can minimize the impact on performance by minimiz-
ing the number of transactions we have to make by ensuring memory transactions are
coalesced. Consider Figure 2.3, which shows two types of commonly used data structures:

1. Array Of Structures (AOS): all kinematic parameters for each particle is stored in
adjacent memory locations.

2. Structure Of Arrays (SOA): each kinematic array for all particles is stored in adja-
cent memory locations

To gauge the effective performance of the two representations on the GPU, we ran a
simulation of 2 million particles and found that AOS is three times slower than SOA.
We see better performance with SOA as it allows for coalesced thread access, in that
neighboring threads access adjacent memory locations resulting in better utilization of
cache, requiring fewer memory transactions.

26

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

Figure 2.3: AOS vs SOA data access patterns.

In addition to the particle information we also store the force (acceleration) and infor-
mation about nearest neighbors in global memory, as depicted in Figure 2.4. Information
that remains fixed for the simulation is stored in high speed constant memory as de-
scribed in Figure 2.2. We calculate the evolution of the inertia tensor as required instead
of storing it, which is far more expensive. We also do not store geometric information for
each particle as this will be very costly. Rather each particle has a reference to a Parti-
cle_Object (particle_type) which contains the geometric information of that particle
type as illustrated in Figure 2.4.

Figure 2.4: Data representation on the GPU.

2.2.3 Broad-phase Collision Detection

In DEM simulations particles only interact via mechanical forces. Hence, we only need
to consider particles that can physically be in contact with each other. We are thus able
to use spatial subdivision to limit the number of particle pairs that need to be checked
for collision at each step. In choosing an algorithm to perform spatial subdivision, we
have to take into consideration the following requirements:

1. Particles that cannot be in contact must be excluded with minimal computational

27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

cost.

2. The algorithm must be suited to the SIMD nature of the GPU.

We thus use a collision grid approach [35] which discritizes geometry into a 3D grid
as illustrated by Figure 2.5 in which a rectangular hopper is shown. Each particle is
assigned a discrete grid position given by GPi

j = floor((Pi
j−Wj)/Ncellj), j = 1, 3 , where

P i(x, y, z) is the center of mass (COM) position of the ith particle in the global coordinate
system. Here W is the starting point of the grid and (Ncellx,Ncelly,Ncellz) number of
cells in each dimension of the W system and j the Cartesian coordinate as illustrated in
Figure 2.5. The minimum size of a cell is that of the largest particle bound radius in the
simulation (particle size can vary by a factor of at most 4 without significantly impacting
performance for flow problems). Based on the number of threads available on the GPU,
the number of cells is optimized.

Figure 2.5: Broad phase collision detection grid.

To minimize memory costs we store each particle’s grid position GP as a single integer
value given by the mapping function “hashing”:

PHash = GPx + GPz × Ncellx + (GPy × Ncellz × Ncelly). (2.1)

The mapping function we have chosen has the following properties:

1. Maps particles which are in the same grid cell to the same hash.

28

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

2. Maps particles that are close geometrically to each other, to hashes which numeri-
cally are close to each other.

3. The particle closest to the origin has the smallest hash and one furthest away the
largest.

These properties allow for quick particle look-ups and improved caching. To determine
potential contact pairs we only need to consider particles that are in the same cell or in
the nearest neighboring cells relative to the particle of interest. Consider two adjacent
cells a and b. Since we assign each particle to a thread and execute this in parallel,
we cannot use the fact that cell a and b being neighbors are the same as cell b and
a, which for serial calculations requires only 14 cells to be checked. On some parallel
architectures it is possible to use atomic operations which allow different threads to write
to the same location safely and thus exploit interaction symmetry typically only done
in serial calculations. We also sort the dynamics information arrays for each particle
described in Figure 2.4 according to the hash to improve memory coherence. We found a
thirty two times speed up in run-timewhen sorting which includes sorting time. The
size distribution primarily affects the cost of the broad phase neighbor search. If there
is a very large size difference then the grid approach that we use is not computationally
efficient to reduce the number of particles that need to be checked in detail for collision.
Thus the feasible size ratio for our method is limited to between one and four. This size
ratio represents granular media in hoppers and ball mills very well.

2.2.4 Narrow phase

While collision detection between spherical particles is resolved in the broad phase search,
determining contact between polyhedra requires further checks as depicted in Figure 2.6
which we term narrow phase collision detection. This phase can account for as much
as 70% of the total simulation time [20, 32, 36]. Thus Chapter 3 is devoted to the
development of an efficient narrow phase collision detection algorithm for polyhedra. We
use a multiphase heuristic approach that is based on the idea of a separating plane first
described by Cundall [22] to determine if there is contact between convex polyhedra.

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

Figure 2.6: Polyhedra contact types.

If there is contact between two polyhedrons we obtain the point of contact PC(x, y, z),
penetration distance δ and a normal direction n. For Type 1 contact n is just the normal
of the contacting face. For Type 2 contact if an edge is in contact with a face as depicted in
Figure 2.6 n is also just the normal of the contacting face. For the case of two contacting
edges there is no obvious choice for a normal [22]. In Section 3.2.4.1 we discuss our choice
of normal for the case of edge-edge contact, which entails constructing a vector from the
COM of each polyhedron to PC(x, y, z) and taking the average of the two vectors.

2.3 Contact Resolution

2.3.1 Force Calculations

The most common contact resolution model is the soft-sphere [24] approach of using the
amount of inter-penetration between two contacting particles to determine a point force
F = FN + FT, as depicted in Figure 2.7.

Figure 2.7: Force interaction model.

We use a linear spring to model the normal force as given by :

FN = (Knδ)n− Cn(VR · n)n (2.2)

where δ is the penetration depth, VR = V1−V2 is the relative translational velocity, Kn

30

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

the spring stiffness, Cn = 2 ln(ε)
√

Knmeff√
ln(ε)2+π2

is the viscous damping coefficient, n the normal at

contact, ε is the coefficient of restitution and meff = (1
m1

+ 1
m2

)−1 is the effective mass of
the particles. There are two approaches to determine the tangential shear force, namely

(i) history independent models which require only knowledge of the current kine-
matic state and

(ii) history dependent models which require information about previous contacts.

Approach (i) is attractive as it is computationally cheap, but is limited in application.
We limit ourselves to the history independent models as they are easily implemented on
the GPU and is sufficient for the problems we wish to solve [24, 25].

The tangential friction force is given by :

FT = −min [µ ‖ FN ‖,KT ‖VT‖]
(

VT

‖VT‖

)
(2.3)

where VT = (VR − (VR · n)n) + r1 × ωR − r2 × ωR is the relative tangential velocity
at the contact point, ωR = 1

2
(ω1 + ω2) is the relative angular velocity, r is the vector

from the COM to the contact point PC(x, y, z), µ the coefficient of dynamic friction and
KT the viscous damping coefficient. Note that the physically correct tangential velocity
computation requires both ω1 and ω2, by using ωR we save on a memory transaction.
The values for µ and KT [24] should be such that KT affects oblique impacts while µ
affects rolling/sliding contact.

In addition to translation forces, a particle also experiences a torque as a result of
contact given by:

Γ = (r× F). (2.4)

2.3.2 Numerical Integration

We use a modified explicit velocity Verlet algorithm for larger time steps and the for-
ward Euler for smaller time steps, since we compute using single precision. Using single
precision 4t2 (velocity Verlet) may cause numerical inaccuracies whereas forward Euler
avoids 4t2 and only computes 4t, to obtain the position x and velocity V of a particle
i at time t:

xt+1
i =

[
xi

t + Vi
t4t +

1

2
ai

t4t2

]
, (2.5)

Vt+1 =

[
Vi

t +
1

2
(ai

t + ai
t−1)4t

]
(2.6)

31

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

The acceleration a at time t is given by at =
Fnet

t

m
where Fnet

t =
∑z

j=1 Fij
t is the sum of

all Z contact forces experienced by the particle. The classical velocity Verlet algorithim
requires the computation of at+1, which would require an additional evaluation of the
contact forces. This explicit time integration is expected to be stable when 4t < 2√

Kn
m

.
To ensure that the integration scheme we employ behaves as expected we simulate the
motion of a system of particles falling under the influence of gravity for 1 second onto a
planar surface. Figure 2.8 shows the error in the total energy of the system for various
time-steps. We firstly see the error remains within a bound for all time-steps sampled
and decreases with a smaller time-step as expected. The largest time step size of 10−4 s
introduces an error of ≈ 1% into the simulation.

Figure 2.8: Error in Energy Conservation.

2.3.2.1 Angular Integration

The angular velocity ω of particle i at time t is obtained using the forward Euler inte-
gration scheme:

ωt+1 = ωt +αang
t 4t. (2.7)

The angular accelerationαang at time t is given byαang
t = I−1

t Γnet
t where Γnet

t =
∑L

j=1 Γt
ij

is the sum of all L body contact torques experienced by particle i as given in Equation 2.4
and It the inertia tensor at time t. Quaternions have minimal storage requirements and
are thus well suited to the GPU, and they are also more robust than other representations
such as Euler angles [38]. The orientation of a particle is represented by a unit quaternion
q{w, x, y, z} = {1, 0, 0, 0}, where w is an angle [−1 : 1] and (x, y, z) the axis of rotation.
The relationship between a quaternion and axis angle representation (θ, x1, y1, z1) is given

32

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

by:

q = { cos(θ/2), x1sin(θ/2), y1sin(θ/2), z1sin(θ/2) }. (2.8)

Given an angular velocity vector ωt the quaternion representing that rotation is given
by:

4qt = { cos(‖ωt‖), sin(‖ωt‖)
ωt

‖ωt‖
) }, (2.9)

The evolution of the angular orientation of the particle is just a multiplication [28] between
the current quaternion qt−1 of a particle with 4qt :

qt+1 = qt−1 ×4qt. (2.10)

To verify that rotation using quaternions on the GPU is implemented correctly, we sim-
ulate a cube spinning with a constant velocity of (1, 0, 0) rad.s−1 with a step-size of 10−5

s. Figure 2.9(a) shows the angular displacement as a function of time. We see that
it varies in a linear fashion as expected with the total angle of rotation at the end of
1 s = 359.94406 degrees giving an error of 0.015% which is within error tolerances.

Figure 2.9: Results of angular integration depicting (a) angular displacement (rotation angle)
as a function of time and (b) the position of a vertex on the rotating cube.

Figure 2.9(b) shows how the position of a vertex on the cube varies with time which
gives an indication if any distortion from an expected circular path occurs. We see a
perfect circular path which implies that there is no distortion occured. In Equation 2.10
as ωt → 0, 4q→ {1, 0, 0, 0} which leaves the orientation unchanged and hence does not
result in numerical difficulties. Note that Anderson et al. [35] found no major difference
in the round-off errors between CPU and GPU floating point operations.

33

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

2.4 Computational Implementation

We used two configurations of hardware for our simulations, which are listed in Table 2.1.
The consumer grade workstation is a typical PC used by a scientist/engineer. The com-
puting grade workstation has a TESLA computing graphics card which is dedicated for
numerical computations.

Table 2.1: Hardware Specifications.
Consumer Grade

CPU Intel i7 - 2.40 GHz (8 cores)
RAM 16 GB DDR3 - 1600 Mhz
GPU GTX 780M - 0.80GhZ (8 SM’s)
VRAM 4GB GDDR5 - 2500 MhZ
HDD 120 GB SSD

Computing Grade
CPU Intel i7 - 3.50 GHz (12 cores)
RAM 32 GB DDR3 - 1600 MhZ
GPU TESLA K20 - 0.71GhZ (13 SM’s)
VRAM 5GB GDDR5 - 2500 MhZ
HDD 120 GB SSD

2.4.1 Blaze-DEM framework.

In designing the framework for BLAZE-DEM we took the following features into consid-
eration:

1. A modular environment that can be easily extended to simulate additional physics,
such as fluid interactions.

2. A light-weight transparent class design than can be integrated easily into gaming
and simulation environments.

3. A 3D graphics environment that is interactive and can display millions of polyhedra.

4. An interface between the numerical task computing and the DEM algorithm.

5. Portability to new architectures.

Figure 2.10 describes the BLAZE-DEM framework. The Data-Library is analogous to
what is found in a typical computer game and allows complex simulation environments to
be created using a combination of world and particles objects. The simulation information
is stored in a text file:

1. Names of the world and particle objects.

2. Total number of particles for each particle object type.

3. Spatial location and orientation of particles.

4. Initial conditions and the values of the physical parameters.

5. Specification of the force models to be used for particle interaction.

34

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

6. Required statistics e.g. system energy and number of collisions.

Figure 2.10: BLAZE-DEM Framework.

The code is object-orientated C++ using the OpenGL graphics library for visualization
and QT for the graphical user interface. The Input class reads the simulation input and
creates world, particle and simulation objects which are passed to the function Main.
Main passes the world and particle objects to the graphics class which creates the re-
quired OpenGL graphics objects. After creation of the graphics objects, Main then passes
all the objects to the Set_Simulation method in the Interface Class, which creates ob-
jects for the computing device which is currently only the GPU. A Kernel on the GPU
stores the objects from the interface into GPU memory. Once the initial data objects are
passed to the required classes, Main then makes a request to the Interface to advance
the simulation and return new positions and orientations. The Interface then calls the

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

DEM_Compute class, which calls each method that in turn invokes a kernel which per-
forms the computation on the GPU. The GPU implementation is separate from the CPU
implementation with only communication between the interface. This allows us to easily
do computations on different devices and implement new physics models, without having
to change the entire code.

Algorithm 2.1 describes our GPU implementation. The argument in angle brackets
launches N parallel threads on the GPU (no need to loop as in serial calculations). We
use thread level parallelism, mapping a single particle to a single thread. The size of the
blocks that we launch on the GPU is dependent on the problem size and GPU hardware
used. We use the strategy of maximum SM occupancy so that the load is distributed
evenly over all SMs on the GPU. At the start of the simulation we copy the initial data
described in Figure 2.4 into GPUmemory. No further memory transactions occur between
the CPU and GPU, as we create a handle between OpenGL and the particle position
and orientation GPU memory spaces. Each line (1-6) of Algorithm 2.1 is a CUDA kernel
optimized for the Kepler architecture (see line comments for description).

Algorithm 2.1 Discrete Element GPU Implementation.
COPY (HOST-DEVICE): dynamics data arrays →global memory and particle data arrays →constant mem-
ory on the GPU.
1. CalculateParticleHash (position_com) <<N>> /* Calculate hash given by Equation 2.1*/

2. SortParticleDynamics (p_hash[]) <<N>> /* Sort the dynamics data arrays based on hash to improve memory
access as discussed in Section 2.3.2 */
3. Find_NN_Phase1 (position_com) <<N>> /* Create NN_LIST[N][x] containing NumNN[N] potentially
contacting particles */
4. Contact_Detection (position_com) <<N>> /* Detailed contact detection as described in Section 3 */

for i=0 to NumNN [thread.id] do
if particle i and thread.id are in contact.

calculate force Fij.
end if
Fi+ = Fij

end for
update V i,ai

5. Integrate_Position (position_com, velocity_com, accelrat_com) <<N>> /* Numerical integra-
tion described in Section 2.3.2 */

6.Check_WorldCollision (position_com, velocity_com) <<N>> /* Ray-Trace between particle vertexes

and world surfaces and resolve collisions */

2.5 Simulation examples with BLAZE-DEM

2.5.1 Numerical Verification of code

The numerical verification of a DEM code that simulates non-spherical 3D particle be-
havior is a complex matter and debugging is a non-trivial task as there are no standard
tests that can be used to verify a model other than comparison with experimental or other

36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

data [23]. Furthermore the debugging of GPU code is difficult and caution must be taken
as C++ Object Orientation is not fully implemented on the GPU. To verify that the
numerical integration on the GPU yields the expected results, we simulated the motion
of a single particle falling under the effects of gravity and air resistance (F = mg − αv2

), which is a 2nd order non-linear system and should be matched well by our numeri-
cal simulation. The analytical solutions for the velocity and position of the particle are

v(t) =
√

mg
α

tanh

(
t√
m
gα

)
and x(t) = m

α
ln

[
cosh

(
t√
m
gα

)]
. Figure 2.11 shows the results

with α = 0.5. We see good agreement for both time-steps with the numerical error bound
at 0.10% for a step size of 10−3 and 0.010% for a step size of 10−4.

Figure 2.11: Verification of numerical integration scheme for different time steps.

2.5.2 Gravity Packing

To verify that the simulated bulk behavior of the system is satisfactory, we generated a
grid of (128×128×64) polyhedra (0.001 cm spacing) with the grid starting at a height
of 1 cm above the bottom of a (200×200×128) cm container. The particles have no
initial velocity and fall under the influence of gravity into the container. Figure 2.12
shows the system at the start and after 1 second. This simulation tests the robustness
of our contact detection algorithm and numerical stability as particles collide with each
other and the world until they reach a final configuration at rest (quasi-static conditions).
Simulating the gravity packing of particles have been used by numerous researchers [39]
to test the robustness of algorithms in terms of numerical stability. Figure 2.13 shows a
plot of the kinetic energy of the system over the duration of the simulation. We notice
that the simulation does converge numerically as the energy decreases due to friction and
damping in the system, which results from collisions between particles and particles and
the container (world).

37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

Figure 2.12: Gravity packing for 1 million polyhedra.

Figure 2.13: Energy dissipation of damped system packing under gravity (inital velocity of
1 m.s−1in all directions).

Figure 2.14 shows the scaling performance of the code as we increase the number of
particles (8 face polyhedra) for the gravity packing simulation shown in Figure 2.12. We
see that the computational time scales linearly with the number of particles N up to a
million particles.

38

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

Figure 2.14: Performance scaling with number of particles on a Tesla K20 GPU for octahedra
(8 face).

2.5.3 Hopper flow

In order to verify the suitability of the GPU based Blaze-DEM code for hopper simulation,
we made comparisons to experiments conducted by Pizzete et al. [40, 41] using a lab-
scale plexi-glass hopper with a discharge angle of β = 90o as depicted in Figure 2.15(a).
Two thousand regular dodecahedron and spherical particles where used as depicted in
Figure 2.15(b). They where packed in alternating colors as depicted in Figure 2.15(a) to
observe the flow patterns. The hopper is filled by dropping particles down the center in
order to obtain a random loose packing (we used the average of three runs). The friction
coefficients between particles and particles with the boundaries was evaluated using a
start angle experiment similar to that of Abriak et al. [42]. Note that for spheres, the
test consists of a clump of three spheres to prevent rolling. The average frictional values
was found to be µparticle = 0.35 and µwall = 0.30. The average coefficient of restitution
obtained by measuring the rebound height of a dropped particle was found to be ε = 0.4.
We used a spring stiffness of Kn = 3.2 × 105 N.cm−1 with a time-step of 1 × 10−5 s.
Note: The only difference between spheres and polyhedra is during collision detection, as
spheres do not require the narrow-phase. Hence any differences is a result of the shape.

39

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

Figure 2.15: (a) Experimental setup indicating the number of particles N in each layer, dis-
charge angle β and dimensions of the inlet and outlet, (b) particle specifications.

Figure 2.16(a) shows the flow rates and flow patterns for polyhedra obtained with
DEM and experiment while Figure 2.16(b) shows the flow rates and patterns obtained
for spheres with DEM and experiment. We see very good agreement with both spheres
and polyhedra against experimental results. We notice that the hopper does not discharge
completely as expected for both spheres and polyhedra, with spheres flowing much faster
than the polyhedra, showing that particle shape affects flow rate. We also notice that a
funnel flow regime (particles in the center discharge first and those in the sides last) is
present in both DEM and experiment which further validates the code.

Figure 2.16: Flow rate and patterns for (a) polyhedra and (b) spheres.

40

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

Figure 2.17 shows corn shaped polyhedral particles flowing in a hopper. They are
initially packed in a (32×27×16) grid. We see that the polyhedra form a denser packing
in the corners due to interlocking, as a result of their shape.

Figure 2.17: Hopper flow with 13824 corn shaped polyhedral particles.

Particle shape indeed has an effect on particle dynamics as polyhedra have the ability to
restrict flow significantly compared to a spherical representation of particles as illustrated
in Figure 2.18. This finding is consistent with other authors [14, 15, 20]. We achieved a
frame rate of 167 FPS (0.006 s per step) with a step size of 10−4 s the simulation of 5
seconds required 5 minutes of computational time.

41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2 Development of a computational framework for the DEM on NVIDIA based GPUs

Figure 2.18: Polyhedra arching to restrict flow.

2.6 Conclusions

This chapter developed a computational framework for the discrete element modeling
of convex polyhedral and spherical particles on the GPU. These developments are pro-
posed to increase computational efficiency for large-scale granular material flow simula-
tions where a simplified physics model is sufficient. Several simulations are presented to
demonstrate the numerical stability and performance of Blaze-DEM. We conclude that
the GPU is well suited to DEM simulations where a simple physics model can be used
to expose parallelism in DEM, albeit to limited applications. In the next chapter we dis-
cuss the details of the collision detection algorithms that are utilized by the Blaze-DEM
framework.

42

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3

Collision detection of convex polyhedra on the

GPU architecture for the DEM

3.1 Introduction

Convex polyhedra represent granular media well. This geometric representation may be
critical in obtaining realistic simulations of many industrial processes using the discrete
element method (DEM). However detecting collisions between the polyhedra and poly-
hedra and the world surfaces is computationally expensive. This chapter demonstrates
the significant computational benefits that the graphical processor unit (GPU) offers
DEM for collision detection. As we show, this requires careful consideration due to the
architectural differences between CPU and GPU platforms. This chapter describes the
DEM algorithms and heuristics that are optimized for the parallel NVIDIA Kepler GPU
architecture in detail. This includes a GPU optimized collision detection algorithm for
convex polyhedra based on the separating plane (SP) method. In addition, we present
heuristics optimized for the parallel NVIDIA Kepler GPU architecture. Our algorithms
have minimalistic memory requirements, which enables us to store data in the limited
but high bandwidth constant memory on the GPU. We systematically verify the DEM
implementation, where after we demonstrate the computational scaling on two large-scale
simulations.

3.2 Polyhedra Contact Detection

Contact detection in DEM usually consists of two phases. The first phase, referred to
as the broad phase, is computationally cheap and aims to reduce the number of contact
pairs to only the nearest neighbors, as only they can be in possible physical contact. A

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

review of various broad phase algorithms is given by Jimenez and Segura [43]. We use
a highly efficient hashed grid approach that executes in parallel on the GPU [44], as
discussed in Chapter 2. In the second phase, referred to as the narrow phase, pairs of
contacting particles obtained from the first phase are considered in detail to determine if
they are indeed in contact. Depending on the contact resolution algorithm either contact
penetration distance [18], or a contact volume [36] can be computed to determine the
contact forces.

Several approaches for narrow phase polyhedral collision detection can be found in
literature [18, 32, 36]. However, these algorithms require either complex geometrical or
algebraic operations with some requiring iterative procedures, as discussed by Nassauer
and Liedke [36]. In order to achieve performance gains on the GPU we must formulate
an algorithm that is well suited to the light-weight threading model of the GPU with
minimal storage requirements. To achieve this we need to consider both the particle and
world representations.

3.2.1 World Representation

A common approach in DEM simulations is to model the surfaces of the environment as
actual particles [23]. This increases computational storage requirements and reduces the
task level parallelism that can be exploited on the GPU. We adopt a similar approach as
used in the gaming industry [44], in that we model the environment as separate geometric
objects (world). World geometry is modeled as either a collection of planar quadrilaterals
of the form S(n, c), where n is the normal and c the centroid of the surface, or geometric
objects that have a closed form expression such as a cylinder which we denote as “macro
objects”. A world can consist of a single object, as illustrated in Figure 3.1(a), or a
combination of objects, as illustrated Figure 3.1(b), which shows a drum (labeled 1) and
blades (labeled 2 and 3).

Figure 3.1: World Object Types.

44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

We make a further distinction in that we split world objects in two classes:

1. Internal: all surface normals point inwards (Figure 3.1(a) and label 1 in Figure
3.1(b)).

2. External: surface normals can have any orientation (labels 2 and 3 in Figure 3.1(b))
.

This distinction allows us to reduce the computational cost of collision detection between
a polyhedron and the world object. Consider Figure 3.2, which shows the different types
of contact between polyhedra. Type 1 is the quickest to solve and the most frequent,
while Type 2 is more complex but far less frequent in typical GM simulations (see for
example Figure 3.27). For an internal object it is only necessary to check for Type 1
contact (vertex-face or face-face), as it is impossible to have edge-edge contact. Therefore
we decompose non-convex boundaries into multiple convex boundaries where possible as
shown in Figure 3.1(b), in which we model the blades as external objects and the drum
as a cylinder, which is an internal object.

Figure 3.2: Polyhedra surface contact types.

3.2.2 Theoretical Formulation

The three scenarios depicted in Figure 3.2, represent all possible geometric configurations
of a polyhedron A and a planar surface P . We represent the planar surface P by the
half-space S(n, c) > 0. The distance between a vertex v and the planar surface P is
given by:

d = n · (v − c) (3.1)

where :

• d > 0 implies that the point is within the half-space S(n, c) < 0.

• d = 0 implies that the point is on the hyperplane boundary of the half-space.

• d < 0 implies that the point is penetrating the half-space S(n, c) > 0.

45

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Figure 3.3(a) represents a scenario where there is clearly no penetration between A and S.
For this case, we have di > 0 for i = 1, 2, ..., 6. Figure 3.3(b) depicts part of A penetrating
S, for which case we have di < 0 for i = 1, 2, 3 and di > 0 for i = 4, 5, 6. Figure 3.3(c)
depicts A being completely past S, for which case we have di < 0 for i = 1, 2, ..., 6. We
will only encounter scenarios (a) and (b) where the center of mass (COM) point is always
in the half-space of the plane. Thus di< 0, for any i ∈ (1, 2, ..., n) is indicative that contact
has taken place. We summarize this as follows:
Theorem 1: If the ⊥ distance di > 0 for i = 1, 2, ..., n (Equation 3.1) between all

vertexes vi for i = 1, 2, ..., n of a polyhedron A and S(n, c), then there is no contact
between A and S.

Figure 3.3: Illustration of Theorem 1 in 2D.

When applied to two polyhedra Theorem 1 is termed the separating plane (SP) method
which was first described by Cundall [22]. The SP method reduces the expensive object-
to-object contact detection problem to a less expensive plane-to-object contact problem.
The aim is to find a plane between the two polyhedra that satisfies Theorem 1. If such
a plane is found the two objects cannot be in contact. Many algorithms are based on
this approach [18, 22]. However, they involve finding a SP by an iterative procedure,
often minimizing a distance function [18], which is not suitable to the SIMD nature of
the GPU. Furthermore, to minimize memory transactions our algorithms do not require a
separate stage for finding points, an approach that is typical in numerous implementations
[18, 32, 36]. It is computationally more efficient to do additional arithmetic operations
rather than additional memory transactions on the GPU.

3.2.3 Polyhedron-Polyhedron Contact Algorithm

As discussed in Section 3.2, detecting vertex-face contact is computationally cheaper than
edge-edge contact. Given two polyhedra A and B, we just need to apply Equation 3.1 to
the vertex set vBj for j = 1, 2, ..., k and half-planes PAi (x, y, z) = (ni, ci) for i = 1, 2, ...,m

and the vertex set vAi for i = 1, 2, ..., l and half-planes PBj (x, y, z) = (nj, cj) for j =

1, 2, ..., u to determine if there is Type 1 contact. This is computationally efficient on the
GPU, due to to the fact that by definition the half-planes Pi(x, y, z) subtended by the
faces, partition space into two distinct regions. Hence we can use the result of Theorem 1
to check if a SP exists. If a SP does not exist, then we check if a vertex has penetrated all

46

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

half-spaces, which implies that it is contained within the other polyhedron and therefore
it is a contacting vertex. If there is no SP or contact vertices then we check for Type 2
contact.

3.2.3.1 Edge-edge contact detection

For Type 2 contact we do not search for a SP. We rather search for penetration between
two edges. This is much cheaper computationally than searching for a SP between edges.
Consider Figure 3.4(a) which depicts a typical scenario that will be a candidate for edge
contact and Figure 3.4(b) which depicts edge contact.

Figure 3.4: (a) Non penetrating Type 2 contact, (b) Penetrating Type 2 contact.

From Figure 3.4(a) we use the parametric equations to represent the edges:

PEA = E0
A + dAEDir

A (3.2)

PEB = E0
B + dBEDir

B (3.3)

where E0
K is a vertex vi on the edge, EDir

K = vj − vi is the direction of the edge where
vj is the other vertex on the edge. dA and dB are the scalar parameters for which we
solve. We find dA and dB that yields the shortest distance between the two edges using
the fact that the shortest distance between two edges is a vector D = PEA −PEB that
is perpendicular to both edges as indicated in Figure 3.4(a).

dA = J[(EDir
B · EDir

B)(EDir
A · (E0

A − E0
B))− (EDir

A · EDir
B)(EDir

B · (E0
A − E0

B))] (3.4)

47

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

dB = J[(EDir
A · EDir

B)(EDir
A · (E0

A − E0
B))− (EDir

A · EDir
A)(EDir

B · (E0
A − E0

B))] (3.5)

where J = 1/[(EDir
A ·EDir

B)(EDir
A (E0

A ·E0
B))− (EDir

A ·EDir
A)(EDir

B ·EDir
B)]. Edge to edge contact

exists when the solved dA and dB are both between 0 and 1. Figure 3.5 describes our
algorithm for polyhedra contact detection.

Figure 3.5: Algorithm 1: Polyhedron-polyhedron contact detection.

Line 1 is a loop over all faces of polyhedron B to search for a SP. Line 2 is a flag, used
to exit the loop once we find a SP. Line 3 is a loop over the vertices of polyhedron A
and line 4 is the application of Equation 3.1 to each vertex. Line 6 sets the flag to false
if there is no SP, while Line 7 increments a counter that stores how many faces a vertex
has intersected. Line 8 is an exit condition as a SP has been found. Lines 9-19 check
for a Type 1 collision by checking if the counter for a vertex equals the number of faces
indicating the vertex is inside polyhedron B and therefore a contact point. Line 18 is
an exit condition if contact points have been found. If there is no SP or contact points
then Lines 1-19 are repeated with the faces of polyhedron A. If the faces of polyhedron
A does not yield a SP or contact point then we check for Type 2 contact (Lines 21-35).
We also sort our data based on spatial location which increases cache hits and improves
performance as described in Section 2.2.

48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

3.2.4 World-Polyhedron Contact

Equation 3.1 treats a surface as an infinite plane. We are however interested in finite
surfaces, as illustrated in Figure 3.6(a). We thus need to check that a vertex that is
reported to be penetrating the plane is actually contained on the surface of the polygon
described by that plane. We do this by tessellating the surface into triangles using the
vectors Li, i = 1, 2, ...,m as described in Figure 3.6(b). The area Ai, i = 1, 2, ...,m for
each triangle is calculated using the norm of the cross-product of two vectors describing
the edges of the triangle. If the vertex is indeed contained within the finite surface, then
ΣM
i Ai will equal the total area of the surface.

Figure 3.6: Check for surface collisions.

We summarize this result as:

Theorem 2: If the ⊥ distance (di, i = 1, 2, ..., k)> 0 (Equation 3.1) between
any vertex (vi, i = 1, 2, ..., k) of a polyhedral object A and half-space S(n, c)<

0 then there is contact between A and S, provided the vertex is contained
within the surface.

Typical world geometry consists of many surfaces. Thus, our algorithm must provide
a quick rejection of surfaces with which the particle cannot be in contact. In addition,
the algorithm must detect and identify contact in an efficient manner so that we can
reduce thread divergence which has a major impact on parallel performance. Figure 3.7
describes our contact detection algorithm for polyhedron-planar surface contact.

Figure 3.7: Algorithm 2: Polyhedron-world planar surface contact.

49

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Lines 1-2 are heuristics. Line 1 checks if the COM point is on the correct side of the
surface. Line 2 uses the radius from the COM point to the vertex furthest away to check
if there is an intersection, since this sphere contains the entire polyhedron. If this sphere
does not intersect with the surface, then neither does the polyhedron. These heuristics are
computationally cheap and can be executed in parallel, thus quickly eliminating surfaces
with which the particle cannot be colliding with. If a particle passes the heuristics, then
we apply Equation 3.1 to all vertices of the particle (Line 4). If a vertex satisfies Theorem
2 then we increment the counter that we use to classify the collision (Line 5). The contact
point PC is considered to be the average of the vertices which are in contact with the
surface PC = (

∑m
k=0 vk)/m, where m is the number of contact points. The penetration

distance dpen is the average di for all penetrating vertices. For spherical particles only
lines 1-2 are required as the bounding sphere is the actual radius of the spherical particle.

3.3 Contact Resolution

The total force experienced by a particle during contact is given by F = FN + FT, where
FN and FT represent the normal and tangential forces respectively. Consider Figure 3.8(a)
which depicts two contacting particles. We use a penalty approach in that the normal
force has a dependance on the amount of interpenetration between two particles. Figure
3.8(b) depicts the scenario we simulate in this chapter. Note: the cube is stationary with
the octahedron given an initial velocity towards the cube which we denote “downwards”.

Figure 3.8: (a) Polyhedral particle contact model and (b) Simulation scenario for Section 3.3

3.3.1 Normal Force

3.3.1.1 Restorative Force

The normal force consists of an elastic Felastic
N and dissipative part Fdiss

N . The elastic
contribution is represented using a non-linear spring that acts to move particles out of

50

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

contact.
Felastic

N = (Knδ
3
2)n (3.6)

where δ = dpen is the penetration depth and n the contact normal. The spring stiffness
Kn can be chosen using the material properties as defined by Bell et al. [24] or manually
tuned to yield the desired response. For this study we manually tune parameters as
we are not simulating a real material and only wish to verify our contact algorithms.
The bounding radius for the simulations depicted in Figures (3.9-3.17) is 0.25 cm. The
targeted maximum allowed penetration depth is 5% of the radius which is 0.0125 cm.
Should the value be exceeded the user is warned in the log file.

Figure 3.9 shows how the penetration depth varies with different incident velocities
for a particle undergoing a head-on elastic collision. We see a parabolic curve, which
becomes sharper as velocity increases which is the expected result of Equation 3.6. This
information can be used to tune Kn for a range of velocities that is observed for a typical
GM simulation based on experimental or simulation data, so that the desired maximum
penetration depth, or a bound on the contact time can be obtained.

Figure 3.9: Penetration distance as a function of velocity for a head-on elastic collision. (Kn =
1× 109 N.cm−1, step size =10−5 s)

Figure 3.10 shows how Felastic
N varies as a function of the penetration depth for an

incident velocity of V = 2 m.s−1. We see a non-linear dependance on penetration depth
for both loading and unloading as expected. We also see that the curves for both stages
are symmetric which further indicates that our algorithms are implemented correctly.

51

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Figure 3.10: Felastic
N as function of penetration depth for a head-on elastic collision. (Kn =

1× 109 N.cm−1, step size =10−5 s)

An important test of our contact detection and resolution algorithms is that for a head-
on elastic collision kinetic energy must be conserved. Figure 3.11 shows how the velocity
varies during contact. We see that for all incident velocities the pre and post collision
velocities are the same.

Figure 3.11: Velocity as a function of time step for a head-on elastic collision. (Kn = 1× 109

N.cm−1, step size =10−5 s)

Table 3.1 gives us a quantitative estimate on the accuracy of our code by analyzing
the pre and post collision velocities which must be conserved. Here, V indicates the
expected result and V′ the numerically computed result. We see excellent agreement
with a maximum difference of 0.33%.

52

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Table 3.1: Analysis of particle velocities for a head-on elastic collision.
V(m.s−1) V

′
(m.s−1) % Diff

0.062500 0.062582 -0.1312
0.125000 0.125249 -0.1992
0.250000 0.250152 -0.0608
0.500000 0.501799 -0.3595
1.000000 0.996799 0.32010
2.000000 1.997261 0.13695
4.000000 4.013109 -0.32772

3.3.1.2 Dissipative Force

Dissipation during contact is given by:

Fdiss
N = −KDδ

αVnormal
R , (3.7)

where KD is the damping coefficient and Vnormal
R = ((V1−V2) ·n)n is the relative normal

translational velocity. α = 1
2
was found to match experimental data the best by Bell et

al. [24], as the energy dissipation increases with increasing impact velocity. Figure 3.12
shows the force hysteresis for FN. We see that adding energy dissipation results in an
elliptical shape for the force that is asymmetric. This shape is consistent with that of
other authors [36]. We firstly see that at the start of loading (0 penetration distance) the
force points upwards opposing the downwards motion of the octahedron, which is a result
of the dissipative force as there is no elastic contribution. The dissipative force once again
exceeds the elastic force contribution towards the end of the unloading stage resulting in
a negative total force that is decelerating the body which is now moving in an upwards
direction. This negative force might seem non-physical but none of authors [24, 25] have
reported non-physical effects such as the particle being attracted to the surface during
contact. Nevertheless we verify the realism of the force model for a particle in free fall as
illustrated in Section 3.3.1.3.

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Figure 3.12: Normal force as a function of penetration depth for a head-on in-elastic collision.
(Kn = 1× 109 N.cm−1, KD = 5× 104 kg.s−1, step size =10−5 s ,V = 2m.s−1)

Figure 3.13 shows the difference between ‖ Felastic
N ‖ and ‖ Fdiss

N ‖ as a function of
velocity (vertical lines indicate the onset of contact). We firstly see that for high initial
velocity collisions that Fdiss

N dominates at the start and end of the collision, resulting in
a large dissipation of energy. This is consistent with experimental data [24] and explains
the negative total force in Figure 3.12 at the initial stages of contact. We also see that
the contact time increases with decreasing velocity, while there is effectively no damping
for small velocity impacts that occur when the particle is in persistent contact with the
surface.

Figure 3.13: ‖ Felastic
N ‖ − ‖ Fdiss

N ‖ vs velocity (Kn = 1 × 109 N.cm−1, KD = 5 × 104 kg.s−1,
step size =10−5 s).

54

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

3.3.1.3 Contact Evaluation for particle in free fall.

Figure 3.14 shows the evolution of the position for a cube dropped vertically on its face
undergoing inelastic contact with a surface. We see the particle undergoing a number of
contacts with the surface before reaching an equilibrium as expected.

Figure 3.14: Position vs Time for face contact (Kn = 1 × 109 N.cm−1, KD = 5 × 104 kg.s−1,
step size =10−5 s).

Figure 3.15 shows the corresponding velocity for Figure 3.14. We see that the velocity
also reaches an equilibrium as expected.

Figure 3.15: Velocity vs Time (Kn = 1 × 109 N.cm−1, KD = 5 × 104 kg.s−1, step size =10−5

s).

55

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

3.3.2 Tangential Force

The same tangential force model as discussed in Section 2.3.1 is used. To illustrate the
effect of the tangential force we simulate the motion of the octagon shaped particle with
an initial velocity of 2 m.s−1 in the tangential direction and −0.5 m.s−1 in the normal
direction (“downwards”) in a gravity field initially placed 0.75 cm above the surface (no
rotation). Figure 3.16 shows the evolving particle position and tangential velocity with
time. In Figure 3.16 (a) we see that the particle undergoes 4 oblique collisions with the
surface before the rebound height becomes sufficiently small such that the particle can
be considered to be moving on the surface. Figure 3.16 (b) shows the corresponding
tangential velocity which has two distinct patterns. The velocity firstly decreases in steps
for t < 0.055 which is indicative of viscous damping and thereafter it decreases in a linear
fashion which corresponds to a constant frictional force.

Figure 3.16: (a) Position vs Time and (b) Velocity vs Time (Kn = 1×109 N.cm−1, KD = 2×105

kg.s−1, µ = 1.54, KT = 4× 103 kg.cm.s−1, step size =10−5 s).

Figure 3.17 shows the tangential force as a function of velocity. We see that indeed
for high velocity oblique collisions KT ‖VT‖ dominates while for low velocity collisions
µ ‖ FN ‖ dominates.

56

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Figure 3.17: ‖ FT ‖vs Tangential Velocity (Kn = 1 × 109 N.cm−1, KD = 2 × 105 kg.s−1,µ =
1.54, KT = 4× 103 kg.cm.s−1, step size =10−5 s).

In addition to translation forces a particle also experiences a torque as a result of
contact given by :

Γ = (r× FCP) (3.8)

where r is the vector from the COM to the contact point PC(x, y, z) and FCP the force
exerted onto the particle due to contact.

3.4 Numerical Simulation

All simulations are done using a Nvidia Quadro K6000 GPU (30720 physical threads) on
an Intel i7 3.5 GHz Extreme Edition CPU with 32 GB of RAM under OpenSuse Linux
13.1. The values for all parameters are given in Table 3.2.

Table 3.2: Parameters used in simulations for non-linear force model.
Parameter 4t Kn (N.cm−1) KD (kg.s−1) µ KT (kg.cm.s−1)

Value 10−6 1× 108 5× 103 0.154 4× 102

3.4.1 Polyhedra in a drum

To verify that our algorithms correctly detects collisions, we model the gravity packing
of 1024 tightly packed cubes (edge length 0.50 cm) in a drum with a blade as depicted
in Figure 3.18. Notice that all the cubes are given an initial velocity of 0.2 cm.s−1 to the

57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

right. We see that the particles take the shape of the container with the faces resting
on the cylinder and around the obstacle (blade) which is what we expect. This gives a
qualitative indication that our algorithms correctly detect collisions.

Figure 3.18: Dynamic packing of cubes in a drum.

In Figure 3.19 the cubes are arranged symmetrically in the drum with an initial height
of 1 cm above the horizontal section of the blade. The cubes fall under the influence of
gravity only (zero initial velocity). We see that the packing is symmetric, which is what
we expect, further validating our algorithms.

3.4.2 Scaling with particle shape

To further evaluate the performance of our algorithms, we simulate the motion of tightly
packed identical cubes (edge length 0.50 cm) arranged in a rectangular grid, falling under
the influence of gravity with an initial velocity as indicated in Figure 3.20.

58

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Figure 3.19: Packing of cubes in a drum (symmetric).

Figure 3.20: Gravity packing simulation for performance benchmarking.

Figure 3.21 shows the scaling of our polyhedra-world planar surface contact algorithm
with the number of surfaces in the world. We firstly see that there is a small computational
penalty for doubling the number of faces. We also see linear scaling with an increase in
world surfaces.

59

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Figure 3.21: Computational scaling of polyhedra-world surface contact collision detection with
world surfaces.

Figure 3.22 shows the scaling of the polyhedra-world planar surface contact algorithm
with increased particle number. We see that again there is a small computational penalty
for doubling the number of faces, which can be attributed to the SIMT of the GPU. The
scaling with increasing particle number is once again linear.

Figure 3.22: Effect of particle shape (number of faces) on the computational cost of collision
detection.

Figure 3.23 shows the scaling of the computational cost of polyhedron-polyhedron
contact detection. We observe linear scaling with the number of particle faces and the
number of particles.

60

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Figure 3.23: Scaling of polyhedron-polyhedron collision detection with number of particles (N)
for different polyhedra.

3.4.3 Algorithm performance

Figures 3.24-3.26 illustrate the large-scale performance of our algorithms for the sim-
ulation described in Figure 3.20. We firstly analyze Polyhedron-Polyhedron collision
detection, which is computationally the most expensive, in Figure 3.24. We see that the
trend of linear scaling holds up to 34 million particles, which is only limited by the current
Nvidia NVCC compiler .

Figure 3.24: Scaling of polyhedron-polyhedron collision detection with number of particles (N)
for Cubes (6 Face) on a K6000 GPU.

The trend of linear scaling continues with the polyhedra-world planar surface con-
tact algorithm. However, it is significantly faster and takes 0.25 seconds for 34 million
particles.

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Figure 3.25: Scaling of polyhedra-world planar surface contact algorithm algorithm with num-
ber of particles (N) for Cubes (6 Face) on a K6000 GPU.

The broad-phase search algorithm [44] takes under one second a step for 34 million
particles, with linear scaling as well, indicated in Figure 3.26. Our results set a new
performance level in contact detection for polyhedra in DEM.

Figure 3.26: Scaling of Broad-Phase algorithm with number of particles (N) on a K6000 GPU.

Table 3.3 shows the comparison of our code to that of other authors using the Cundall
Number C = N× FPS, where a a higher number represents better performance. Here
FPS is the number of frames/steps that can be performed per second. Note: to the
best of the author’s knowledge there are no other GPU codes using polyhedral particles.
Our code BLAZE-DEM (polyhedra) performs better than the others which use a non-
spherical particle representation, while being able to simulate 136 times more particles
than the fastest GPU code (Longmore et al.) in Table 3.3. Although the code GRPD by

62

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

Radake et al. [13] performs the best it uses only spherical particles. BLAZE-DEM[44]
using spherical particles is about 3 times faster than other codes as indicated in Table
3.3. Note that we achieve an average GPU utilization of 77% of the peak theoretical
performance.

Table 3.3: Comparison to other GPU codes (SD: Spring-Dashpot (Normal), NIT: Non-
Incremental Tangent, IT: Incremental Tangent, IV: Impulse Velocity).

Author Shape(mono size) Physics GPU N particles C Number
Harida et al.[28] Clumped(4 sphere) IV Fermi (8800) 1.64× 104 0.66× 106

Longmore et al. [25] Clumped(4 sphere) SD,NIT Fermi (8800) 2.56× 105 1.49× 106

BLAZE-DEM Poly (6 face) SD,NIT Kepler(G110) 34× 106 2.62× 106

GRPD [13, 45] Sphere SD,NIT Kepler(G110) 20× 106 20× 106

Govender et al. [46, 47] Sphere SD,NIT Kepler(G110) 50× 106 55× 106

Figure 3.27 shows the frequency of the two collision types depicted in Figure 3.2.
We see that indeed vertex-face is the dominant contact type and justifies our choice in
searching for it first. In Figure 3.27(a) we see that edge-edge contact is at most 10%.
We note a similar trend in Figure 3.27(b) where a slightly higher percentage of edge-edge
contact can be attributed to the geometrical effect of the drum. In Figures 3.27(c) edge-
edge contact increases to 30% as the initial velocity of particles causes an impact with the
drum resulting in a more random orientation. As the particles reach a macroscopic steady
state, the edge-edge contact frequency decreases to be similar to the other simulations.

Figure 3.27: Frequency plot of the collision type against simulation type for (a) gravity packing
problem, (b) gravity packing in drum without initial velocity, (c) gravity packing
in drum with initial velocity.

3.5 Conclusion

In this chapter we have presented a novel approach for collision detection that is opti-
mized for the GPU architecture. We evaluated the scaling of our algorithm and found
favorable results in that the time does not necessarily scale with increased geometrical
complexity for the system we have analyzed. We achieve a new performance level in DEM

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3 Collision detection of convex polyhedra on the GPU architecture for the DEM

by simulating 34 million polyhedra (13 seconds per time step) on a single Nvidia K6000
GPU. With the overall framework described in detail in Chapter 2, and the details of the
collision detection aglorithims described in detail in Chapter 3, Chapter 4 now focuses
on an industrial scale application.

64

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4

Discrete Element Simulation of Mill Charge

using the BLAZE-DEM GPU framework

4.1 Introduction

4.1.1 Background and Motivation

Since the first application of the discrete element method (DEM) for the simulation of
grinding mills by Rajamani [48] in 1990 there has been a phenomenal growth in the
variety of ways this technique is used in the mining industry. Prior to DEM, Powell’s [49]
single ball trajectory in rotary mills was a key advancement in understanding lifter relief
angle on the trajectory of charge. This approach continues to serve the mining industry
even today.

In the late 1990s two-dimensional DEM codes were the norm, due to the ease of exe-
cution on a personal computer with a single central processing unit (CPU). On the other
hand, three-dimensional simulations promise greater accuracy of simulated results at the
expense of computing time. At the outset it is useful to discuss the merits of 3D codes
in comparison to 2D codes. The 2D code executes in a matter of hours on a CPU. It
has been heavily used in hundreds of mining operations for annual or semiannual replace-
ment of shell lifters [50]. This code has impacted the production, capacity and liner life
of ball mills, autogenous mills and semi-autogenous (SAG) mills. The three-dimensional
simulations are more accurate because the momentum transfer between balls and rock
particles in the axial direction of the mill is accounted for. This opens the door for new
insights when utilizing large-scale 3D simulations. 3D simulations has not been readily
available to researchers and mill designers since execution times are of the order of weeks
on a single CPU for a typical plant size mill. This then becomes impractical to pursue

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

on a routine basis.

Regardless of the severe computational burden of 3D simulations, a number of suc-
cesses have been reported. In 2001 Venugopal and Rajamani [3] presented a 3D DEM
computational framework and compared it against the power draft in a laboratory scale
90 cm diameter mill. In the same year Rajamani and Mishra [27] used the same 3D code
for the prediction of power draft in plant scale mills. Herbst and Nordell [51] combined
3D DEM with smoothed particle hydrodynamics (SPH) and the finite element method
(FEM) to simulate slurry and solid charge motion, ore particle breakage and liner wear.
Cleary [52] demonstrated the sensitivity of charge behavior and power draft of a 5m di-
ameter ball mill to liner geometry and charge composition using a 3D code. There are
continued advances in the simulation of breakage and slurry flow incorporating all the
details in three-dimensional simulations. Morrison and Cleary [53] describe the evolution
of “Virtual Comminution Machine”, a simulation code that simulates breakage and slurry
transport in tumbling mills. In their simulation both the discrete element method and
smoothed particle hydrodynamics are employed for slurry and pebble flow through the
grate slots and the pulp lifter. Cleary and Morrison [54] show that 3D DEM combined
with SPH is a viable tool for analyzing mineral processing equipment such as mills and
twin deck screens. In a more recent study Alatalo et al. [55] compared the experimental
deflection of a lifter in a ball mill with 3D predictions made with EDEM [56], a com-
mercial DEM code. They concluded that 3D simulations agree better with predicted
experimental values than 2D simulations.

4.1.2 Computational Aspects

A full 3D simulation of a mill will give valuable insights into the dynamics within a
mill which can improve energy efficiency resulting in savings of thousands of dollars. An
emerging trend of the past few years is the implementation of scientific and engineering
solutions on a new class of processors termed General Purpose Graphical Processor Units
(GPGPU) [25, 26, 28], which offers CPU cluster computing performance at a fraction of
the cost. Rajamani et al. [57] shows a speed increase of up to 50x over CPU implemen-
tations for mill charge motion while Govender et al. [58] showed a speed increase of up
to 132x for polyhedral particles.

4.1.3 Additions to BLAZE-DEM framework for mill simulations

Our mill simulation code is built on the BLAZE-DEM GPU framework developed by
Govender et al. [44, 58]. The collision detection algorithm is based on the geometry class
classification as described by Govender et al. [58] for the GPU architecture:

1. We firstly do a broad phase check if the particle is beyond the cylinder with radius

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

r that bounds all the lifters (determined by lifter with largest radius).

2. If a particle passes this check we then loop over all lifters to check if there is
intersection between the particle and the bounding cylinder with radius rlifter of a
lifter, as depicted in Figure 4.1(a).

Heuristic 1 requires O(N) computations and heuristic 2 requires O(K) computations
where K is the number of lifters and N is the number of particles.

Figure 4.1: (a) Particle-lifter broad-phase collision detection and (b) detailed collision detec-
tion.

If there is an intersection between a ball and a lifter we then find the contact normal
and penetration distance as described in Algorithm 4.1.

67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Algorithm 4.1 Particle-lifter detailed collision detection.

1. Loop over all lifter faces

a) Compute the distance d = nface ·(Pcom−C) between the lifter face and particle.
Here Pcom is the center of mass position of the particle, C is the center of the
face and nface the face normal.

b) If this distance d is less than the particle radius we have possible contact.

i. The contact point is given by Pcontact = Pcom + d.ni .

ii. We now check if the contact point is actually on the face as (a) indicates
contact for an infinite plane.

iii. We check if the penetration δ = d − r is valid (max 5% of radius) (δ <
0.05r). If this is exceeded a warning is printed in the log file.

iv. We have contact at point Pcontact with normal nface and penetration dis-
tance δ.

2. If there is no contact with the faces we do a check for contact with edges, which is
computationally more expensive.

3. Loop over all lifter edges

a) Compute the vector LPE = (Pcom−E0
i) that gives the shortest distance between

the particle and lifter edge, where E0
i is a vertex on the lifter edge.

b) We now check if this vector is valid. If (EDir
i · LPE) > 0, where EDir

i is the
direction along the lifter edge, then

i. We compute the contact point Pcontact = (E0
i + ‖ LPE ‖ EDir

i) .

ii. We check if the distance d =‖ Pcom−Pcontact ‖ between the point and the
particle is less than the radius.

iii. We check if the penetration δ = d − r is valid (max 5% of radius) (δ <
0.05r). If this is exceeded a warning is printed in the log file.

iv. We have contact at point Pcontact with normal n = (Pcom − Pcontact)/d
and penetration distance δ.

4.1.4 Force Model

Figure 4.2 shows the normal and tangential force models which are commonly used in
DEM simulations of Ball Mills [10].

68

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.2: Normal and tangential force models depicted by a spring dash-pot system.

A linear spring dash-pot model is used to calculate the normal force between particles
given by :

FN = (Knδ)n− Cn(VR · n)n, (4.1)

where δ is the penetration depth, VR = V1 − V2 is the relative translational velocity,
Kn = meff

t2
contact

ln(ε)2 +π2 is the spring stiffness, Cn = 2 ln(ε)
√

Knmeff√
ln(ε)2+π2

is the viscous damping co-

efficient, n the normal at contact, ε is the coefficient of restitution and meff = (1
m1

+ 1
m2

)−1

is the effective mass of the particles. The contact time tcontact is determined by the prop-
erties of the material. However in most cases experimental data is not readily available
for a particular material. For such cases Kn is chosen such that that physical quanti-
ties of interest (such as energy) are conserved during integration for the typical range of
velocities observed in tumbling mill simulations [3, 10, 26].

Typical DEM simulations use a spring stiffness and time step that limits the maximum
penetration depth to δmax ≤ 0.05r where r is the radius of the smallest particle [18, 24,
25, 52].

Tangential Contact In CPU DEM codes a linear spring dash-pot model is also used
to calculate the tangential force given by:

FT = −min

[
µ ‖ FN ‖, (KT

ˆ
(‖VT‖ dt)− CT ‖VT‖)

]
, (4.2)

where VT is the relative tangential velocity at the contact point as calculated in Section
2.3.1, µ the coefficient of friction, KT the tangential spring stiffness and CT = 2 ln(ε)

√
KTm√

ln(ε)2+π2

the tangential damping coefficient. The integral of the tangential velocity over the dura-
tion of the contact behaves as an incremental spring that stores energy from the relative
tangential motions between the particles. This represents the elastic tangential deforma-
tion of the contacting particles while the dash-pot dissipates a proportion of energy. The
magnitude of the tangential force is limited by µ ‖ FN ‖ at which point the particles
begin to slide over each other.

69

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

However, due to the sorting of data on the GPU [44], maintaining contact history for the
duration of the collision will result in a drop in performance due to uncoalesced memory
transactions. Thus currently GPU codes use a history independent tangential model
[24, 25, 58] that ignores the elastic tangential deformation in the tangential direction
during contact and only accounts for energy dissipation. Therefore the GPU friction
model [25, 44, 45] is simplified to:

FT = −min

[
µ ‖ FN ‖,

min [min [‖V1T‖ , ‖V2T‖] , µ ‖VT‖] meff ,

4t

]
, (4.3)

where V1T and V2T are the tangential velocities of each particle. This model has been
shown to match experiments very well for simulations where the particles are constantly
in motion in the previous works by the authors [44].

4.1.4.1 Calculation of power drawn by a mill

Grinding in the mineral processing industry is performed primarily by a ball mill which
consumes a vast amount of energy and can account for as much as half of the processing
cost. Thus understanding grinding mechanisms and estimating the power drawn by a mill
can give guidance to improve the operational energy efficiency. The harsh environment
inside the mill makes obtaining experimental data difficult. Thus the physical quantities
calculated in a DEM simulation provide valuable insight to improve the efficiency of a
mill. Since the power drawn by a mill is largely determined by the dynamics of the charge
within the mill, we can obtain a good estimate of the power required by analyzing the
energy loss mechanisms in a DEM simulation.

The total energy consumed by a mill is simply the net sum of the energy dissipated
through contact Ediss =

∑L
i (‖ Fdiss ‖ 4x) where L is the number of contacts. Here Fdiss

is given by the damping and friction forces in Equations 4.1, 4.2 and 4.3 respectively and
is assumed to be constant over the distance 4x that the force acts. 4x is estimated by
‖ V ‖ 4t since we do not store contact history in our GPU implementation. Thus the
power consumed can be estimated by Power = Ediss

t
where t is the duration over which

we wish to calculate the power.

4.1.5 Calibration of model parameters.

In a DEM simulation the model parameters are chosen to either match experimental
results or to reproduce a desired behavior. Tuning these parameters is a tedious task
with the plethora of different models used in DEM simulations. Little guidance can be
found in literature as the problems being simulated are quite often unique. In the area of
ball mill simulations the 2D DEM code Millsoft developed by Rajamani et al. [48] was the
first code to be employed in the simulation of mills and has been validated extensively

70

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

over the past two decades. Thus we verify our GPU code using the non-incremental
tangential force model given by Equation 4.3 , against Millsoft using the incremental
tangential force model given by Equation 4.2. In mill simulations the dynamics of the
system is governed by the rotation speed Ω of the lifters. The distance covered by a lifter
during a time-step is given by xLifter = R.ω.4t where R is the radius of the mill drum
and ω = π

30
.Ω is the angular velocity of the mill. Thus the maximum time step (4tmax)

for a mill rotating at Ω rpm having a maximum penetration distance of δmax is given by:

4tmax =
δmax
R.ω

(4.4)

4.1.5.1 Effect of parameters on charge profile

In this simulation we use a mill with diameter of 516 cm and length set equal to the
ball diameter for simulating motion in 2D when using a 3D code. Thirty two rows of
rectangular lifters with a height of 9.5 cm and width of 15 cm is used with the mill rotating
at 14 rpm. We attempt to tune the model parameters of the GPU code to reproduce the
charge profile obtained using Millsoft. We start of by using the same parameters with
the GPU code as given in Table 4.1. Note that the maximum allowed time-step given by
Equation 4.4 is 4tmax = 1.65× 10−5 s using a maximum penetration distance of 0.025r.

Table 4.1: Untuned model parameters used in simulation for a 2D mill.
Parameter Kn (N.m−1) ε KT (N.m−1) µ 4t (s)

GPU 4× 105 0.45 - 0.70 1× 10−5

CPU 4× 105 0.45 3× 105 0.70 1× 10−5

Figure 4.3(a) shows the charge profile obtained with Millsoft and sub-figures (b)-(d)
the GPU profiles for various values of µ. We notice in Figure 4.3(b) using the same
frictional value that there is a good match with the shoulder position and the release
point of the lifters. However there is a significant difference with the toe position in the
GPU simulation at 6 o’clock 30’ while it is at 7o’clock 30’ in the CPU simulation as
indiacted by the clock numbers on the cross section. This difference is attributed to the
absence of a restorative force in the GPU tangential model, which results in a greater
resistive force being experienced by the particles for the same value of µ. This keeps the
center of mass of the distribution at a higher point as illustrated by the belly position.
In Figure 4.3(c) we use a lower friction value of µ = 0.6 in the GPU simulation. We
notice that the toe is lower but the frictional force is still too high. In Figure 4.3(d) we
reduce the friction value to µ = 0.4 in the GPU simulation. We now see a much better
agreement of the toe, shoulder and belly positions.

71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.3: Charge profiles for CPU (a) µ = 0.70 and GPU (b) µ = 0.70 (c) µ = 0.60 and (d)
µ = 0.40, N= 2916 (radius=2.5 cm).

The second parameter that we can tune is the coefficient of restitution ε. In Figure
4.4 we vary the value of ε while maintain the frictional value of µ = 0.4. We notice that
for ε = 0.25 (Figure 4.4(a)) the distribution is packed much tighter as a larger fraction
of energy is lost during contact. For ε = 0.65 (Figure 4.4(c) the packing is less dense
producing a greater dispersion when particles are released that provides a closer match
to the distribution obtained with Millsoft (Figure 4.3(a)).

Figure 4.4: GPU charge profiles for (a) ε = 0.25 (b) ε = 0.45 and (c) ε = 0.65, N= 2916
(radius=2.5 cm).

Now that we have calibrated the GPU parameters, we vary the number of particles (N)
and compare the charge profiles using the same parameters as summarized in Table 4.2.

72

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Table 4.2: Tuned model parameters used in simulation for a 2D mill.
Parameter Kn (N.m−1) ε KT (N.m−1) µ 4t (s)

GPU 4× 105 0.65 - 0.40 1× 10−5

CPU 4× 105 0.45 3× 105 0.70 1× 10−5

The charge profiles for N= 5344 are compared in Figure 4.5, while Figure 4.6 com-
pares the charge profiles for N= 11664. We notice a good match using the same set of
parameters.

Figure 4.5: (a) CPU and (b) GPU charge profiles. N= 5344 (radius=1.85 cm).

Figure 4.6: (a) CPU and (b) GPU charge profiles. N= 11664 (radius=1.25 cm).

73

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

4.2 Experimental validation of GPU DEM for mill

simulations.

4.2.1 Three-dimensional mill

We use the experimental data obtained by Venagopal and Rajamani [3] using a 90 cm
diameter by 15.0 cm length mill containing eight 4.0 cm square lifters. The face of the
mill was made of PlexiglasTM as to enable photographing of the tumbling charge, with
the shell and lifters being made of steel (density of 7800 kg.m−3). The mill was operated
at 30%, 50% and 70% of critical speed for two levels of mill filling, 20% and 30% by
volume respectively using steel balls with a radius of 2.5 cm. The critical speed of a mill
is the speed at which particle motion changes from cascading to centrifuging. Note that
the maximum allowed time-step given by Equation 4.4 is 4tmax = 4.14× 10−5 s using a
maximum penetration distance of 0.025r.

4.2.1.1 Calibration of model parameters

In the previous simulation we studied the effect of parameters on the charge profile in
the mill. In this simulation we investigate the effect of the parameters on power draw as
well for a mill with 20% loading at a mill speed of 32 rpm (70% of critical speed) drawing
532 W of power. We firstly match the charge profile by varying the frictional value as
we saw in the previous simulation that this had the largest effect on the charge profile.
Figure 4.7 shows the charge profile for various values of µ. We notice that the shoulder,
toe and belly positions are lower as expected as we decrease the value of µ. Figures 4.7(f)
and (g) having values of µ = 0.20 and µ = 0.15 respectively gives the best match to the
experimental profile depicted in Figure 4.7(a). Thus the ideal value of µ seems to be in
the range [0.15 : 0.20]

74

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.7: (a) Experiment (b) GPU charge profiles for different values of µ as indicated.
N= 168 (20% filling), rpm = 32 (70% of critical speed).

Figure 4.8 depicts the charge profile for varying values of ε using µ = 0.20. We firstly
notice that there is little change with the shoulder and toe positions with the belly
becoming less dense as we increase ε. The ideal value of ε seems to be in the range
[0.80 : 0.85] as power at the limits of the range bounds the experimental power of 532 W.

Figure 4.8: GPU charge profiles for different values of ε as indicated. N= 168 (20% filling),
rpm = 32 (70% of critical speed).

Now that we have a reasonable match for the charge profile we tune the parameters
to yield the desired power values. We use a finite number of combinations of µ and ε in
the ranges that we deemed to yield the best charge profiles in Figure 4.7 and 4.8. Table
4.3 contains the four combinations we use as well as the average and maximum errors

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

obtained for mill speeds of 14, 22 and 32 rpm. Ideally the range of values should be
more than the four we have chosen to get the best possible match. However we only
wish to show the effect of DEM parameters on mill simulations rather than do a detailed
calibration of DEM parameters. Combination 3 gives the lowest error and will thus be
used to predict power and charge profiles for the rest of this section.

Table 4.3: Average error in power for various parameter combinations for a 3D mill.
Combination ε µT Error at highest RPM Average Error

1 0.80 0.15 7.88% 7.09%
2 0.825 0.20 7.34% 5.23%
3 0.825 0.15 5.99% 4.61%
4 0.85 0.175 8.01% 5.77%

4.2.1.2 Charge motion and power draw

Representative snapshots of the GPU DEM predicted charge profiles alongside the still
camera images for each of the experiments are shown in Figures 4.9 to 4.12 with the
associated power draft in Table 4.4. Charge profiles predicted by the GPU DEM code
are consistent with observed charge profiles. The positions of the toe and shoulder of the
charge are also reasonable with a slightly lower toe position and lower mass distribution
which is expected due to the simpler tangential force model used. An exact match between
charge trajectories is difficult to obtain due to the stochastic nature of the problem for
slight deviations in the initial setup. In addition to the simplifying assumptions made in
the DEM model, there are unaccounted mechanical losses and the geometry of the mill
is not exactly the same due to wear and manufacturing processes.

Figure 4.9: (a) Experiment [3] (b) GPU charge profiles. N= 168 (20% filling), rpm = 14 (30%
of critical speed).

76

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.10: (a) Experiment [3] (b) GPU charge profiles. N= 168 (20% filling), rpm = 22
(50% of critical speed).

Figure 4.11: (a) Experiment [3] (b) GPU charge profiles. N= 243 (30% filling), rpm = 14
(30% of critical speed).

77

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.12: (a) Experiment [3] (b) GPU charge profiles. N= 243 (30% filling), rpm = 22
(50% of critical speed).

Table 4 summarizes the power values obtained. We see a good match for the 30%
loading scenario as the error is only 4.07%. Note that we only tuned the parameters for
the 20% loading scenario. This gives confidence in the selection of the model parameters
as we can predict the effects of mill-load on the power draw.

Table 4.4: Power draw with experiment and GPU DEM for 3D mill.
RPM Filling (20%) Filling (30%)

Power(W)
Experiment GPU DEM Experiment GPU DEM

14 301 336 393 409
22 459 437 617 636
32 532 520

4.2.2 Charge motion and power draw for a slice mill

In this simulation we use the experimental data as given by Moyes et al. [4] for a pilot
mill with a diameter of 55 cm and length of 2.35 cm containing twelve rows of 22 cm
square lifters. The mill is loaded to 25% and 35% respectively with steel balls having a
radius of 2.2 cm and density of 7800 kg.m−3. For their DEM simulations Moyes et al. use
the same model parameters for different mill-speeds. However as discussed in Section 1.6
the model parameters (specifically the time-step) are determined by the rotation speed of
the mill. The maximum allowed time-step using Equation 4.4 for a maximum penetration
distance of 0.10r per step at 160% of critical speed (93.30 rpm) is ∆tmax = 4.14× 10−6 s.
To allow comparison with published results, we use the same ∆t for increasing speed but
also include results using a time-step given by Equation 4.4 as mill speed increases. Table
4.5 summarizes the model parameters used.

78

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Table 4.5: Model Parameters used in simulation for slice mill.
Parameter Kn (N.m−1) εparticle εshell KT (N.m−1) µparticle µshell ∆t (s)

GPU 4× 105 0.85 0.80 - 0.15 0.20 2× 10−5

CPU 4× 105 0.66 0.36 4× 105 0.14 0.39 2× 10−5

Figure 4.13 shows how the power varies as a function of rotation speed. We see a good
match for sub-critical speeds which is the normal operation mode of a mill between both
DEM codes and experiment. At super-critical speeds there is a slight difference due to
CPU and GPU codes using a constant time step. However the results using the time step
given by Equation 4.4 as we increase mill speed shows a better match to experiment.

Figure 4.13: Power draw for (a) 25% and (b) 35% loading between experiment [4], GPU and
CPU simulations.

Figures 4.14 and 4.15 depict the charge profile for sub-critical speeds. We see a good
match which is expected as the power values are similar. Note that it is difficult to do
an accurate frame matching.

79

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.14: (a) Experiment [4] (b) GPU and (c) CPU charge profiles. N= 169 (35% filling),
rpm = 17.50 (30% critical speed).

Figure 4.15: (a) Experiment [4](b) GPU and (c) CPU charge profiles. N= 120 (25% filling),
rpm = 40.81 (70% critical speed).

Figures 4.16 and 4.17 depict the charge profile for super-critical speeds. We note that
DEM correctly predicts 1 and 2 layers of centrifuging particles for 100 and 160 percent
of critical speed respectively.

80

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.16: (a) Experiment [4] (b) GPU and (c) CPU charge profiles. N= 169 (35% filling),
rpm = 58.30 (100% critical speed).

Figure 4.17: (a) Experiment [4] (b) GPU and (c) CPU charge profiles. N= 169 (35% filling),
rpm = 93.30 (160% critical speed).

4.3 Industrial Mill Simulation

The Los Bronces SAG mill is a 10.12 m diameter by 4.7 m long mill rotating at 10

rpm. The mill charge is made up of 31% ore and 10% balls by volume. The power draft
reported for this mill [59] is 7.1 MW. Since no further information about mill internals
was available, typical values of operating parameters for this type of mill was used. It
is presumed that the mill would be fitted with 64 rows of high low lifters as shown in
Figure 4.18.

81

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.18: Lifter design Los Bronces semi-autogenous mill.

Equilibrium ball size distribution with top ball size of 12.5 cm was used in the sim-
ulation. The ore in the mill charge was approximated as a Gaudin-Schuhmann [60]
distribution with slope 0.6 and top size of 15.0 cm. The combined weight distribution
and number of ore and ball particles in the charge mix are shown in Table 4.6. The aim
of this study is to do a qualitative investigation as opposed to a quantitative investiga-
tion due to the uncertainties in the experimental setup. We investigate how the power
consumption varies over revolutions, as well as how the power gets dissipated inside the
mill.

Table 4.6: Charge distribution for Los Bronces mill.
Diameter (cm) Density (kg/m3) Weight (%) Number Color

ORE
15.0 2850 9 6320 red
12.5 2850 9 9020 green
10.1 2850 30 81881 blue

BALLS
12.4 7800 21 9800 magenta
10.0 7800 19 16171 yellow
8.7 7800 12 16220 cyan

TOTAL 139392

Table 4.7 summarizes the model parameters used in the simulations in Section 4.3.

Table 4.7: Model Parameters used in simulation of Los Bronces mill.
Parameter Kn (N.m−1) εparticle εlifter KT (N.m−1) µparticle µlifter 4t (s)

GPU 1.5× 106 0.75 0.75 - 0.40 0.70 2× 10−5

82

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.19 shows the charge profile in the mill. The charge profile is what one would
anticipate, for such large filling of 41%. The charge shoulder is nearly at 2 o’clock and the
toe is between 7 and 8 o’clock points on the mill circle. We also see radial segregation with
the smallest particles moving to the mill shell as predicted by theory and experiment.

Figure 4.19: (a) Initial conditions N= 139392 (41% filling) (b) Charge profile of Los Bronces
mill (colored by particle size as indicated in Table 4.6).

The computed power seems to stabilize after six revolutions as shown in Figure 4.20(a).
The large number of spheres in the simulation smooth out the energy consumed in col-
lisions per revolution. Hence, accurate dependence of contact parameters on contact
velocity is unnecessary here. The computed power consumption is 6.8 MW, which is
slightly lower than the experimental value of 7.1 MW. Note, this value is arbitrary as
we showed we could match the power consumption exactly by changing the coefficient
of restitution. The important observation is how the power consumption varies over
revolutions, as well as how this power is dissipated. Figure 4.20(b) shows the contribu-
tion to power draw by particle to particle collisions, particle to mill shell collisions and
particle to lifter collisions. Around 68% of the power draw comes from the lifter since
it lifts the majority of the load to the shoulder of the mill and hence excessive forces
occur at the points of contact on the lifters. Likewise, around 18% is contributed by the
mill shell as it supports the load between two lifters. Thus less than 14% is contributed
by particle-particle collisions. In addition, as the particle lifter power decreases slightly
over revolutions, the mill shell power draw increases slightly. The particle-particle power
dissipation remains virtually constant over the revolutions.

83

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.20: (a) Total power draw (b) Power distribution over time of Los Bronces mill.

4.3.1 Performance scaling

To gauge the performance of our code we increased the length of the mill to 2800 cm to
accommodate four million mono-sized steel balls with a diameter of 6 cm. Figure 4.21
shows the charge profile.

Figure 4.21: (a) Initial conditions N=4× 106 (35% filling) (b) steady state profile (orthogonal
view) (c) steady state profile (isometric view).

The power draft is distributed with 47% to particle-particle collisions, 44% to particle-
lifter collisions and 9% to particle mill-shell collisions. The shear number of particles
simulated results in particle-particle collisions consuming the most amount of energy.
The GPU compute time for one revolution (6 seconds) using a time step of 2 × 10−5 s

84

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

with a NVIDIA Kepler GPU is 7 hours (12 FPS). Figure 4.22 shows the scaling of our
code with increased number of particles. We observe a trend of linear scaling which is a
good indication of the scalability of our code. The GPU compute time for one revolution
(6 seconds) of a simulation consisting of 10 million particles using a time step of 2×10−5 s

with a NVIDIA Kepler GPU will take just 18.5 hours with a simulation of 100 million
particles taking just over a week.

Figure 4.22: Scaling of GPU code with number of particles for ball mills on a Kepler GPU.

To show the benefits of a full 3D simulation we performed the same simulation in 2D
with the same parameters and obtained a very different charge profile as depicted in
Figure 4.23(a). Figure 4.23(b) depicts the charge profile for a slice of 10% of length. We
notice that the pattern is very similar to the full length of the mill. Clearly the effect
of the axial direction cannot just be neglected as the 2D case cannot fully reproduce the
dynamics.

85

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework

Figure 4.23: (a) 2D steady state profile, N=6744 (b) Steady state profile for a slice 10% of the
length, N=385534.

4.4 Conclusions

In this chapter we have presented a novel approach for modeling tumbling mills utilizing
the GPU architecture. The modular approach of our code allows us to analyze the
distribution of power amongst different collision types in the mill which lends insight that
may be exploited to improve the energy efficiency of mills. We achieve a new performance
level in DEM modeling of mills by simulating 16 million particles at 3 FPS on a laptop
GTX 880 GPU. In the next chapter we conclude this study and offer recommendations
for future work.

86

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5

Conclusion and Future work

5.1 Concluding remarks

In this thesis the suitability of the Graphical Processing Unit (GPU) architecture to
simulate particulate materials using the Discrete Element Method (DEM) was investi-
gated. This thesis contributed to the field of particulate material transport through
developments in the computational implementation of the DEM. The developments in
this thesis allows for increased accuracy in particle shape by using polyhedral particles
with a typical physics model fidelity used in DEM at a reduced computational run-time.
The reduced computational cost and increased shape fidelity may also allow engineers
to routinely conduct analysis in DEM simulations, expanding the value the technology
adds to practical engineering and enhancing the insight in the underlying transport pro-
cesses. In addition, the reduced computational cost enables potential sensitivity analysis
and design optimization using DEM technology. Furthermore the number of particles
that can be simulated on a single computer has been increased from tens of millions to
hundreds of millions for spherical particles and from hundreds of thousands to millions
for polyhedral particles for the same duration of computational run time. This increase
in particle number improves the predictive capability of DEM when simulating industrial
particulate material transport which often consists of hundreds of millions of particles.

In this thesis a computational framework for the implementation of the DEM on the
Graphical Processing Unit (GPU) was developed. This aim of this research was to develop
a computational framework for the GPU architecture that can model

1. hundreds of millions of spherical particles and

2. tens of millions of polyhedral particles in a realistic time frame on a desktop com-
puter using a single GPU without sacrificing the fidelity of the physics model.

87

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5 Conclusion and Future work

In developing our framework we followed a typical gaming dynamics engine approach,
that separates the geometry description and physics model into modules. This gave us
the flexibility to increase the geometrical complexity from spheres to detailed polyhedra
using the same physics engine with the exception of the contact detection, ensuring that a
fair comparison between spherical and polyhedral simulations can be made. Since Blaze-
DEM is a novel implementation of DEM on the GPU architecture we verified our code
against experiment for the problem of silo flow of particles for which the dynamics is well
known. We found good agreement between the simulated and experimental flow patterns
at various time snap shots. Due to the lack of published results owing to the large
computational cost [20, 32] associated with a 3D polyhedral DEM simulation we could
not make direct comparisons to other codes for the case of corn flowing in a silo. The flow
rates was also found to be consistent with that of experiment. We further noticed that the
polyhedral shaped particles did not flow smoothly with arching occurring due the nature
of polyhedra as opposed to the smooth flow of spherical particles. This highlighted the
need for the inclusion of particle shape in large scale 3D DEM simulations as pointed out
in Chapter 2.

While collision detection for spheres are trivial, polyhedra are much more complex
and can account for up to 90% of simulation time. Thus importance was placed on the
development of contact algorithms that suited the parallel nature of the GPU without
the loss of simulation fidelity and generality in terms of geometry. This generality in
terms of world geometry allows for a variety of problems to be simulated using the code.
Furthermore our representation of world geometry by primitives reduces memory storage
and computation effort when compared to the typical particle/triangulation [16, 25, 26]
representation of world geometry in other DEM codes as depicted in Figure 5.1.

Figure 5.1: World geometry representations.

We verified the algorithms for the case of vertex-face contact between two particles
which is analogous to the single point contact of spheres for which the contact mechanics
is well known for various force models. We obtained the theoretically expected results

88

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5 Conclusion and Future work

verifying the correctness of our algorithms. We demonstrated that with algorithms and
heuristics designed for the parallel GPU architecture, we can achieve significant perfor-
mance gains over CPU based simulations and other GPU implementations. We evaluated
the scaling of our algorithm and found favorable results in that time does not necessarily
increase linearly with increased geometrical complexity for the systems we have analyzed
due to efficient memory access and exploitation of low-level parallelism as pointed out in
Chapter 3. We achieved a new performance level in high fidelity modeling of shape in
DEM by simulating 34 million polyhedra (13 seconds per time step) on a single Nvidia
K6000 GPU.

Finally in Chapter 4 we demonstrated the flexibility and physical fidelity of our frame-
work by simulating a variety of industrial problems. We obtained favorable results com-
pared to experimental data and other CPU based computational codes. The modular
approach of the framework allowed us to employ different physics models that was appli-
cable to the range of systems simulated. The modular approach of our code also allowed
us to easily include functions to analyze the distribution of energy and power in industrial
processes which lends insight that may be exploited to improving the energy efficiency of
such processes. We also achieved a new performance level in DEM modeling of mills by
simulating 16 million particles at 3 FPS on a laptop GTX 880 GPU.

5.2 Future work

The major effort of this research was the development of a framework consisting of various
collision detection methods and functions that facilitate the implementation of the DEM
on the GPU with emphasis placed on flexibility. This allows low fidelity shape modeling
using spherical particles and high fidelity shape modeling using polyhedral particles with
a variety of physics models to be used. While extensive validation has been done for
spherical particles, limited validation has been done for polyhedral particles and validation
against experimental data needs to be done.

We noticed that occasionally the reported penetration distance for polyhedra-polyhedra
contact is larger than reality which is the result of the incorrect contacting surface being
selected. Consider Figure 5.2. By design our algorithm will return the largest penetration
distance between two objects which is at surface 1 in Figures 5.2(a)-(c). However as the
objects are being moved apart at some point the largest penetration distance is at surface
2 as depicted in Figures 5.2(d). This results in a contact force in the incorrect direction.
For the simulations in this thesis we limited the extent of this error on particle dynamics
by using a small time step and limiting the maximum allowed penetration distance.
Solving this problem will allow the time-step to be increased resulting in further reduced
simulations times. However the solution is not trivial and will require storage of the

89

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5 Conclusion and Future work

contact history between contacting particles in an efficient manner in GPU memory.

Figure 5.2: Incorrect surface selection.

In this thesis we used contact models that has been used by others in the DEM com-
munity which was suited for the parallel nature of the GPU. For the types of problems
that we solved these models where sufficient. However for problems where particles are in
quasi-static motion a tangential force model using an incremental spring model is needed
to capture the complex frictional behavior. This requires the history for each contact to
be stored, which is not possible as the sorting that we perform to reduce memory access
time on the GPU makes it impossible to track particle pairs from one step to another. A
possible solution is to devise a mathematical function that maps particle pairs to unique
integers which will allow them to be tracked. The computational cost of this could also
significantly impact the speed-up achieved on the GPU. Our recommendation is that
GPU DEM be applied to problems that involve modeling the dynamical behavior of par-
ticles only where history independent contact models suffice. While this thesis focused
on making efficient use of a single GPU, Blaze-DEM can be easily extended to make use
of multiple GPUs. This is achieved by launching N

d
threads on each GPU where N is the

number of particles and d the number of GPU devices. Each GPU will be initialized with
particle and world objects at start-up, and only the 8 arrays that contains the particle
dynamics information need to be transferred to all GPUs after each step.

90

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

[1] S. Green, Particle based Fluid Simulation, NVIDIA, 2008.

[2] P. Cleary, M. Sawley, Three-dimensional modeling of industrial granular flows, Pro-
ceeding of CFD in the minerals and process industries, CSIRO, Melbourne, Australia,
1999.

[3] R. Venugopal, R. Rajamani, 3d simulation of charge motion in tumbling mills by
the discrete element method., Powder Technology 115 (2001) 157–166.

[4] O. Hlungwani, J. Rikhotso, H. Dong, M. Moys, Further validation of DEM modeling
of milling: effects of liner profile and mill speed, Minerals Engineering 16 (2003)
993–998.

[5] D. Hiskey, Today i found out (2014).
URL www.todayifoundout.com

[6] N. Climent, Sand production simulation coupling DEM with CFD, European Journal
of Environmental and Civil Engineering 18 (2014) 983–1008.

[7] H. J. Herrmann, S. Luding, Modeling granular media on the computer, Continuum
Mechanics and Thermodynamics 10 (1998) 189–231.

[8] P. Cundall, Strack, A discrete numerical model for granular assemblies, Geotechnique
29 (1979) 47–65.

[9] P. Cleary, The filling of dragline buckets, Math. Eng. Ind. 29 (1998) 1–24.

[10] B. Mishra, R. Rajamani, Simulation of charge motion in ball mills. Part 1: experi-
mental verifications, Int. J. Mineral Process 40 (1994) 171–186.

[11] W. Ketterhagen, J. Curtis, C. Wassgren, Predicting the flow mode from hoppers
using the discrete element method, Powder Technology 195 (2009) 1–10.

91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

www.todayifoundout.com
www.todayifoundout.com

Bibliography

[12] M. Moakher, T. Shinbrot, F. Muzzio, Experimentally validated computations of
flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders, Powder
Technology 109 (2000) 58–71.

[13] C. Radeke, B. Glasser, J. Khinast, Large-scale powder mixer simulations using mas-
sively parallel GPU architectures, Chemical Engineering Science 65 (2010) 6435–
6442.

[14] J. Latham, A. Munjiza, The modelling of particle systems with real shapes, Philo-
sophical Transactions of The Royal Society of London Series A: Mathematical Phys-
ical and Engineering Sciences 362 (2004) 1953–1972.

[15] P. Cleary, M. Sawley, DEM modelling of industrial granular flows: 3D case studies
and the effect of particle shape on hopper discharge, Applied Mathematical Mod-
elling 26 (2002) 89–111.

[16] H. Abou-Chakra, J. Baxter, U. Tuzun, Three-dimensional particle shape descriptors
for computer simulation of non-spherical particulate assemblies, Advanced Powder
Technology 15 (2004) 63–77.

[17] D. Hohner, S. Wirtz, V. Emden, H.K. Scherer, Comparison of the multi-sphere and
polyhedral approach to simulate non-spherical particles within the discrete element
method, Powder Technology 208 (2011) 643–656.

[18] D. Zhao, E. Nezami, Y. Hashash, J. Ghaboussi.J., Three-dimensional discrete ele-
ment simulation for granular materials, Computer-Aided Engineering Computations:
International Journal for Engineering and Software 23 (2006) 749–770.

[19] D. Markauska, Investigation of adequacy of multi-sphere approximation of elliptical
particles for DEM simulations, Granular Matter 12 (2010) 107–123.

[20] S. Mack, P. Langston, C. Webb, York.T., Experimental validation of polyhedral
discrete element model, Powder Technology 214 (2011) 431–442.

[21] A. Munjiza, A combined finite-discrete element method in transient dynamics of
fracturing solids., Int. J. Eng. Computation 12 (1995) 145–174.

[22] P. Cundall, Formulation of a three-dimensional distinct element model - part i: a
scheme to detect and represent contacts in a system composed of many polyhedral
blocks, Int. J. of Rock Mech 25 (1988) 107–116.

[23] P. Langston, Distinct element modelling of non-spherical frictionless particle flow,
Chemical Engineering Science 59 (2004) 425–435.

92

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

[24] N. Bell, Y. Yu, Particle-based simulation of granular materials, Eurographics/ACM
SIGGRAPH Symposium on Computer Animation 25 (2005) 29–31.

[25] J. Longmore, P. Marais, M. Kuttel, Towards realistic and interactive sand simulation:
A GPU-based framework, Powder Technology 235 (2013) 983–1000.

[26] M. Hromnik, Masters Thesis: A GPGPU implementation of the discrete element
method applied to modeling the dynamic particulate environment inside a tumbling
mill, University of Cape Town, www.uct.ac.za, 2013.

[27] B. K. Mishra, R. Rajamani, Three dimensional simulation of plant size SAG mills,
International Conference on Autogenous and Semiautogenous Grinding Technology
31 (2001) 48–57.

[28] T. Harada, GPU Gems 3: Real-time rigid body simulation on GPUs, Vol. 3, 2008.

[29] J. Sanders, E. Kandrot, CUDA by example, Vol. 12, 2010.

[30] Shigeto, Sakai, Parallel computing of discrete element method on multi-core proces-
sors, Particuology 9 (2011) 389–405.

[31] J. Xu, et.al., Quasi-real-time simulation of rotating drum using discrete element
method with parallel GPU computing, Particuology 9 (2011) 446–450.

[32] C. Boon, G. Houlsby, S. Utili, A new algorithm for contact detection between convex
polygonal and polyhedral particles in the discrete element method, Computers and
Geotechnics 44 (2012) 73–82.

[33] J. H. Walther, F. Sbalzarini, Large-scale parallel discrete element simulations of
granular flow, Engineering Computations 26 (2009) 688–697.

[34] Zhang, et.al., A fast scalable implementation of the two-dimensional triangular Dis-
crete Element Method on the GPU platform, Advances in Engineering Software 60
(2013) 70–80.

[35] J. Anderson, et.al, General Purpose Molecular Dynamics Simulations Fully Imple-
mented on Graphics Processing Units, Journal of Computational Physics 47 (2008)
1–17.

[36] B. Nassauer, T. Liedke, Polyhedral particles for the discrete element method, Gran-
ular Matter 15 (2013) 85–93.

[37] B. Grunbaum, Convex Polytopes, 2nd edition, Volker Kaibel, ISBN 978-0-387-40409-
7, 2003.

93

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

[38] E. Battey-Pratt, T. Racey, Geometric model for fundamental particles, International
Journal of Theoretical Physics 19 (1980) 6.

[39] Sanni.I, A reliable algorithm to solve 3D frictional multi-contact problems: Appli-
cation to granular media, Journal of Computational and Applied Mathematics 234
(2010) 1161–1171.

[40] P. Pizette, N. Abriak, Particle image velocimetry analysis on 2D silo flows, Proceed-
ings of Africomp 2015 Morocco, 2015.

[41] N. Govender, P. Pizette, D. Wilke, N. Abriak, Validation of the GPU based Blaze-
DEM framework for hopper discharge, Proceedings of the International Conference
on Particle-based Methods 2015 Spain, 2015.

[42] N. Abriak, Local friction effect of the global behaviour of granular media, Mathe-
matical and Computational Modelling 28 (1998) 121–133.

[43] J. J. Jimenez, R. J. Segura., Collision detection between complex polyhedra, Com-
puters and Graphics 32 (2008) 402–411.

[44] N. Govender, D. Wilke, S. Kok, R. Els, Development of a convex polyhedral discrete
element simulation framework for NVIDIA Kepler based GPUs, JCAM 270 (2014)
63–77.

[45] G. Neubauer, C. A. Radek., GPU Based Particle Simulation Framework With Fluid
Coupling Ability, NVIDIA GTC 2014, San Jose,USA, 2014.

[46] NVIDIA, Cuda 6 (May 2014).
URL http://www.nvidia.com/cuda

[47] N. Govender, D. Wilke, S. Kok, A GPU based polyhedral particle DEM transport
code, NVIDIA GTC 2014, San Jose,USA, 2014.
URL http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4126

[48] B. Mishra, R. Rajamani, Numerical simulation of charge motion in a ball mill., 7th
European Symposium on Comminution. 1 (1990) 555–563.

[49] M. Powell, The effect of liner design on the motion of the outer grinding elements in
a rotary mill, International Journal of Mineral Processing 31 (1991) 163–193.

[50] M. Dennis, R. Rajamani, Evolution of the perfect simulator, International Autoge-
nous and Semiautogenous Grinding Technology Proceedings 31 (2001) 163–193.

[51] J. Herbst, L. Nordell, Optimization of the design of SAG mill internals using high
fidelity simulation, International Conference on Autogenous and Semiautogenous
Grinding Technology 31 (2001) 150–164.

94

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.nvidia.com/cuda
http://www.nvidia.com/cuda
http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4126
http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4126
http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4126

Bibliography

[52] P. W. Cleary, Recent advances in DEM modelling of tumbling mills, Minerals Engi-
neering 14 (2001) 1295–1319.

[53] R. Morrison, P. W. Cleary, Towards a virtual comminution machine, Minerals En-
gineering 21 (2008) 770–781.

[54] P. W. Cleary, R. Morrison, Particle methods for modelling in mineral processing,
International Journal of Computational Fluid Dynamics 23 (2009) 137–146.

[55] J. Alatalo, K. Tano, Comparing experimental measurements of mill lifter deflections
with 2D and 3D DEM predictions, DEM5 Proceedings, Queen Mary University,
London, UK, 1 (2010) 194–198.

[56] J. Favier, EDEM (2014).
URL http://www.dem-solutions.com/

[57] R. Rajamani, S. Callahan, J. Schreiner, DEM Simulation of mill charge in 3D via
GPU computing, Proceeding of the SAG conference, Vancouver, 2011.

[58] N. Govender, D. Wilke, S. Kok, Collision detection of convex polyhedra on the
NVIDIA GPU architecture for the discrete element method, Journal of Applied
Mathematics and Computation http://dx.doi.org/10.1016/j.amc.2014.10.013.

[59] S. Koski, J. Vanderbeck, J. Eriques, Cerro Verde Concentrator-Four Year Operating
HPGRs, Proceeding of the SAG conference, Vancouver, 2011.

[60] A. Macias-Garcia, Eduardo, M. Cuerda-Correa, M. Diaz-Diez, Application of the
Rosin-Rammler and Gates-Gaudin-Schuhmann models to the particle size distribu-
tion analysis of agglomerated cork, Materials Characterization 52 (2004) 159–164.

95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.dem-solutions.com/
http://www.dem-solutions.com/

	Introduction
	Particulate materials
	The discrete element method (DEM)
	Computing Aspects
	The Graphics Processor Unit (GPU)
	Parallel computing
	Computational implementations of the DEM

	Overview

	Development of a computational framework for the DEM on NVIDIA based GPUs
	Introduction
	Background and Motivation

	Collision Detection
	Particle representation
	Data Storage
	Broad-phase Collision Detection
	Narrow phase

	Contact Resolution
	Force Calculations
	Numerical Integration
	Angular Integration

	Computational Implementation
	Blaze-DEM framework.

	Simulation examples with BLAZE-DEM
	Numerical Verification of code
	Gravity Packing
	Hopper flow

	Conclusions

	Collision detection of convex polyhedra on the GPU architecture for the DEM
	Introduction
	Polyhedra Contact Detection
	World Representation
	Theoretical Formulation
	Polyhedron-Polyhedron Contact Algorithm
	Edge-edge contact detection

	World-Polyhedron Contact

	Contact Resolution
	Normal Force
	Restorative Force
	Dissipative Force
	Contact Evaluation for particle in free fall.

	Tangential Force

	Numerical Simulation
	Polyhedra in a drum
	Scaling with particle shape
	Algorithm performance

	Conclusion

	Discrete Element Simulation of Mill Charge using the BLAZE-DEM GPU framework
	Introduction
	Background and Motivation
	Computational Aspects
	Additions to BLAZE-DEM framework for mill simulations
	Force Model
	Calculation of power drawn by a mill

	Calibration of model parameters.
	Effect of parameters on charge profile

	Experimental validation of GPU DEM for mill simulations.
	Three-dimensional mill
	Calibration of model parameters
	Charge motion and power draw

	Charge motion and power draw for a slice mill

	Industrial Mill Simulation
	Performance scaling

	Conclusions

	Conclusion and Future work
	Concluding remarks
	Future work

