
SEMANTICS OF AN OPTIONAL PARALLEL OPERATOR FOR CSP

by

Theunis J. Steyn

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Computer Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

June 2015

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

SUMMARY

SEMANTICS OF AN OPTIONAL PARALLEL OPERATOR FOR CSP

by

Theunis J. Steyn

Supervisor(s): Prof. S. Gruner and Prof. G.P. Hancke

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Computer Engineering)

Keywords: Optional Parallelism, Communicating Sequential Processes, Wire-

less Sensor Networks, Operational Semantics, Formal Modelling,

Broadcasting, Directional Synchronisation, Optional Parallelism

Translation, OptoCSP, OpTrace

Communicating Sequential Processes (CSP) is arguably one of the most widely used process

algebras. It has been extensively studied and expanded since its inception in the late 1970s.

One of the fundamental assumptions of parallelism in CSP is that all processes have to jointly

engage in synchronised events. There are cases however, especially when Wireless Sensor Net-

works (WSN) are modelled in CSP, where this restriction constrains the expressive capacity

of CSP from a practical perspective. Optional parallelism lifts the restriction of parallelism

in CSP by allowing processes to partially engage in synchronisation events. WSNs often have

node or communication failures which increases the complexity of the CSP specifications of

such WSNs. Basic communication constructs like broadcasting are also difficult to model

in CSP, and other process algebras have been developed to allow broadcasting communica-

tion. Optional parallelism reduces the complexity by allowing processes to broadcast to other

processes as well as to opt out of synchronisation when they are not ready to synchronise.

The notion of optional parallelism introduces a new operator to CSP without redefining the

semantics of existing operators or the definition of a new process algebra entirely.

This dissertation details the design of a translation of the definition of optional parallelism

into classical CSP operators which will enable optional parallelism to easily be used in existing

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CSP model-checkers. The core of the translation entails the addition of a channel modelling

artefact to the existing process definitions which allows a communication event between the

process and its environment to occur or not. The processes are thus independent from each

other with the channel artefacts orchestrating the synchronisation between them. If a process

is not ready to engage in an event, its channel ignores the event, and the process essentially

opts out of synchronisation. Different combinations of the channel artefacts result in different

directional synchronisation cases. Simplex synchronisation has the same behaviour as broad-

casting. Duplex communication constructs are also defined which has the same behaviour

as bidirectional synchronisation. Focus was given on the operational semantics of optional

parallelism in the development of a classical CSP translation. This resulted in a new optional

parallel operator being defined with the same operational semantics as the initially defined

optional parallel operator. The operational semantics of the new optional parallel operator

have been expanded to allow for directional synchronisation which better defines the notion

of broadcasting and bidirectional communication links.

Two software tools were developed, OptoCSP and OpTrace. OptoCSP provides the function-

ality to convert CSP system definitions containing the optional parallel operator into CSP

definitions containing only classical CSP operators. The software tools developed greatly sim-

plified the trace generation of systems containing the optional parallel operator as this had

to be manually scrutinised by hand. OpTrace was used to test for trace refinement between

the initial optional parallel definitions and the translation of this dissertation with the use

of WSN graph structure definitions. It has a trace generator which has the CSP step laws

of the initial optional parallel operator implemented and a model generator which converts

the WSN graph structures into CSP models with the new optional parallel translation. The

model-checking tool, ProCSP, is used together with OpTrace to perform the trace assertions

of the computed traces and the models. OpTrace and ProCSP was used to conclude if the

test scenarios presented in this dissertation passed or not.

A relationship between the traces of WSN systems defined with the initial optional parallel

operator and the translation thereof has been found. This result enables the optional parallel

translation to be used as a macro for systems of optional parallelism to be model-checked with

existing model-checkers. Optional parallelism has been studied in depth in the traces domain

of CSP and the work of this dissertation shows that optional parallelism can be applied in the

field of WSNs, as well as to define systems with optional parallel behaviour by using classical

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CSP operators. It is therefore a new construct which can be used with existing operational

semantics of the operators of CSP.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

OPSOMMING

SEMANTIEK VAN ’N OPSIONELE PARALLELLE OPERATEUR VIR KSP

deur

Theunis J. Steyn

Studieleier(s): Prof. S. Gruner en Prof. G.P. Hancke

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Rekenaaringenieurswese)

Sleutelwoorde: Opsionele Parallelisme, Kommunikerende Sekwensiële Prosesse,

Draadlose Sensor Netwerke, Operasionele Semantiek, Formele

Modellering, Uitsaaikommunikasie, Direksionele Sinchronisasie,

Opsionele Parallellisme Vertaling, OptoCSP, OpTrace

Kommunikerende Sekwensiële Prosesse (KSP) is waarskynlik een van die mees algemene

gebruikte prosesalgebras. Dit is omvattend gebestudeer en uitgebrei sedert sy ontstaan in

die laat 1970s. Een van die fundamentele aannames van parallelisme in KSP is dat al die

prosesse gesamentlik betrokke moet raak in gesinchroniseerde gebeure. Daar is egter gevalle,

veral wanneer Draadlose Sensor Netwerke (DSN) in KSP gemodelleer word, waar dit die

beeldende vermoë van KSP vanuit ’n praktiese oogpunt beperk. Opsionele parallelisme lig

die beperking van parallelisme in KSP deur prosesse toe te laat om gedeeltelik betrokke te raak

in sinchronisasie. DSNs het dikwels node- of kommunikasiemislukkings wat die kompleksiteit

van die KSP spesifikasies van sodanige DSNs verhoog. Basiese kommunikasiebeginsels soos

uitsaai is moeilik om te modelleer in KSP en ander prosesalgebras is ontwikkel om voorsiening

te maak vir uitsaaikommunikasie. Opsionele parallelisme verminder die kompleksiteit van

modelle deur toe te laat dat prosesse uitsaai aan ander prosesse. Prosesse word ook toegelaat

om self te kies om uit ’n sinchronisasie uitgesluit te wees wanneer hulle nie gereed is om te

sinchroniseer nie. Die idee van opsionele parallelisme stel ’n nuwe operateur voor vir KSP

sonder die herdefiniëring van die semantiek van bestaande operateurs of die definisie van ’n

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

nuwe prosesalgebra in geheel.

Hierdie verhandeling beskryf die ontwerp van ’n vertaling van die definisie van opsionele paral-

lelisme in klassieke KSP operateurs wat opsionele parallelisme in staat stel om maklik gebruik

te word in bestaande KSP modelkontrolleerders. Die kern van die vertaling behels die toevoe-

ging van ’n atomiese kanaalartefak aan die bestaande prosesdefinisies wat toelaat dat ’n kom-

munikasie gebeurtenis tussen die proses en die omgewing voorkom of nie. Die prosesse is dus

onafhanklik van mekaar met die kanaal artefakte wat die kommunikasie tussen hulle beheer.

As ’n proses nie gereed is om betrokke te raak in ’n gebeurtenis nie, ignoreer sy kanaal artefak

die gebeurtenis, en die proses kies om uit die sinchronisasie gebeurtenis uitgesluit te wees.

Verskillende kombinasies van die kanaalartefakte lei tot verskillende sinchronisasie gevalle

wat rigting aandui. Simplekse sinchronisasie het dieselfde gedrag as uitsaaikommunikasie.

Duplekse kommunikasie beginsels word ook gedefinieer wat dieselfde gedrag as tweerigting

sinchronisasie het. Fokus is gegee aan die operasionele semantiek van opsionele parallelisme in

die ontwikkeling van ’n klassieke KSP vertaling. Dit het gelei tot ’n nuwe opsionele parallelle

operateur wat gedefinieer is met dieselfde operasionele semantiek as die aanvanklike definisie

van die opsionele parallelle operateur. Die operasionele semantiek van die nuwe opsionele

parallelle operateur is uitgebrei om voorsiening te maak vir die rigting sinchronisasie wat die

idee van uitsaai en tweerigting kommunikasieskakels beter definieer.

Twee sagteware programme is ontwikkel, OptoCSP en OpTrace. OptoCSP bied die funksie

om KSP stelseldefinisies met die opsionele parallelle operateur te omskep in KSP definisies

wat slegs klassieke KSP operateurs bevat. Die ontwikkelde programmatuur vereenvoudig die

berekening van die gebeurtenisse van stelsels wat die opsionele parallelle operateur bevat,

aangesien dit tans onder die loep geneem moet word met die hand. OpTrace is gebruik

om te toets vir gebeurtenisverfyning tussen die aanvanklike opsionele parallelle definisie en

die vertaling in hierdie verhandeling met die gebruik van DSN grafiekstruktuur definisies.

Dit het ’n module wat gebeurtenisse bereken met behulp van die KSP stapwette van die

aanvanklike definisie van die opsionele parallelle operateur. OpTrace het ook ’n modelbouer

module wat die DSN grafiek strukture in KSP modelle, met die nuwe opsionele parallelle

vertaling, omskep. Die modelkontrole programmatuur, ProCSP, word saam met OpTrace

gebruik om die gebeurtenisse wat die KSP stelsels opwek te kontrolleer teen hul definisies.

OpTrace is gebruik om tot die gevolgtrekking te kom of die toets scenario’s, wat in hierdie

verhandeling beskryf is, geslaag het of nie.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

’n Verband tussen die gebeurtenisse van DSN stelsels gedefinieer met die aanvanklike opsionele

parallelle operateur en die vertaling daarvan is gevind. Hierdie resultaat stel die opsionele

parallelle vertaling in staat om gebruik te word as ’n makro vir stelsels wat opsionele parallel-

isme bevat en om hul modelle te kontroleer met bestaande modelkontrolleerders. Opsionele

parallelisme is in diepte bestudeer in die gebeurtenis domein van KSP. Die werk van hierdie

verhandeling toon dat opsionele parallelisme toegepas kan word in die gebied van DSNs sowel

as in stelsels met opsionele parallelle gedragte deur die gebruik van klassieke KSP operat-

eurs. Dit is dus ’n nuwe ontwikkeling wat gebruik kan word met die bestaande operasionele

semantiek van die operateurs van KSP.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ACKNOWLEDGEMENTS

First, I would like to thank my Heavenly Father who provided me with insight and gave me

the strength to complete this dissertation over the past few years.

I would like to thank my lovely wife, Rozanne Steyn, who stood by me during this time and

who supported me up to the end. I would not have been able to complete this dissertation

without her.

Special thanks to my family, who always seemed to be interested in the progress and motivated

me to complete my work during difficult times.

Finally, I would like to thank prof. S. Gruner, my supervisor, for his time, insights, detailed

review of my draft chapters and the suggestions he made. His input was very valuable.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF ABBREVIATIONS

ABP Alternating Bit Protocol

ACP Algebra of Communicating Processes

ADC Analog to Digital Converter

ANTS Autonomous Nano Technology Swarm

API Application Programming Interface

ASP Active Sensor Processes

BIP Behaviour-Interaction-Priority

CBS Calculus of Broadcasting Systems

CCS Calculus of Communicating Systems

CPU Central Processing Unit

CSP Communicating Sequential Processes

DFA Deterministic Finite Automation

FDR Failures-Divergences Refinement

FSM Finite State Machine

FU Functional Unit

GIS Graphical Information Systems

GPS Global Positioning System

GUI Graphical User Interface

LRT Long Running Transactions

MAC Media Access Control

MEMS Micro Electromechanical Systems

NASA National Aeronautics and Space Administration

RF Radio Frequency

SOS Structural Operational Semantics

TCOZ Timed Communicating Object Z

TPL Task Parallel Library

VM Virtual Machine

WSN Wireless Sensor Network

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

TABLE OF CONTENTS

CHAPTER 1 Introduction 1

1.1 Problem statement . 1

1.1.1 Context of the problem . 1

1.1.2 Research gap . 3

1.2 Research objective and questions . 4

1.3 Hypothesis and approach . 4

1.4 Research goals . 5

1.5 Research contribution . 5

1.6 Submitted paper . 6

1.7 Previous publications . 6

1.8 Overview of study . 6

CHAPTER 2 Related work 7

2.1 Wireless Sensor Networks . 7

2.1.1 Overview . 7

2.1.2 Application areas . 9

2.1.3 Evaluation metrics . 12

2.1.4 WSN challenges . 15

2.2 Communicating Sequential Processes . 16

2.2.1 Process algebra . 16

2.2.2 History . 18

2.2.3 Application areas of CSP . 19

2.2.4 Semantics . 20

2.2.5 Extensions of CSP . 22

2.2.6 Tools . 27

2.3 Formal approaches to WSN modelling . 29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3.1 WSN modelling using CSP . 30

2.3.2 Other WSN modelling approaches . 32

2.4 Chapter summary . 33

CHAPTER 3 CSP theory 34

3.1 Traces in CSP . 35

3.1.1 Calculating the traces of a process . 35

3.2 Operators . 37

3.2.1 Synchronous parallel . 37

3.2.2 Alphabetised parallel . 38

3.2.3 Interleaving . 39

3.2.4 Generalised parallel . 41

3.2.5 Optional parallel . 43

3.3 Chapter summary . 46

CHAPTER 4 Definition of a new optional parallel operator 47

4.1 Problem identification . 47

4.2 Optional parallelism . 50

4.2.1 Defining optional parallelism using classical CSP operators 51

4.2.2 Preparing system definitions for optional parallelism analysis 56

4.2.3 Generalisation of optional parallelism with classical CSP operators . . 61

4.3 Directional synchronisation for optional parallelism using channel artefacts . 63

4.3.1 Directional notation . 66

4.3.2 Broadcasting . 68

4.3.3 Simplex . 68

4.3.4 Half-duplex . 69

4.3.5 Full-duplex . 71

4.3.6 Notation and synchronisation summary 72

4.4 Other approaches considered . 72

4.4.1 Using synchronisation event artefacts 72

4.4.2 Using stochastic CSP . 75

CHAPTER 5 Software tools 77

5.1 Optional parallel to CSP definition generator 77

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.1.1 Requirements . 78

5.1.2 System overview . 79

5.1.3 Implementation . 80

5.1.4 Test and validation . 80

5.2 Automated trace verification . 82

5.2.1 Requirements . 83

5.2.2 System overview . 84

5.2.3 Adjacency list notation . 87

5.2.4 Theoretical trace generation . 90

5.2.5 Simulated trace generation . 99

5.3 Chapter summary . 100

CHAPTER 6 Optional parallel test scenario description 101

6.1 Topology scenarios . 101

6.1.1 Flat topology . 103

6.1.2 Cluster . 114

6.1.3 Chain . 120

6.1.4 Tree . 136

6.2 Chapter summary . 143

CHAPTER 7 Testing optional parallelism in the traces domain 144

7.1 Test definition . 145

7.1.1 Deadlock freedom . 145

7.1.2 Trace refinement . 146

7.1.3 Pass criteria . 146

7.2 Limitations . 147

7.2.1 Problems encountered . 147

7.2.2 Solutions . 148

7.2.3 Ignored metrics . 148

7.3 Results . 149

7.4 Discussion of results . 152

7.4.1 Traces . 152

7.4.2 Deadlock . 154

7.4.3 Trace refinement . 154

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 Conclusion and outlook 155

APPENDIX ATrace results 172

APPENDIX BTopology Scenario Models 174

B.1 Flat Topology . 174

B.1.1 Point-to-point . 174

B.1.2 Fully Connected Mesh . 177

B.2 Cluster Topology . 184

B.2.1 Star . 184

B.3 Chain Topology . 190

B.3.1 3-Node Ring . 190

B.3.2 4-Node Ring . 194

B.3.3 4-Node Linear . 199

B.4 Tree Topology . 204

B.4.1 7-Node Tree . 204

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF FIGURES

3.1 Venn diagram for sets of first actions in generalised parallelism according to [1]. 42

4.1 Basic WSN network graph with hyper-edge. 54

4.2 Basic network graph with hyper-edge and added channel artefacts. 54

4.3 Normal graph representation of the hypergraph of Figure 4.2. 58

4.4 Binary relationship conversion of Figure 4.3. 59

4.5 Cluster topology with processes P , Q, R and S. 64

4.6 Broadcasting example showing before and after channel insertion. 69

4.7 Simplex example showing before and after channel insertion. 69

4.8 Half-duplex example showing before and after channel insertion. 70

4.9 Full-duplex example showing before and after channel insertion. 71

4.10 Example of 3-process hypergraph with additional synchronisation events added. 73

4.11 Event definitions for N = 4 and M = 2. 74

5.1 Functional block diagram of OptoCSP. 79

5.2 Screen capture of the user interface of OptoCSP. 80

5.3 Functional block diagram of OpTrace. 85

5.4 Screen capture of the user interface of OpTrace. 87

5.5 Network graph and adjacency list for directional source P to destination Q. . 88

5.6 Network graph and adjacency list for hyper-edge with source P to destinations

Q, R and S. 89

5.7 Network graph and adjacency list for non-directional edge between P and Q. 89

5.8 Network graph and adjacency list for non-directional hyper-edge between P ,

Q, R and S. 90

6.1 Point-to-point connection between processes P and Q. 103

6.2 Broadcasting between processes P and Q. 104

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.3 Bidirectional synchronisation between processes P and Q using a half-duplex

synchronisation event. 105

6.4 Bidirectional synchronisation between processes P and Q using 2 simplex syn-

chronisation events. 106

6.5 Fully connected processes P , Q, R and S. 108

6.6 Broadcasting approaches between processes P , Q, R and S. 109

6.7 Bidirectional synchronisation between processes P , Q, R and S using half-

duplex synchronisation. 111

6.8 Bidirectional synchronisation between processes P , Q, R and S using 2 simplex

synchronisation events. 112

6.9 Star topology with processes P , Q, R and S. 115

6.10 Directional communication links for the star topology of Figure 6.9. 116

6.11 Bidirectional synchronisation between processes P , Q, R and S using half-

duplex synchronisation. 117

6.12 Bidirectional synchronisation between processes P , Q, R and S using 2 simplex

synchronisation events. 119

6.13 Ring topology with processes P , Q and R. 121

6.14 Ring topology with processes P , Q and R. 122

6.15 Bidirectional synchronisation between processes P , Q and R using half-duplex

synchronisation. 123

6.16 Unidirectional synchronisation between processes P , Q and R using one sim-

plex synchronisation event. 125

6.17 Ring topology with 4 node processes P , Q, R and S. 126

6.18 Ring topology with processes P , Q, R and S. 127

6.19 Bidirectional synchronisation between processes P , Q, R and S using half-

duplex synchronisation. 128

6.20 Unidirectional synchronisation between processes P , Q, R and S using one

simplex synchronisation event. 130

6.21 Linear topology with node processes P , Q, R and S. 131

6.22 Linear topology with processes P , Q, R and S. 132

6.23 Bidirectional synchronisation between processes P , Q, R and S using half-

duplex synchronisation. 133

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.24 Unidirectional synchronisation between processes P , Q, R and S using one

simplex synchronisation event. 135

6.25 Tree topology with processes P , Q, R, S, T , U and V 136

6.26 Tree topology with processes P , Q, R, S, T , U and V 137

6.27 Bidirectional synchronisation between processes P , Q, R, S, T , U and V using

half-duplex synchronisation. 139

6.28 Unidirectional synchronisation between processes P , Q, R, S, T , U and V

using one simplex synchronisation event. 141

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF TABLES

3.1 Subset of the CSP notation, taken from [2]. 35

4.1 Summary of synchronisation and channel definitions. 72

5.1 OptoCSP test results. 81

7.1 Result summary of topology tests. 152

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Wireless Sensor Networks (WSN) are rapidly becoming a widely applicable technology in our

everyday lives due to the advances in energy-efficiency, communication and processing power

technologies as well as more cost-effective manufacturing solutions. WSNs are still prone to

node and communication failures. The design and development of WSNs typically consist

of emulation testing, simulation testing and laboratory test beds [3]. These testing methods

are used to discover faults in the WSN software and communication protocols but cannot

guarantee the absence of design faults. Proof-based formal methods are used to prove the

absence of certain classes of faults in WSNs such as deadlock, livelock, bottlenecks [4] and

safety properties [5]. Various process calculi have been defined for the reasoning of WSNs

using formal models in aid of the formal verification thereof [6, 7, 8, 9, 10].

Communicating Sequential Processes (CSP) is a common process algebra used to formally

specify the communication between processes. It was introduced more than 25 years ago [11]

and has been applied in the fields of WSNs [12, 13, 14, 15], mission control systems, security

protocols and transport control systems [16]. The semantics of CSP has been given in the

operational, denotational and axiomatic forms by [2].

Classical CSP falls short to describe broadcasting, a communication construct used extens-

ively in WSN communication protocols. A restriction of communicating processes under

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

parallelism in CSP is that all processes engaging in an event need to do so jointly [2]. This

means that if one process engages in an event presented by its environment, it cannot proceed

until all processes engage in the same event. This constraint often restricts the expressiveness

of CSP on practical models like announcer/listener and reader/writer type problems as well

as broadcasting protocols [17]. Existing operators of CSP like interleaving and a combination

of interleaving and parallelism can be used to partially model the problem scenarios, but this

is not sufficient, as its an approximation at best [17].

Optional parallelism was proposed in [17] to lift this restriction where it is not required for all

processes under parallelism to jointly engage in events. With optional parallelism, a process

may decide to opt-out of a communication event when its not ready to synchronise. The

rest of the processes will then synchronise jointly on the event which allows the system to

progress to its next state. An optional parallel operator will serve as a pragmatic addition

to the CSP language to simplify models where total synchronisation is not practically viable.

WSNs are common announcer/listener problems where an announcer may want to pass sensor

information to all of its live listeners and bypass any node which is not ready to communicate

or has run out of power. This should not block the network when information is to be

traversed to the sink.

The semantics of optional parallelism can be derived from first principles or by defining

optional parallelism using classical CSP operators. The former task is cumbersome and prone

to errors while the latter approach is more viable because all the semantics of the classical

CSP operators are already defined and formally verified by [2]. From [2] it is stated that any

CSP operator can be deduced from a limited subset of CSP operators and that the current

set of CSP operators are complete in the sense that any modelling concept can be modelled

in CSP. From this, it is argued that optional parallelism can be defined in the context of

classical CSP operators and inherit all the semantics in the operational domain.

This dissertation details the design of a translation of the definition of optional parallelism [17]

into classical CSP operators which will enable optional parallelism to easily be used in existing

CSP model-checkers. The optional parallel operator of [17] will be referred to as OptPar and

the translation presented in this dissertation as OptParT . OptParT entails the addition

of a channel modelling artefact in parallel composition with the existing process definitions

which allows a communication event between the process and its environment to occur or not.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

The processes are thus independent from each other with the channel artefacts orchestrating

the synchronisation between them. If a process is not ready to engage in an event, its

channel ignores the event, and the processes essentially opts out of synchronisation. Different

combinations of the channel artefacts result in different directional synchronisation cases.

Simplex synchronisation has the same behaviour as broadcasting. Duplex communication

constructs are also defined which has the same behaviour as bidirectional synchronisation.

Focus was given on the operational semantics ofOptPar in the development ofOptParT . This

resulted in a new optional parallel operator being defined with the same operational semantics

of OptPar as given in [17]. The operational semantics of OptParT have been expanded to

allow for directional synchronisation which better defines the notion of broadcasting and

bidirectional communication links.

1.1.2 Research gap

Existing process algebras are often expanded [17] or used as a base to develop new process

algebras [15] to add functionality to it. OptPar intends to only be an additional operator

to the existing set of classical CSP operators. It has its own operational semantics without

modifying the existing operators’ semantics to define its behaviour. Most of the new process

algebras which are application specific like Timed Wireless Sensor Processes (Timed WSP)

[15] need tool support to analyse system definitions using the new algebras. The model-

checkers and proof tools are usually developed long after the new definitions and expansions

of the process algebras, which makes it difficult for wide acceptance.

OptPar is an addition to CSP which is not application specific. Optional parallelism can be

used in various other applications such as announcer/listener and reader/writer type problems

as well as broadcasting protocols [17]. The approach followed in this dissertation is to create

a translation of OptPar into existing classical CSP operators, forming OptParT . This allows

optional parallelism to immediately be tool-supported in existing CSP model-checkers, unlike

the other approaches followed.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The research objective of this dissertation is to derive a translation of OptPar into classical

CSP operators (OptParT) which will inherit the operational semantics of the existing CSP

operators used in the translation. A trace relationship is to be found between OptPar and

OptParT to test the correctness of the translation. OptParT will then automatically be

supported in existing CSP model-checkers because only existing classical CSP operators are

used.

The research questions this dissertation will answer are:

• Is there a trace relationship between OptPar and OptParT of this dissertation?

• Can the optional parallel operator be used in WSN modelling scenarios?

• Can OptParT be used in existing CSP model-checkers?

1.3 HYPOTHESIS AND APPROACH

The general hypothesis of the research to be conducted is:

“Optional parallelism can be defined using classical CSP operators to have the

same behaviour in the traces domain.”

This will be done by deriving a solution based on the operational semantics of optional

parallelism in the traces domain given in [17]. If a trace relationship exists between OptPar

and OptParT for all possible scenarios, the hypothesis can be accepted. If there is one

scenario where there is no trace relation, the hypothesis is rejected.

To test the hypothesis, the traces of systems defined using OptPar have to be worked out,

based on its step law and trace semantics given in [17]. If the traces are valid traces for

the same system definitions using OptParT , a trace relationship exists and the hypothesis is

accepted. If any counter example exists, the hypothesis is rejected. Due to the complexity and

number of possible traces, a software tool is needed which implements the step law of OptPar

to work out the traces of system definitions using optional parallelism. Another software tool

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

is needed to convert a CSP system definition using OptPar into a CSP system definition

using OptParT . After the traces of a system using OptPar has been worked out and the

system converted into classical CSP operators (OptParT), the trace refinement relations can

be tested using conventional CSP model-checkers.

1.4 RESEARCH GOALS

The research goals of this dissertation is to:

• define the behaviour of OptPar in terms of classical CSP operators to form OptParT ;

• test for trace refinement between OptPar and OptParT ;

• to have tool-support for OptParT in existing CSP model-checkers; and

• to apply the notion of optional parallelism in CSP system definitions of WSNs.

1.5 RESEARCH CONTRIBUTION

This dissertation presents a solution to the notion of optional parallelism to be used in existing

CSP model-checkers by defining OptParT to have the same behaviour as OptPar in the traces

domain of CSP. Some differences in the trace semantics given in [17] have been documented.

Software tools were developed to aid in the translation process and to perform scenario-based

tests of CSP system definitions of WSNs containing the optional parallel operator.

OptPar has theoretically been applied in [1] for an incremental Deterministic Finite Automa-

tion (DFA) [18] minimisation algorithm to illustrate a possible application for the operator,

but this application was made on the assumption that the initial definitions are correct and

complete. The research presented in this dissertation applies optional parallelism in the field

of WSNs to model the behaviour of communicating sensor nodes where intermittent node or

communication failures could occur.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

1.6 SUBMITTED PAPER

The following paper was submitted for the partial fulfilment for the degree Master of Engin-

eering (Computer) and is still awaiting feedback on a possible publication:

• T. J. Steyn and S. Gruner, "A New CSP Operator for Wireless Sensor Networks,"

EURASIP Journal on Wireless Communications and Networking, Springer.

1.7 PREVIOUS PUBLICATIONS

Similar research has been done in the field of modelling systolic arrays using CSP by the

author whereby a network communication graph is defined for a hexagonal systolic array and

modelled in CSP. This model was used to prove deadlock freeness of the systolic array, in an

attempt to generalise the proof to be used in model-checkers and theorem provers by examin-

ing one of many possible deadlock examples. The research methodology and contribution of

the publication and this dissertation share commonalities in the field of CSP. The publication

is:

• S. Gruner and T. J. Steyn, “Deadlock-freeness of hexagonal systolic arrays,” Inf. Pro-

cess. Lett., pp. 539-543, 2010.

1.8 OVERVIEW OF STUDY

Chapter 2 gives an introduction of WSNs and its challenges. CSP is then introduced which

also gives more detail on optional parallelism. The use of formal methods in WSN research is

also given. Chapter 3 gives a brief introduction of the CSP notation used in this dissertation.

Chapter 4 details the design of OptParT . The design and implementation of the software tools

developed to test OptParT is given in Chapter 5. Chapter 6 details the WSN test scenarios

used to test OptParT . Chapter 7 gives the results and discussion of the test scenarios given

in Chapter 6. Finally, Chapter 8 concludes this dissertation with a discussion and future

work.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2

RELATED WORK

The development of the operational semantics for optional parallelism will be based on the

communication of WSNs. This facilitates the need to identify application areas of CSP in

WSNs and for that an overview of WSNs is given first. After the definition of the notion

of process algebra, CSP will be elaborated upon as it is the process algebra used in this

dissertation. The topics discussed in this chapter are selected to cover all of the considerations

and applications of the development of optional parallelism in CSP. Background on some of

the topics such as WSNs and process algebras provide a foundation on which the extensions

are identified and performed. Optional parallelism will then be introduced and the areas

where it is applicable will be identified. Finally, the current situation on the tools available

for CSP will be discussed as this is the end result of optional parallelism - to define the

semantics thereof and encode it into a language understandable for a CSP model-checking

tool.

2.1 WIRELESS SENSOR NETWORKS

2.1.1 Overview

WSNs are networks, typically consisting of small, energy-efficient and cost-efficient nodes,

which relay sensed information to each other via wireless communication. The nodes are

composed of sensor(s), data processing unit(s), communication electronics and an energy

source. With these small nodes, a collaborative effort is made to sense some phenomenon.

The sensors can be placed in a specific network topology or an ad-hoc fashion, either deployed

inside a phenomenon or very close to it [19]. WSNs prefer broadcasting communication over

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

point-to-point connections due to the possible ad-hoc distribution of the sensor nodes. It is

up to the communication protocol of the WSN to determine how the nodes communicate with

each other and how errors are handled. Multi-hop communication reduces the energy usage of

densely populated sensor networks because the transmitting ranges of the nodes can be kept

to a minimum and the sensed data is propagated from node-to-node and eventually reaching

the central node, which is referred to as the sink or gateway. This is in contrast with single-

hop communication where a sensor node has to communicate with the sink directly.

In the past decade, WSNs have become a well-established research topic. This is due to the

technological advances in integrated digital circuits, micro electronics and Micro Electromech-

anical Systems (MEMS). WSN design introduced various challenges, from energy efficiency

to routing protocols with self-topological stabilisation. What further increased the feasibility

of WSNs was the lower manufacturing costs and the advances in energy generation, storage

and consumption. The energy consumed by WSNs were greatly reduced from the software

side in the development of energy-efficient communication protocols [20, 21, 22, 23, 24] as well

as the hardware side where the computing power increased with a lower energy requirement

[25, 26, 27].

To design a wireless sensor network requires a detailed understanding of the capabilities

and limitations of the hardware components. Furthermore, a detailed understanding of the

networking technologies and distributed systems theory are needed. Each node needs to

be designed with these limitations in mind from the ground up and to fully utilise all the

available resources. One of the core challenges of WSN design is that the nodes need to be

developed for its application area, as generic nodes would mostly not meet size, cost and

energy criteria.

Wireless Sensor Actor Networks (WSAN) [28, 29] differ from normal WSNs with the addition

of an actuator component. This allows the nodes to interact with their environment, based

on the sensed phenomenon. This opens a new field of research because WSANs are now not

only used for sensing parameters, but also to actuate on its environment, introducing a need

for communication in the opposite direction as well.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

2.1.2 Application areas

WSNs have been adopted to many fields in recent times. A common structure is shared among

the applications where a distributed set of sensors periodically measures some phenomenon

and then reports the measurements and computed results to a sink. Sensor nodes can be

used for continuous sensing, event detection, event identification, location sensing and local

control of actuators [19]. WSNs have been used for research and commercial applications like

environment monitoring, military operations, space exploration, commercial products and

structural monitoring. These sense-and-send [30] and report-by-exception [31] applications

of WSNs are not limited to the mentioned fields and to cover them all would fall outside of

the scope of this dissertation. Only a few application areas inspired by [31] will be discussed

which covers most of the practical usage scenarios.

2.1.2.1 Sense-and-Send

A generic definition for a sense-and-send application is where the observer collects sensor

readings from a set of points in an environment over a period of time in order to determine

trends and dependencies. The data is collected from hundreds of nodes and analysed off-line.

These applications often require a higher node density to minimise interpolation and extrapol-

ation errors found in coarse deployment strategies. This also allows for long-term unattended

operation to enable measurements at spacial and temporal scales. WSNs have the advantage

that it can be deployed in ecological sensitive or challenging physical environments while also

providing measured data in an unobtrusive manner by means of wireless communication.

Research reported by [30] mapped sensor network measurements with Graphical Information

Systems (GIS) for the exchange of geospatial data of the habitats of sea birds. This was

done with minimal intrusion and with post-analysis, a typical procedure for environmental

monitoring.

Environmental data collection applications, using tree-based routing topologies, can easily

become energy bottlenecks because nodes with a lot of descendants transmit significantly

more data than the leaf nodes. In the case of a full tree, the data to be transmitted increases

exponentially. In many cases, the interval between transmissions can be in the order of

minutes because of the slow variation in the environmental parameters typically measured.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

In addition to the slow update rates, latency is also not a strict requirement because the data

is usually analysed off-line. To increase energy efficiency, each communication event must be

precisely scheduled, waking from a dormant state to transmit data at a precise schedule to

avoid communication failures. When a node has run out of energy or a new node is inserted

into the system, a new route should manually be configured.

The most important characteristics of environmental data collection applications is that the

system have a long lifetime, precise communication events, low data rates and static topologies

[31].

2.1.2.2 Report by exception

In security monitoring applications, the nodes are also placed in a fixed topology. The key

difference in security monitoring applications is that data is not collected. Each node only

sends data when a security violation is detected. This immediate, real-time communication

events have a significant impact on the optimal network architecture. These types of WSN

architectures are called report-by-exception networks [31].

With immediate and reliable communication being the primary requirement, an additional

requirement is that it is confirmed that all the nodes are still present and in working condition.

This status confirmation amongst the nodes requires less frequent communication events

between them, at a frequency of approximately once per hour. The routing topology will

be optimal if it has a linear topology, unlike the environmental data collection applications

which have short, wide trees. This linear topology forms a Hamiltonian cycle of the network.

A Hamiltonian cycle is a network path which visits each node exactly once. With this

linear network topology, each node will only have one child, which distributes the energy

consumption evenly in the network, unlike tree based topologies where there are energy

consumption bottlenecks. The status confirmation between the nodes are needed due to the

linear topologies not being fault-tolerant.

Energy is mostly spent on the low latency requirements of alarm signalling. With security

monitoring applications, reducing the latency is more important than energy requirements

and because these security violations occur infrequently, this design approach does not seem

to be a problem. A common example of these networks are fire alarm systems, where the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

10

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

signal needs to be routed, even if it means a high energy cost.

2.1.2.3 Report by detection

With node tracking applications, a tagged object’s location can be detected and tracked

through a region of space monitored by a WSN. This differs from conventional tracking

applications like regular courier services, where the parcel is tracked at various checkpoints.

While still useful, the object’s current location cannot be determined, as it could have moved

since its last checkpoint scan. This is however not practical for applications where the objects

are not obliged to check-in at regular intervals to be tracked.

Node tracking is achieved by tagging the object with a sensor node, which will be tracked while

moving through a field of other sensor nodes. The tagged object will be the phenomenon to be

sensed by the WSN. This allows the object’s current location to be known instead of where it

was last scanned. This results in continual topology changes of the WSN as the object moves

through the network. Another aspect to keep in mind is that the network should be able to

detect new nodes as it enters the network, as well as current nodes exiting the network. This

calls for routing protocols that are adaptable to continuous topology changes.

Two approaches to vehicle tracking and detection are given in [21]. The first approach is

that the line of bearing of the vehicle is locally determined within the clusters before it is

forwarded to the base station. Secondly, the opposite approach is followed where the raw

data is sent to the base station where the location is determined.

2.1.2.4 Current and future areas

The National Aeronautics and Space Administration (NASA) is also one of the forerunners

in WSN development. They are conducting research on sensor networks for planetary and

solar system exploration. In their Mission to Planet Earth, they are developing WSNs for

early warning systems for natural disasters as well as climate monitoring. These sensor

networks are highly distributed and a high level of reliability is required, especially for the

space missions, where the systems will need to operate in extremely harsh environments. Due

to these requirements, the systems have a high complexity which results in a very large state

space for testing. This makes it nearly impossible to test using conventional methods. A

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

suggestion made by [12] is to use tools which provide a high level of abstraction which can

interpret system requirements and generate the software automatically from it. At the point

of source code generation, the system will already be vigorously tested and qualified and the

mathematical models verified to be correct.

2.1.3 Evaluation metrics

The metrics by which a WSN can be measured in terms of its performance are different

for each WSN, depending on its application. The key evaluation metrics for WSNs at node

or network level are lifetime, coverage, temporal accuracy, response time, effective sample

rate, cost, ease of deployment and security [31]. These metrics are often interrelated, where

a trade-off in one metric may result in an advantage in another. These metrics provide a

multidimensional way to describe the capabilities of a WSN. This section will only cover

these metrics briefly, as it is important to know of the existence of the metrics for future

arguments. The detail however, is not required.

2.1.3.1 Lifetime

Lifetime is the most critical metric of WSNs. One of the main goals of WSNs is to leave the

field nodes unattended for long periods of time. With energy as the primary limiting metric

of WSNs, each node must be designed to manage its local supply of energy efficiently. The

nodes can get an energy supply either from a battery (stored energy) or from the environment

from solar cells or piezoelectric generators (harvested energy) [32]. Various energy sources for

micro scale electronic devices are discussed in [33] and [34] amongst others. Energy efficient

physical layer protocols are described by [21]. They add to their research by showing how to

reduce energy consumption of non-ideal hardware through physical layer-aware algorithms

and protocols.

2.1.3.2 Coverage

Coverage can be defined as how effective the sensor network monitors the field of interest

and is thought of as a quality of service. Coverage is just as important as lifetime of a

WSN. An important thing to keep in mind is that the coverage does not equal the range of

a single WSN node. With multi-hop techniques, the coverage can be beyond the range of an

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

individual node. This is advantageous because it gives the WSN the ability to be deployed

over a larger physical area. Although multi-hop networks can be infinitely large in theory,

the networking protocols needed greatly increases the power consumption of the nodes which

decreases network lifetime. Coverage is not always uniform for all nodes in the network.

Heterogeneous sensor nodes could be used where the coverage of the nodes differs, which

impacts the network topology directly. Scalability also becomes a factor with large networks,

impacting lifetime and effective sample rates. More information on coverage is given in [35]

and [36].

2.1.3.3 Temporal accuracy

In environmental and tracking applications, the samples from the nodes must be cross-

correlated to provide meaningful and related data. The accuracy is proportional to the rate

of propagation of the phenomenon being measured. Examples are temperature variations,

which does not have a high rate of change, versus seismic monitoring in structural monitoring

applications, which can have millisecond accuracy. Temporal accuracy is achieved by main-

taining a global timebase for chronological samples. Continual time synchronisation requires

higher energy expenditure as well as higher bandwidth, which are the main considerations

for temporal accuracy.

2.1.3.4 Response time

In some applications, like reporting by detection, response time is critical. High-priority

messages should be communicated immediately to their destinations. These messages have

a low event frequency, but still require more energy than usual. This is because the system

constantly needs to monitor its health by inter node communication. Energy is usually

conserved by letting the nodes only activate their radio communication hardware for brief time

periods, which will render detection systems ineffective. These systems must be continuously

powered.

2.1.3.5 Effective sample rate

The effective sample rate is defined by the rate of which data can be sensed and communicated

with the base station. This is a primary metric for data collection applications. It becomes

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

a bigger issue with multi-hop systems with a tree topology, where a node must handle all

its leaf nodes’ data, which can quickly become difficult to scale. Communication speeds (bit

rates) as well as network size have a great impact on this metric.

2.1.3.6 Ease of deployment

One of the advantages WSNs has, is the ease of deployment. WSNs must be self-configurable

and not require a skilled person for deployment. Automated deployment is especially used in

areas which are topographically challenging to access. The network should be able to assess

its own health and report constraint violations. Additionally, the system should also adapt

to the changing environmental conditions and node relocations. With these requirements,

WSNs can be deployed in inaccessible and environmentally harsh areas.

2.1.3.7 Cost

Some WSNs require hundreds of nodes to be deployed. Not only must these nodes be small,

but their manufacturing costs kept to a minimum. Apart from deployment costs of the

nodes, maintenance also plays a big role. Nodes constantly need replacement, especially in

security monitoring applications. Self maintenance has an impact on energy requirements

and effective sample rates.

2.1.3.8 Security

Information security is very important. Although some of the measured parameters seem

useless when viewed out of context, it could be interpreted differently to identify a security

hole. Power and light monitoring of a building could be intercepted to see when certain

areas are occupied and could be used for a physical attack on the building’s security. Data

communication should also be authenticated, especially in the case of security monitoring

systems, where a false alarm could be injected into the system. Encryption and authentica-

tion requires more power and network bandwidth due to the extra Central Processing Unit

(CPU) power required for cryptographic computations and more data to be transferred due

to encryption. Sample rate and lifetime is directly affected by security.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

14

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

2.1.4 WSN challenges

In the habitat monitoring of sea birds work of [30], they used a single-hop and a multi-hop

WSN configuration. Their network architecture consisted of a WSN, a common transit net-

work and the base station. Small, battery-operated nodes, with application specific sensors

were used. It was estimated that the lifetime of the nodes would be months to years, de-

pending on the communication duty cycle. They had successful results with the single-hop

network, but significantly less success with the multi-hop solution, attributed to poor resource

management and complex routing protocols.

Coverage and network connectivity are common research topics for WSNs [35]. Coverage

was briefly explained in §2.1.3.2. Connectivity is the ability of the sensor node to reach the

data sink. Data can only be delivered if there is some network path from the node to the

sink. The communication range of a node should not be confused with the sensing range as

the sensing range is the area of observation, while the communication range is the area of

inter-node communication of the sensed data.

2.1.4.1 Coverage

Coverage of a sensor node is usually depicted as a disk in 2-D or a sphere in 3-D. This makes

a theoretical assumption that the node can successfully communicate with any node within

the coverage area. This does not take obstacles like plants and trees or even furniture into

consideration. Objects can block Radio Frequency (RF) signals or reflect them, inducing

multipath communication characteristics. A study on the effect of objects on a network has

been done by [37]. They simulated various object shapes inserted into a WSN simulation and

determined the effect it had on routing protocols. Although the coverage problem was not

addressed by them, their models could be used in coverage simulations.

2.1.4.2 Energy

One of the most important constraints a WSN has is energy constraints. Most sensor nodes

depend on batteries as an energy source, but these batteries are mostly irreplaceable as the

nodes are not always accessible. Several solutions have been developed to ameliorate the

problem. A popular method is to place unused nodes into a low-power sleep mode, another

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

method which is also common is to tune the transmission range of a node to only reach

a neighbouring node. The work of [19] suggests that multi-hop communication consumes

less energy because of the transmission ranges being shorter and longer distances covered

by multi-hop protocols. Hierarchical topologies allow cluster heads to aggregate data and

reduce the information sent to the sink, relieving some of the burden on the nodes. Data

gathering efficiency also reduces the power need. This is achieved by removing redundancy in

the network so that the same phenomenon is not sensed by multiple nodes. Routing protocols

opting for optimal node hops also conserve energy as the path with the lesser cost can be

chosen for data transmission [35].

2.1.4.3 Reliability and fault tolerance

Some nodes may fail in the lifetime of the network due to power depletion, environmental

interference and physical damage. Fault tolerance is the ability to sustain sensor network

functionality without interruption due to node failures [38]. Some systems could also be

designed to utilise physical damage as a form of sensing. Forest fire monitoring is an example

of such form of sensing, where the nodes will be damaged as the fire-damage progresses,

giving an indication of the affected area by tracking their last reported Global Positioning

System (GPS) position. In contrast, the work of [39] focussed on the protection of the sensor

nodes from the fire, using thermal insulation, which proves to be more cost friendly than to

redeploy a whole WSN. With their sensor node protection research, the rate of fire spread

can be easily detected for further research.

2.2 COMMUNICATING SEQUENTIAL PROCESSES

2.2.1 Process algebra

Algebra is a branch of mathematics related to the general properties of arithmetic. This

branch is concerned with algebraic structures involving sets of elements with particular op-

erations satisfying certain axioms. The goal is to derive general results, applicable to any

example of the same algebraic structure, with the use of the set of defined axioms [40]. Ele-

mentary algebra follows the study of arithmetic which mostly consists of operations on sets

of whole and rational numbers to solve first and second order equations. Relationships or

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

equations are summarised by using variables denoted by the letters of the alphabet to stand

for unknown quantities whose values may be determined by solving the equations [41].

The behaviour of a system can be defined with processes and data. These systems can be

anything from a vending machine to a complex concurrent system having many processing

elements. Processes are commonly defined in terms of process graphs, but it is sometimes

needed to perform algebraic calculations on it, hence the need for process algebra. Process

algebras use a collection of operator symbols to specify and manipulate their process terms.

An advantage of the symbolic definition of processes is that it is interpretable by a computer,

automating process manipulations and verifications. Process algebras mainly consist of basic

operators for the definition of finite processes, recursion to define infinite behaviour, and

communication operators for concurrency. A further common notion is the definition of

deadlock and a silent step. The operators are formally defined by structured operational

semantics. The essence of process algebras is that equational reasoning can be performed

on process terms to determine their behavioural relation with each other. This helps to

check process graphs for equivalence. Extensions to process algebras are common to enhance

expressibility, or for custom system behaviour. The structured operational semantics and

equational logic are required for these extensions to be used in formal methods.

Process algebra provides a framework to formally reason about processes and data, with

prominence given to concurrent processes, to detect system behaviour and properties. Sys-

tems can be verified for correct external output with the use of process algebra by expressing

it as a collection of process terms with the use of the basic operators, recursion and concur-

rency. This is then manipulated by means of equational logic to prove the desired behaviour.

[42]

Concurrency theory is the theory of parallel and distributed systems. Process algebra is

regarded as an algebraic theory to formalise the notion of concurrent computation. Many

frameworks for the description and modelling of reactive/concurrent systems exist of which

process algebra is considered the dominant framework. Process algebra is suited for require-

ments specifications, design specifications and formal refinement proofs [43]. Process algebra

became an underlying theory of all parallel and distributed systems which extends formal

language and automata theory with the common notion of interaction [44].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

17

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

2.2.2 History

After 12 years of research, the first publication of CSP was made by Hoare in 1985 [11]

and its notation was extensively used in concurrency theory ever since. The development of

CSP into a process algebra has gained wide acceptance after tools were developed to help

model and analyse real life processes in CSP [2]. Together with its concurrent notational

attributes, CSP has a collection of mathematical models and reasoning methods which helps

with the understanding and use of the notation [2]. The primary interest for CSP is the

interactions between processing elements on a communications level and is therefore defined

relative to a given set of communications of processing elements. The basic processes of CSP

are built from primitive processes such as SKIP and STOP and the communication primitives

include sending and receiving data over a communication channel, internal and external choice

distinction, parallel operators and sequential composition of processes. With these primitives,

of which a subset is given in Chapter 3, CSP can be expanded to prove theorems as well as

model the communication behaviour of complex distributed systems.

At the same time of development of CSP, other process algebras were also developed. One

of the developments was Calculus of Communicating Systems (CCS) [45]. The actions of

CCS model indivisible communications between exactly two processes. Formal language con-

structs include primitives for describing parallel composition, choice between actions and

scope restriction. Message passing in CCS was inspired by [11] and was eventually handled

similarly. Another process algebra, Algebra of Communicating Processes (ACP) [46], was

developed around the same time as CSP and CCS. ACP is based on process algebra which

defines alternative sequential and parallel composition. The foundation of the compositions

was formed to analyse unguarded recursive equations [44]. With the addition of communica-

tions, the process algebra ACP was defined [44]. Within the development of ACP, the term

"process algebra" was coined and is now used to group the families of mathematical theories

of concurrency.

The three process algebras (CSP, CCS, and ACP) were developed at the same time and find-

ings have been shared amongst researchers. CCS was the first algebra with a complete theory.

CSP has distinguishable equational theory, which is different form the other two. ACP puts

emphasis on the algebraic aspect in which there is an equational theory with a range of

semantical models. ACP also has a more general communication scheme whereas CCS con-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

siders communication which is combined with abstraction. CSP combines its communication

with restriction, a useful attribute in the analysis of deadlock.

CSP makes use of multi-party communication which allows the broadcast of information to

multiple receivers. This results that the distinction between input and output is vaguer than

CCSs two-party communication. This non-distinguishable nature of CSPs input and output

serves as a disadvantage for specification, but it is an advantage for verification. Constraint-

based modelling methodology is only possible within a multi-party communication framework,

which is a strong argument in favour of CSP as process algebra.

2.2.3 Application areas of CSP

CSP is the most widely used form of process algebra and has successfully been applied in

areas of mission control systems, security protocols [47], transport control systems [48, 49, 50],

multi-threaded programs [51] and WSNs [14, 52].

Systems are modelled in CSP to check the systems’ properties before implementation. This

gives a formal mathematical environment for verification of system properties. CSP has

previously been used by [12] to model the Lights-Out Ground Operating System (LOGOS)

from NASA. A post-implementation formal specification of LOGOS was done in CSP, which

pointed out a number of anomalies and conflicts, not detected during their normal testing

routines. These findings have gone undetected by system engineers, as was the case in [14],

which already points out the importance of formal model-checking and verification.

Deadlock analysis is one of the most common reasons for the use formal verification tech-

niques. It deals with detection, avoidance and prevention. A recent application of the dead-

lock analysis techniques from [53] was used by the author of this dissertation [54] to determine

the deadlock properties of a hexagonal systolic array [55]. This work was based on the ap-

plication of the techniques of [53] on a orthogonal systolic array presented in [53]. In both

cases, the deadlock freedom was mathematically proved. This was manually accomplished

from first principles, without the use of software verification tools.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

19

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

2.2.4 Semantics

The study of semantics is the study of the meaning of languages. The semantics of computer

programming languages entail the study of the formalisation of the practice of computer

programming. A computer language consist of a syntax and semantics, the first describing the

structure and the latter describing the meaning thereof [56]. The semantics of a programming

language refers to the computational meaning of it, as opposed to its syntax. It is concerned

with building mathematical models for understanding an reasoning about program behaviour.

Semantics provide the relevant features of all possible executions of a language, ignoring the

details which are irrelevant to the correctness of implementations. [57].

Semantics can be divided into two types. The first type is static semantics and the second

is dynamic semantics. Static semantics are concerned with checking for well-formedness

while dynamic semantics are concerned about the run-time behaviour of a program. In

programming terms, static semantics are checks that are run at compile time while dynamic

semantics are run-time based. In this dissertation, only dynamic semantics will be used.

Formal semantics allows for the translation from one domain to another formally defined

domain and is detailed with the following sub groups of dynamic semantics:

• Operational Semantics;

• Denotational Semantics; and

• Axiomatic Semantics.

2.2.4.1 Operational semantics

Operational semantics offers a simple means of understanding how a program is intended to

behave, and is of interest how the effect of a computation is produced [56]. The operational

semantics of a computer language details how the syntax works in terms of rules or laws.

With operational semantics, the semantics of a program is specified as an abstract machine or

transition system. All possible executions of the program are represented by the program’s

computations. Programs are interpreted as transition diagrams with visible and invisible

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

20

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

actions between states, and the main concern is how these states are modified during their

step-by-step execution. The semantics of step-by-step execution are referred to as Structural

Operational Semantics (SOS) [58]. The aim of SOS is to provide short and understandable

semantic descriptions based on elementary mathematics [59]. Natural semantics [60] detail

how the results of an execution are obtained overall with the relationship of the initial

and final state of an execution. Operational semantics can be defined as the mathematical

formalisation of some implementation strategy and provide simple guidelines for language

implementation.

The operational semantics of CSP describe how the operators work in terms of their step

laws, firing rules and trace clauses. This dissertation will focus on the step-by-step execution

of optional parallelism in terms of its step laws defined in [17].

2.2.4.2 Denotational semantics

The framework of denotational semantics was first developed by Scott and Strachey [61]. With

denotational semantics, the meaning of a program is modelled with mathematical objects

which represents a function or a function-space. Only the effect of executing the functions

are of concern and not how the effect is obtained. Denotational semantics describe what

the syntax intends to achieve, but is not concerned with how it is achieved as in the case of

operational semantics. The effect of each statement is given as an equation which describes

the relation between the input and output state which results in a translation of the program

to a well formalised mathematical domain [56].

2.2.4.3 Axiomatic semantics

Axiomatic semantics, primarily developed by Hoare in the 1960s [62], entail the expression

of the properties of the effects of an executing construct as assertions in the form of a pair

of predicates [56]. It provides a means of proving the properties of programs with the use of

logical systems [56] together with pre- and post-conditions of program variables. A property

is satisfied by a program if and only if the property can be proved from the axioms of the

semantics. Axiomatic semantics can be used for the verification of program correctness using

theorem provers.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

2.2.5 Extensions of CSP

Classical CSP [2, 11] abstracts from optional parallelism [17], time-based communications

[63], priority [64] and exceptions [65, 66], and it was extended to fit specific application areas.

These extensions are not always expanded for all semantic models of CSP, which makes it

difficult to be accepted as the standard. These extensions are more often abstract models,

which are used to capture the extensional meaning of programs and to simplify the programs

by reasoning in more abstract models. The advantage of these abstract models is that they

introduce a theory of refinement which results that refinement checking naturally leads to

specification and verification [65]. This subsection briefly describes some of the extensions of

CSP and it should be noted that this is not an exhaustive list of the current extensions of

CSP.

2.2.5.1 Optional parallelism

Optional parallelism (OptPar) was first defined by Roggenbach et al in [17] and is denoted by

the operator ⇑
X
, where X denotes the synchronisation set just as in the generalised parallel

operator of CSP. It extends classical CSP by adding a new operator for parallel composition

of processes. The optional parallel operator is a hybrid operator incorporating interleaving

and generalised parallelism. A restriction of communicating processes under parallelism in

CSP, is that all processes engaging in an event need to do so jointly [2]. This means that

if one process engages in an event presented by its environment, it cannot proceed until all

processes engage in the same event. This often restricts the expressiveness of CSP on prac-

tical models like announcer/listener and reader/writer type problems as well as broadcasting

protocols. Optional parallelism removes this restriction by defining the step laws for events

where generalised parallelism is undefined. This is detailed in a Venn diagram in Figure 3.1

and §3.2.5.

OptPar has recently been used by [1] to conceptually specify an optimisation of an incre-

mental DFA minimisation sequential algorithm as a concurrent system in CSP. OptPar was

successfully used to formally specify the algorithm as set of concurrent functions and the

use of formal model-checkers would have been useful to verify the correctness of it. Further

research and investigation beyond the scope of this dissertation is needed to define the work

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

22

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

of [1] in a CSP model-checker for formal verification.

The operational semantics of optional parallelism was defined in [17] in terms of the step laws

(given in §3.2.5) and firing rules. Additional theorems were given of which the outline of the

proofs exist, but only one is found in the literature [17]. Details on failures and divergences

have been sketched but not detailed.

Some differences between OptPar and OptParT exist. First, with OptPar there is no trace

law for two processes under optional parallelism where one opts out of synchronisation on an

event and then the other opts out of that same event directly thereafter. With this in mind,

consider the processes P = Q = comm → STOP. Traces(P ⇑
comm

Q) does not contain

the trace 〈comm, comm〉 as interleaving would and it is also argued in [17] that there is

no refinement relationship between interleaving and optional parallelism due to this counter

example. The definition of OptParT given in Chapter 4 allows the trace 〈comm, comm〉

as it is believed that process P may opt out of synchronisation of comm and be ready to

synchronise just after Q performed its comm event, even if Q will not be ready the second

time. This has the effect of interleaving when a process is not ready to synchronise.

Secondly, there is also no trace law for OptPar in [17] for the clause of Equation 3.37 where

a 6= b ∧ a, b ∈ X. This means that deadlock will occur if two processes are ready to

communicate different events in the synchronisation set. OptParT treats this scenario as

interleaving.

2.2.5.2 Timed CSP

Timed CSP extends the CSP language of Hoare [11] to include timing concepts. It was first

published by Reed and Roscoe [67] after which various denotational semantic models have

been published by the authors [67, 68]. Davies and Schneider provided an introduction on

these models in their work of [69]. The language and models have been refined to have a more

abstract view of time and these changes was noted in [70]. The timed model of [71] is based

on the notes of [70]. Classical CSP processes describes behaviours between processes and the

most basic behaviour is a sequence of events, not taking time into consideration. Timed CSP

achieves the same, but with the addition of a time when these events are performed or refused.

Timed CSP proved to be more powerful because a Timed CSP process can be syntactically

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

23

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

transformed to an untimed CSP process while preserving much of the information. With

the appropriate conditions, properties of the Timed CSP process can be formally defined

and verified by the study of its untimed transform. This will also be the approach for the

definition of optional parallelism, where processes can be translated to classical CSP. For a

more recent detailed history and working of Timed CSP, see [72].

2.2.5.3 Timed WSP

Timed WSP was introduced by Liu et al [15] and is based on Timed CSP and the Calculus of

Broadcasting Systems # (CBS#) [6], an extension of CBS given by [73]. In the language of

Timed WSP, the notions of time and broadcasting are used to describe the behaviour of WSN

nodes. They used Timed WSP to model contention-based WSNs which are abstracted from

existing Media Access Control (MAC) protocols. Liu et al introduced two new process prefixes

to define transmitting and sending processes which are used in broadcasting definitions. The

associated operational semantics was given in [15] and tool support was still a topic of future

work in their research. Liu et al argue that their Timed WSP solution is suitable for formal

WSN specifications to describe broadcasting and collision avoidance. The notation of their

transmitting and receiving processes are given as ~m→ P and }m→ P respectively.

The optional parallel translation of this dissertation also details the notion of directional

communication in terms of transmitting and receiving channel artefacts which are detailed

in §4.3.1. The approach of this dissertation differs from the approach of [15] as existing CSP

operators are used and therefore the solution is tool supported by design.

2.2.5.4 Compensating CSP

Compensating CSP (cCSP), introduced by Butler et al [74], is an extension of CSP to model

Long Running Transactions (LRT) which is an error recovery mechanism for these transac-

tions. It was inspired by transaction processing features commonly found in database and

on-line banking mechanisms. Processes in cCSP are still modelled in terms of atomic events

as in classical CSP and the language supports standard CSP constructs of sequencing, choice

and parallel composition. Additional compensating operators were added to support the long

running transactions and the failure occurrences of it. Processes are categorised into standard

and compensable processes where the compensable processes have an attached compensation

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

24

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

definition which is used when compensation is needed.

The operational semantics of cCSP was further detailed in [75] together with an outline of

the encoding thereof in Prolog. The operational semantics of [75] provides the basis for a

prototype model-checker for cCSP as well as a foundation to implement it in a language with

compensations. The work of [76] defines a technique which allows LRTs to be modelled with

cCSP and to be translated into the Promela language to be analysed by the SPIN tool. Their

work shows promising results but is still only a work in progress.

A notational difference in process definitions is where P and Q represent normal processes,

PP and QQ represents compensable processes. A compensable process is a normal process

with compensation actions attached to it. The process consist of a forward behaviour and

a compensation behaviour. The compensation behaviour will be executed in the case of a

fault or exception to compensate the forward behaviour. Both the forward and compensable

behaviour are standard processes. A process definition with its compensation is defined

as P ÷ Q with P as the forward behaviour and Q as the associated compensation. Q is

designed to compensate for the effect of P and may run long after P has completed. For

more information on the operational semantics of cCSP, see [57] for details. The syntax of

cCSP is summarised as follows.

Standard Processes: Compensable Processes:

P,Q ::= A (atomic action) PP,QQ ::= P ÷Q (compensation pair)

| P ;Q (sequential composition) | PP ;QQ

| P 2 Q (choice) | PP 2 QQ

| P ‖ Q (parallel composition) | PP ‖ QQ

| SKIP (normal termination) | SKIPP

| THROW (throw an interrupt) | THROWW

| Y IELD (yield to an interrupt) | Y IELDD

| P . Q (interrupt handler)

| [PP] (transaction block)

2.2.5.5 Termination in CSP

The work of Howells and d’Inverno [77] suggests that the failure-divergence semantic model

of CSP has an incomplete treatment of successful process termination. They focus their work

particularly on parallel termination which permitted unnatural definitions of processes where

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

events can occur after the termination event X. An analysis of the existing CSP synchronous

and asynchronous parallel operators indicated that none of them had asynchronous termin-

ation semantics. Solutions to this problem was suggested by Hoare [11], Tej and Wolff [78]

and Roscoe [2]. Howells and d’Inverno presented another solution and called it CSPT and

they argue that it is closer to the original semantic model which provides greater flexibility

over the type of parallel termination semantics of CSP.

Howells and d’Inverno introduced a new CSP axiom which captures the notion of successful

termination and modified the semantics of CSP to do so. They also showed that the non-

parallel processes still satisfy the termination axiom. Finally, they introduced replacement

parallel operators for CSP which satisfies the new termination axiom. The three parallel

operators they added are:

• \\Θ - Race Parallel - If P or Q terminates asynchronously, P \\Θ Q will terminate.

Race parallel fails to terminate if and only if both P and Q fails to terminate.

• //Θ - Asynchronous Parallel - P and Q both needs to terminate for P //Θ Q to

terminate. Asynchronous parallel fails to terminate if either P or Q fails to terminate

or both P and Q fails to terminate.

• ‖∆ - Synchronous Parallel - The termination event X is included in the synchron-

isation set and will therefore allow synchronised termination on X.

They conclude that their addition of these new parallel operators provides two advantages over

the solutions by Roscoe [2]. First, it is simple in the sense that it requires fewer modifications

to the existing CSP semantics and secondly because it provides a greater flexibility in the

choice of termination semantics for the parallel operators provided.

Termination of optional parallelism is defined such that both processes in a binary optional

parallel relation should terminate jointly for optional parallelism to terminate successfully. In

the case where one process terminates before the other, deadlock occurs with the observation

of the STOP trace. This behaviour is similar to the asynchronous parallel operator defined

above.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

26

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

2.2.6 Tools

Formal methods provide a means for exhaustive system analysis, as opposed to simulation

where scenarios are often created which do not cover all possible system states. One of the

challenges of using formal methods is to create and establish techniques which the industry

can use. This is measured in terms of people being able to utilise the methods and if the

methods deliver useful results for realistic systems. Formal verification of systems with real-

world application requires the help of computers. The type of computer aided support comes

in the form of model-checkers and theorem provers, or the combination thereof.

Model-checkers are specialised to one particular formal method and are based on an exhaust-

ive search of a finite state space. These tools do not require user intervention. A property

is defined at the start by the user and the tool shows the property or fails. Model-checking

provides support for positive system specification verification, i.e. indicating if a specification

is successfully implemented, as well as debugging information like stack traces where failures

occur. This is more useful during early development since it helps to reduce errors. One

of the disadvantages of model-checkers is that they can only handle systems of finite size,

making it difficult to prove that systems will be error free for arbitrary sizes.

Theorem provers are capable of verification where a system’s specification can be verified

for all instances of its parameters. This comes with a price because human interaction is

needed together with the computer aided tools. When proofs are not possible, debugging

information is often not included which makes problem finding difficult for the user. General

purpose theorem provers are based on powerful meta-logic like higher-order logic or type

theory into which the formal method is embedded [79]. Theorem provers assist only in the

construction of proofs and the main work is left to the user.

Theorem provers have been suggested to complement the well-established technique of model-

checking [79]. The advantages of the two groups of formal analysis tools are complimentary.

Model-checkers are fully automated and highly specialised where theorem provers are user-

driven and provide a flexible and versatile formal proof environment. The combination of

model-checkers and theorem provers provides powerful formal proof and development envir-

onments for processes.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

CSP-Prover [80] is a combination of a model-checker and a theorem proving tool, which

specifically targets proofs for infinite state systems, which may also include infinite non-

determinism. CSP-Prover is based on the theorem prover Isabelle [81] which provides a

deep encoding of CSP and supports various analysis models including the failures model

and the traces model of CSP. Practical applications of CSP-Prover have been demonstrated

with success where an electronic payment system was modelled after it was formalised in

CSP. Tool support was needed [80] to prove the system as deadlock free because of the

complexity of the model of the electronic payment system. This was also found necessary for

the verification of the system specifications in [43]. These proofs were based on the fact that

CSP processes can be deadlock-free by design and that CSP’s stable-failures refinement is

deadlock-preserving [82]. The power of CSP-Prover was also verified by successfully analysing

the dining philosophers problem which is a classical mutual exclusion problem and tailored

to be a benchmark of refinement proofs [80].

A high-level formal modelling tool was developed, Requirements to Design to Code (R2D2C),

based on CSP [12]. It was designed to aid the system specification and verification of WSN

applications. It has been shown that the tool allows a formal model to automatically be

transformed to source code. This allows the developer to define the system formally using

CSP and using the R2D2C tool to generate the source code. This currently only supports

natural language or semi-formal language as input, a conversion to a subset of CSP, called

EzyCSP, and Java source code as output. The R2D2C tool can be applied in other application

fields as well, although it was specifically tailored for WSN applications.

The model-checker Failure-Divergence Refinement (FDR1) [83] is regarded as the standard

proof tool for CSP and provides refinement proofs as well as deadlock and livelock analysis.

A limitation of the earlier proof tools such as FDR1 is that only finite state systems could be

analysed and only concrete data types could be used. These proof tools suffered in practical

applications where state explosion problems were introduced [84]. FDR2 was developed as an

improvement over FDR1 in the sense that it supported operators outside of the CSP core and

hence supported other languages, improved handling of multi-way synchronisation, provisions

for much more power language for data types and expressions, a potential for lazy exploration

of systems and the ability to build up systems gradually. FDR2 is only available for the

Linux operating system in both x86 (32-bit) and x64 (64-bit) formats. With the advances
1http://www.fsel.com/

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

28

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

in computer technology, FDR2 has been adapted to utilise the new processing power made

available by multi-core processors. Parallel FDR2 [85] is very powerful in high fidelity models

where it can produce a lot more detail than conventional FDR1. The latest version, FDR32

[86], is a complete rewrite of FDR2 and has a significant number of improvements. The most

prominent enhancements of FDR3 are a new multi-core refinement-checking algorithm, able

to deliver a near linear speed increase with an increase in the number of cores, and a new

algorithm for efficient internal CSP representations. Another non-functional enhancement

was the improved ease of use of FDR3 with a powerful Graphical User Interface (GUI). It is

available for Linux (x86 and x64), Microsoft Windows (x64), and MacOS (x64) and includes

an Application Programming Interface (API) for C++, Java and Python, detailed in its

manual [87]. Experimental results [86] have shown that FDR3 is faster and less memory

intensive for a single thread versus FDR2.

ProB3 [88] is an animation and model-checking tool for the B method. It contains a temporal

and a state-based model-checker to be used to detect errors in B specifications. Later on, ProB

was extended to support CSP as well and is called ProCSP. ProB is used within Siemens,

Alstom and several other companies for complex data validation. Commercial support is

given by a company called FormalMind4. ProCSP has a user friendly GUI and multi-platform

support, which makes it a viable choice for CSP system analysis. At the time of writing this

dissertation, only ProCSP was available as an easy CSP tool to use as FDR3 was in its final

stage of development.

2.3 FORMAL APPROACHES TO WSN MODELLING

The nature of WSNs after deployment often does not allow access to the nodes in the case of

system failures. It is therefore essential to simulate and analyse the network design beforehand

to minimise the risk. Model-checking is one of the design verification approaches taken.

Protocol analysis and system properties such as deadlock, livelock and safety are some of the

many verification parameters model-checking enables.
2https://www.cs.ox.ac.uk/projects/fdr/
3http://www.stups.uni-duesseldorf.de/ProB/
4http://www.formalmind.com/

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

2.3.1 WSN modelling using CSP

A method to check ad-hoc wireless networks for self-stabilisation is given in [14]. CSP and

FDR were used as the process algebra and model-checking tool. Tactical networks were

targeted first by [14] before applying the findings to more general self-configuring networks.

The work was inspired by the ARPANET bug [89], where a corrupt topology update message

caused a livelock which required all the routers in the network to be reprogrammed with

a patch and then manually rebooted. This could have been avoided if the network state

combinations were formally modelled and verified. With the application of CSP modelling

on a tactical internet, failure state properties of the network were detected by [14] from the

CSPM models developed, a task previously done by intense manual testing. This automated

capability to find protocol flaws was unknown at the time. In [14], system models were limited

to a small finite number of principles. A verification approach of inductive reasoning was

used, which in CSP and FDR is typically based on data independent induction [13, 90]. The

models were initially constructed for the most simple form of a sensor node and then gradually

refined until it contained most of the network’s physical protocol behaviour. With these rich

models, FDR derived scenarios where the network could perpetually reconfigure itself. The

work of [90] tried to address the problem of scalability by combining data independence with

induction, two of the best known approaches. A complex road network example was modelled

in CSP and verified as deadlock free with FDR. High fidelity models in FDR were still found

by [14] to suffer from state space explosion [84], even with the state reduction operators

provided by FDR [2]. A more abstract approach was taken by [90] in the protocol models by

means of induction with successful routing analysis by FDR.

A simple wireless sensor network was modelled by [12] and it was used to develop a custom

tool for automatic model generation and verification. CSP was used to create the model and

FDR was used as the model-checking tool. A novel construct of dividing the WSN into regions

with the regions placed collectively into a synchronous parallel composition was used, which

reduced the model states. A method to speed up WSN application development was also

suggested, albeit sketchy. The Autonomous Nano Technology Swarm (ANTS) [91], a space

based WSN, which still in its concept development phase at NASA was modelled in CSP

[92]. It was found that CSP was particularly powerful in the specification of communication

protocols as well as the analysis of race conditions, a phenomenon which is very common in

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

30

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

swarm systems.

A new notation was developed by [93], called Active Sensor Processes (ASP). This is based

on Timed-CSP [94], Timed Communicating Object Z (TCOZ) [95] and specific hybrid-

broadcasting extensions. It is argued that pure CSP, CCS and π-calculus are not suited

for WSN modelling because they rely on on a single communication mechanism, not suitable

for inter-sensor communication. Credit is given to CSP and CCS by stating that the process

algebras are well suited for parallel composition within sensor nodes. On the other hand, it

is stated in [96] that CSP is naturally suitable to describe distributed measurement systems,

using independent communicating sensors. The π-calculus gets its credit from the ability to

define dynamic reconfigurable networks by allowing channel names or the residing location

of a process to be changed. It was also shown that previously unknown design flaws can be

detected with existing system analysis methodologies. It is, however, argued that systematic

sensor network verification in general may need verification techniques beyond the capabil-

ities of existing methodologies. ASP was used as the specification language, together with

UPPAAL [97], a verification tool for real-time systems. The limitations of UPPAAL were

quickly reached, where it took a lot of time to analyse a mere 6 sensor nodes. As like [12],

[93] are also developing a tool for automatic code generation from ASP to a native language.

This is, however not yet mature enough to be used. Other work closely related to ASP is

SensorML [98].

Another sensor network was formally defined using funclets [96]. These are small sensors

constructed from small functional elements. A funclet is described as a special CSP process

which is started by an external triggering event and with internal events which are not

allowed to handle these events. The funclet notation, which is based on CSP syntax with

simplifications for practical purposes, was used. The funclet notation was specified by an

earlier paper, [99], which contained the syntax definition and semantics. Deadlock freedom

could be proved, but it could not be determined if it was livelock free.

A deadlock prevention approach was taken by [96] for their sensor network network design. A

Virtual Machine (VM) based WSN was designed to structurally guarantee deadlock freedom.

This was done by defining the system as a basic client-server system with a circuit-free client-

server digraph to ensure deadlock freedom [100]. CSP was used as a specification language for

the sensor networking applications together with the CSP digraph definition of [100].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

31

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

2.3.2 Other WSN modelling approaches

Various other approaches to WSN modelling have been investigated. The work of [101] uses

Behaviour-Interaction-Priority (BIP) [102] to model and verify WSNs. Their work focussed

on a methodology to build the model of a node from its nesC [103] application software

together with its TinyOS5 operating system component models into BIP component models.

A network model is formed with the composition of the BIP component models using BIP

connectors [104] implementing different types of radio channels. Their approach is unique

because they model real world sensor node application software together with its underlying

operating system which results in non-deterministic and fully characterised WSN models.

This enables the systems to be model-checked as they have a well-defined notion of state

[101]. They had positive experimental results in different systems tested due to the exhausted

state space exploration functionality of the Observer component of BIP. Various traces and

error states could be detected, based on different system input parameters.

Event Calculus [105], an event-based formal language, was used by [4] and [106] to also

perform static analysis of WSNs. The work of [4] focussed on correctness and structural spe-

cifications of WSNs and to form dependability metrics such as lifetime, connection resiliency

and coverage. In [106], the authors applies Event Calculus to analyse the performance of

WSNs in term of the power consumption and lifetime of the individual nodes. The approach

of [4] used an Event Calculus reasoner, called the Discrete Event Calculus (DEC) Reasoner,

as the mathematical engine of their custom Java-based software to analyse WSN systems.

This approach is similar to the work of this dissertation where the process of checking WSN

designs are automated as far as possible with the development of a front-end tool which has a

mathematical back-end to perform the systems analysis based on the chosen formal language.

The Event Calculus used by [4] allows the open issue of formal specifications where the spe-

cification changes if the WSN changes to be addressed. They devised a general specification

for the correctness of WSN properties which is valid for any WSN together with a structural

specification which is unique for every WSN. Their Java-based software tool automates the

structural specification of the WSN. Positive results were obtained from their case studies

and they could show the correctness properties of the WSNs analysed. The main difference

between the work of [4] and this dissertation is that model checking is possible with the use of
5www.tinyos.net

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

32

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Related work

CSP, something still a topic of future work for [4]. Whereas the optional parallelism approach

of this dissertation is designed for static networks, which cannot change their graph structure

during their lifetime, dynamic networks, which can change their graph structure, are not

in the scope of this dissertation. Latest work about the process-algebraic formalisation of

dynamic networks can be found, for example, in [107].

2.4 CHAPTER SUMMARY

This chapter discussed many concepts and a plethora of research topics exist within these

fields of study. This can be narrowed down to the formulation of an applicable concept in

the field of formal methods, especially CSP, a well established and extensively researched

process algebra. To argue the applicability of the new concept of optional parallelism in CSP,

an overview of WSNs was given to sketch an application area in which CSP could be used

to create mathematical models of real-world WSNs. This creates a foundation to test and

develop the operational semantics of optional parallelism. The challenges presented by WSNs

indicate a need for formal verification via model-checking techniques and WSNs seem to be

an ideal application to test and apply optional parallelism in CSP models. There are many

simulation tools and formal verification methods used currently, and with great success. It

is argued that these formal models could be simplified with the use of optional parallelism,

where faulty communication channels and WSN nodes as well as broadcasting are generically

incorporated in the operational semantics of optional parallelism.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

33

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3

CSP THEORY

CSP has a set of operators and laws to define and model communicating processes. Set

theory and general algebra are also used for system definition, system analysis and theorem

proving. This chapter only gives an overview of the CSP operators used in this dissertation.

The information given in this chapter is put here as a reference to the reader which is not so

familiar with the operational workings of CSP. The details are extracted from Roscoe’s book

The Theory and Practice of Concurrency [2]. The full set of classical CSP operators and

their semantics in the different domains of CSP can be found in [11] and [2]. Focus will be

given to the concurrency operators of CSP where independent processes interact with each

other when necessary. Table 3.1 gives the CSP notation used in this dissertation.

Notation Description

a→ P Event a and then behave as process P

x?A→ P (x) Choice of x from set A then P (x)

P \ X Events in X hidden by P

P <I b>I Q If b is true then P , else Q

P ‖ Q P in synchronously parallel with Q

P ‖
X
Q P in parallel with Q

with synchronisation set X

P X‖Y Q P in alphabetised parallel with Q

with synchronisation set X ∩ Y

P ||| Q Process P interleaves process Q

P ⇑
X
Q Process P in optional parallel with process Q

with synchronisation set X. OptPar [17]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

Notation Description

P ‖̃
X
Q Process P in translated optional parallel with process Q

with synchronisation set X. OptParT

P 2 Q External choice between processes P and Q

P u Q Internal choice between processes P and Q

Table 3.1: Subset of the CSP notation, taken from [2].

3.1 TRACES IN CSP

The trace of a process is a recording of the events which the process communicates. These

events are the observable sequences of communication from the perspective of the environ-

ment, and any internal events of a process will be hidden from such observation. Traces may

be finite or infinite. Finite traces are found either when the observation was terminated, or

because the process and the environment have reached a point where they do not agree on

any event. Finite traces provide a means of what can effectively be observed. Infinite traces

are observed when the system is observed forever and infinitely many events are recorded,

which is needed to capture fairness. The recording of the observed traces emphasises on the

sequence of events and not the time at which an event has occurred.

An untimed CSP process or system can be characterised by the set of all possible traces that

can be emitted. Recording only the finite traces is sufficient in the majority of cases because

in an infinite trace, all its finite prefixes are finite traces.

3.1.1 Calculating the traces of a process

For any process P , traces(P) will always have the following properties:

• traces(P) is non-empty and will always contain the empty trace 〈〉;

• traces(P) is prefix-closed, if s ^ t is a trace then at some earlier stage during the

recording of the traces, the trace was s.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

For any process P , traces(P) is defined to be the set of all its finite traces. These traces are

members of Σ∗, the set of finite sequences of events 1. The following examples from [2](p.

36) illustrate this:

• traces(STOP) = {〈〉} - The empty trace is observed if no event can be performed;

• traces(a → b → STOP) = {〈〉, 〈a〉, 〈a, b〉} - this process may have communicated

nothing yet, performed an a only, or an a and ab. Note that b cannot be observed

before a is observed;

• traces((a → STOP) 2 (b → STOP)) = {〈〉, 〈a〉, 〈b〉} - here there is a choice of first

event, so there is more than one trace. Note that ab can not be observed as in the

previous example as each side stops execution after its event was observed;

The traces of a process enable its CSP notation to be given meaning or semantics as well as to

describe the behaviour thereof. The set of all non-empty, prefix closed subsets of Σ∗ is called

the traces model, written as T , which is the set of all possible traces of a process. The traces

model is the simplest of CSP models and will be the model used in this dissertation.

The following simple trace rules for CSP’s basic operators exist [2](p. 37). The ^ operator

denotes the concatenation of traces. More advanced operator’s trace rules are covered in the

next subsection.

• traces(STOP) = {〈〉};

• traces(a→ P) = {〈〉} ∪ {〈a〉 ^ s | s ∈ traces(P)} - this process has either done nothing,

or its first event was a followed by a trace of P ;

• traces(?x : A → P) = {〈〉} ∪ {〈a〉 ^ s | a ∈ A ∧ s ∈ traces(P [a/x])} - this is similar

except that the initial event is now chosen from the set A and the subsequent behaviour

depends on which is picked: P [a/x] means the substitution of the value a for all free

occurrences of the identifier x;

• traces(c?x : A → P) = {〈〉} ∪ {〈c.a〉 ^ s | a ∈ A ∧ s ∈ traces(P [a/x])} - the same

except for the use of the channel name, c;
1Termination X is not mentioned here as the scenarios of this dissertation do not deal with termination.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

• traces(P 2 Q) = traces(P) ∪ traces(Q) - this process offers the traces of P and then

those of Q or vice versa;

• traces(P u Q) = traces(P) ∪ traces(Q) - since this process can behave like either P or

Q, its traces are those of P and those of Q; 2

• traces(uS) = ⋃
{traces(P) | P ∈ S} - for any non-empty set S of processes;

• traces(P <I b>I Q) = traces(P) if b evaluates to true; and traces(Q) if b evaluates to

false.

3.2 OPERATORS

This section gives more details of the CSP concurrency operators used in this dissertation

from Roscoe’s book The Theory and Practice of Concurrency [2]. The step laws, general

algebraic laws of associativity, symmetry and distributivity along with the trace laws are

given.

3.2.1 Synchronous parallel

Synchronous parallelism is the simplest form of parallelism in CSP, but also the most re-

strictive form of parallelism. The synchronous parallel operator requires that processes agree

on all possible events that can occur. It is written as P ‖ Q. More information on the

synchronous parallel operator can be found in §2.1 of [2].

3.2.1.1 Laws

Step law

?x : A→ P ‖ ?x : B → Q = ?x : A ∩B → (P ‖ Q) (3.1)

Symmetry

P ‖ Q = Q ‖ P (3.2)

2Thus, the traces cannot show whether a choice was made internally (u) or externally (2).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

Associativity

(P ‖ Q) ‖ R = P ‖ (Q ‖ R) (3.3)

Distributivity

P ‖ (Q u R) = (P ‖ Q) u (P ‖ R) (3.4)

3.2.1.2 Trace semantics

The traces are simple to compute. It is the intersection of the individual traces of P and the

traces of Q.

traces(P ‖ Q) = (traces(P)) ∩ (traces(Q)) (3.5)

3.2.2 Alphabetised parallel

When using the synchronised parallel operator, the more processes added, the more processes

need to agree on every event. This behaviour is not always wanted and a more general version

of parallelism exists, called alphabetised parallelism. This allows events which are in P and

not in Q to be executed without synchronisation and only events which P and Q share to be

synchronised. The same condition holds for events in Q which are not in P . This is stated

more formally from §2.2 of [2] below.

If X and Y are subsets of Σ, P X‖Y Q is the combination where P is allowed to communicate

in the set X, called its alphabet, Q is allowed to communicate in its alphabet Y , and they

must agree on events in the intersection X ∩ Y . Thus P Σ‖Σ Q = P ‖ Q.

The processes P ′ and Q′ denote a transition to a next state of their respective process

definitions P and Q. This notation will be used throughout this chapter.

3.2.2.1 Laws

Step law

P X‖Y Q = ?x : C → (P ′ <I x ∈ X>I P X‖Y Q′ <I x ∈ Y>I Q) (3.6)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

38

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

Symmetry

P X‖Y Q = Q Y ‖X P (3.7)

Associativity

(P X‖Y Q) X∪Y ‖Z R = P X‖Y ∪Z (Q Y ‖Z R) (3.8)

Distributivity

P X‖Y (Q u R) = (P X‖Y Q) u (P X‖Y R) (3.9)

Indexed notation

‖n
i=1 (Pi, Xi) = P1 X1‖X2∪...∪Xn (...(Pn−1 Xn−1‖Xn Pn)...) (3.10)

3.2.2.2 Trace semantics

The traces of P X‖Y Q are just those which combine a trace of P and a trace of Q so that

all communications in X ∩ Y are shared.

traces(P X‖Y Q) = {s ∈ (X ∪ Y)∗ | s |̀ X ∈ traces(P) ∧ s |̀ Y ∈ traces(Q)} (3.11)

Where s |̀ X ∈ traces(P) means that the traces in s are restricted to the set X which are

elements of the traces of P .

3.2.3 Interleaving

Interleaving allows its processes to run completely independent from each other. Any com-

municated event was either by process P or Q and no joined events are allowed. If both

processes could communicate the same event, the choice of which one did so is nondetermin-

istic and only one process could have done so at the given instance. More details regarding

interleaving can be found in §2.3 of [2].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

3.2.3.1 Laws

Step law

P ||| Q = ?x : (A ∪B)→(P ′ ||| Q) u (P ||| Q′)

<I x ∈ A ∩B>I

(P ′ ||| Q) <I x ∈ A>I (P ||| Q′) (3.12)

Symmetry

P ||| Q = Q ||| P (3.13)

Associativity

(P ||| Q) ||| R = P ||| (Q ||| R) (3.14)

Distributivity

P ||| (Q u R) = (P ||| Q) u (P ||| R) (3.15)

Indexed notation

|||n
i=1 Pi = P1 ||| P2 ||| ... ||| Pn−1 ||| Pn (3.16)

3.2.3.2 Trace semantics

The traces of P ||| Q are just the interleaved traces of P and Q. To calculate the interleaving

traces, the following clauses are used.

〈〉 ||| s = {s}

s ||| 〈〉 = {s}

〈a〉 ^ s ||| 〈b〉 ^ t = {〈a〉 ^ u | u ∈ s ||| 〈b〉 ^ t}

∪{〈b〉 ^ u | u ∈ 〈a〉 ^ s ||| t} (3.17)

Given the recursive trace clauses of the interleaving operator in Equation 3.17, the traces of

P ||| Q are given as:

traces(P ||| Q) =
⋃
{s ||| t | s ∈ traces(P) ∧ t ∈ traces(Q)} (3.18)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

40

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

3.2.4 Generalised parallel

The generalised parallel operator has become a commonly used parallel operator in model-

checking tools although it has not been detailed in Hoare’s initial CSP definition [11]. Roscoe

[2] (§2.4) defined the generalised parallel operator as a short-hand notation for the alphabet-

ised parallel operator. With alphabetised parallelism, P X‖Y Q, it is decided which events

are synchronised and which are not by looking at each processes’ alphabet, denoted by X and

Y . The generalised parallel operator is given as P ‖
X
Q, where all events in X are synchronised

and all events outside X can proceed independently. From this, the following hold:

P ||| Q = P ‖
{}
Q (3.19)

and, provided P and Q never communicate outside X and Y :

P X‖Y Q = P ‖
X∩Y

Q (3.20)

3.2.4.1 Laws

Step law

If P = ?x : A→ P ′ and Q = ?x : B → Q then:

P ‖
X
Q = ?x : C → (P ′ ‖

X
Q′) <I x ∈ X>I

(((P ′ ‖
X
Q) u (P ‖

X
Q′)) <I x ∈ A ∩B>I

((P ′ ‖
X
Q) <I x ∈ A>I (P ‖

X
Q′)) (3.21)

This can also be expressed as the external choice of four different processes. This is given in

[17].

P ‖
X
Q = (?x : X ∩A ∩B → (P ′ ‖

X
Q′))

2 (?x : (A ∩B) \ X → (P ′ ‖
X
Q) u (P ‖

X
Q′))

2 (?x : A \ (X ∪B)→ (P ′ ‖
X
Q))

2 (?x : B \ (X ∪A)→ (P ‖
X
Q′)) (3.22)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

A Venn diagram can be constructed to indicate under which set conditions communication

is allowed with generalised parallelism. Figure 3.1 shows the Venn diagram for generalised

parallelism in CSP, where two processes P and Q communicate with each other over a

non-empty synchronisation set X. In Figure 3.1, the excluded areas are indicated with a

A \ (X B)

A B

X

B \ (X A)

(A B) \ X

A B X

X \ (A B)

(A X) / B

(B X) / A

Figure 3.1: Venn diagram for sets of first actions in generalised parallelism according to [1].

greyed pattern. These are the areas where the step law of general parallelism is undefined,

i.e. transitions are not allowed.

Symmetry

P ‖
X
Q = Q ‖

X
P (3.23)

Associativity

(P ‖
X
Q) ‖

X
R = P ‖

X
(Q ‖

X
R) (3.24)

Distributivity

P ‖
X

(Q u R) = (P ‖
X
Q) u (P ‖

X
R) (3.25)

Indexed notation

‖
X

n

i=1
Pi = P1 ‖

X
P2 ‖

X
... ‖

X
Pn−1 ‖

X
Pn (3.26)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

42

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

3.2.4.2 Trace semantics

The traces of P ‖
X
Q are the combinations traces of P and Q where actions in X are shared

and all other occur independently. To calculate the traces of s ‖
X
t for all s, t ∈ Σ∗, where x

denotes a member of X and y a member of Σ \ X, the following clauses from [2] (p. 69) are

used:

s ‖
X
t = t ‖

X
s

〈〉 ‖
X
〈〉 = {〈〉}

〈〉 ‖
X
{x} = 〈〉

〈〉 ‖
X
{y} = {〈y〉}

〈x〉 ^ s ‖
X
〈y〉 ^ t = {〈y〉 ^ u | u ∈ 〈x〉 ^ s ‖

X
t}

〈x〉 ^ s ‖
X
〈x〉 ^ t = {〈x〉 ^ u | u ∈ s ‖

X
t}

〈x〉 ^ s ‖
X
〈x′〉 ^ t = {} if x 6= x′

〈y〉 ^ s ‖
X
〈y′〉 ^ t = {〈y〉 ^ u | u ∈ s ‖

X
〈y′〉 ^ t}

∪ {〈y′〉 ^ u | u ∈ 〈y〉 ^ s ‖
X
t} (3.27)

Given the recursive trace clauses of the generalised parallel operator in Equation 3.27, the

traces of P ‖
X
Q are given as:

traces(P ‖
X
Q) =

⋃
{s ‖

X
t | s ∈ traces(P) ∧ t ∈ traces(Q)} (3.28)

3.2.5 Optional parallel

Optional parallelism [17] allows processes to synchronise on shared events just as generalised

parallelism, but also to proceed independently when an event in the synchronisation set is

to be communicated and not available in one of the processes communicating under optional

parallelism. The behaviour of optional parallelism is obtained by lifting the restriction in the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

step laws of generalised parallelism where all processes need to jointly synchronise in common

communication events. These are the shaded areas of the Venn diagram of Figure 3.1.

The operational semantics of OptPar has been given in [17] in the style of the step laws of

Roscoe [2]. The approach followed in this dissertation is to model the behaviour of optional

parallelism given in [17] using existing CSP operators, providing a translational semantics.

The ‖̃
X

operator will be used for this translation, referred to as OptParT , which is detailed in

Chapter 4. This allows the semantics of the existing operators to be inherited which enables

the new operator to be used as syntactic sugar in models where concurrent processes cannot

always jointly engage in synchronisation. This approach allows optional parallelism to be

used in CSP models without defining it from first principles.

The following relation exists between optional parallelism and interleaving [17]:

P ⇑
{}

Q = P ||| Q (3.29)

3.2.5.1 Laws

Step law

If P = ?x : A→ P ′ and Q = ?x : B → Q then:

P ⇑
X

Q = ?x : C → (P ′ ⇑
X

Q′) <I x ∈ X>I

(((P ′ ⇑
X

Q) u (P ⇑
X

Q′)) <I x ∈ A ∩B>I

((P ′ ⇑
X

Q) <I x ∈ A>I

((P ⇑
X

Q′) <I x ∈ B>I

((P ′ ⇑
X

Q) <IX ∩A>I (P ⇑
X

Q′))))) (3.30)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

This can also be expressed as the external choice of six different processes. This is given in

[17].

P ⇑
X
Q = (?x : X ∩A ∩B → (P ′ ⇑

X
Q′))

2 (?x : (A ∩B) \ X → (P ′ ⇑
X
Q) u (P ⇑

X
Q′))

2 (?x : A \ (X ∪B)→ (P ′ ⇑
X
Q))

2 (?x : B \ (X ∪A)→ (P ⇑
X
Q′))

2 (?x : (X ∩A) \ B → (P ′ ⇑
X
Q))

2 (?x : (X ∩B) \ A→ (P ⇑
X
Q′)) (3.31)

This can be simplified to:

P ⇑
X
Q = (?x : X ∩A ∩B → (P ′ ⇑

X
Q′))

2 (?x : (A ∩B) \ X → (P ′ ⇑
X
Q) u (P ⇑

X
Q′))

2 (?x : A \ B → (P ′ ⇑
X
Q))

2 (?x : B \ A→ (P ⇑
X
Q′)) (3.32)

From [17], OptPar is defined to behave the same as generalised parallelism of CSP, with

the addition of step law choices where generalised parallelism deadlocks. The generalised

parallel operator’s step law is defined in Equation 3.22 and it follows that steps where

x ∈ ((X ∩ A) \ B) ∪ ((X ∩ B) \ A) does not allow any progress of the two processes in

parallel. Optional parallelism allows progress when the environment presents these events.

This allows processes under optional parallelism to always engage in events presented by the

environments, essentially eliminating deadlock from the system.

Symmetry

P ⇑
X
Q = Q ⇑

X
P (3.33)

Associativity

(P ⇑
X

Q) ⇑
X

R = P ⇑
X

(Q ⇑
X

R) (3.34)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 CSP theory

Distributivity

P ⇑
X

(Q u R) = (P ⇑
X

Q) u (P ⇑
X

R) (3.35)

Indexed notation

‖̂
X

n

i=1
Pi = P1 ⇑

X
P2 ⇑

X
... ⇑

X
Pn−1 ⇑

X
Pn (3.36)

3.2.5.2 Trace semantics

The traces of P ⇑
X
Q are the combinations traces of P and Q where actions in X are shared or

occur independently. To calculate the traces of s ⇑
X
t for all s, t ∈ Σ∗, where 〈〉 denotes the

empty trace and X the successful termination event that is per definition not in the alphabet

Σ, the following clauses from [17] are used:

s ⇑
X

t = t ⇑
X

s

〈〉 ⇑
X

t = {t}

〈a〉 ^ s ‖
X
〈b〉 ^ t =



{〈a〉 ^ u | u ∈ s ⇑
X

t} if a = b ∧ a ∈ X

{〈a〉 ^ u | u ∈ s ⇑
X
〈b〉 ^ t} if a 6= b ∨ a /∈ X

∪{〈b〉 ^ u | u ∈ 〈a〉 ^ s ⇑
X

t}

s ^ 〈X〉 ⇑
X

t = ∅

s ⇑
X

t ^ 〈X〉 = ∅

s ^ 〈X〉 ⇑
X

t ^ 〈X〉 = {u ^ 〈X〉 | u ∈ s ⇑
X

t} (3.37)

Given the trace clauses of OptPar in Equation 3.37, the traces of P ⇑
X
Q are given as:

traces(P ⇑
X
Q) =

⋃
{s ⇑

X
t | s ∈ traces(P) ∧ t ∈ traces(Q)} (3.38)

3.3 CHAPTER SUMMARY

This chapter serves the purpose to give the reader a reference of the CSP syntax and the

operators used in this dissertation. The details are mainly extracted from [2] and [17]. Many

of the chapters that follow will reference the laws and equations given in this chapter.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

46

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4

DEFINITION OF A NEW OPTIONAL

PARALLEL OPERATOR

4.1 PROBLEM IDENTIFICATION

Two common problems found in concurrent systems are deadlock and livelock. Deadlock

occurs when none of the processes of a concurrent system can make any progress, which

typically happens when there is a cycle of events waiting for each other to complete before

making progress. This is common in a shared resource environment. An example of such

an occurrence in the real world is where 4 cars with polite motorists simultaneously arrive

at a 4-way stop and each of the motorists are waiting for the other motorists to cross the

intersection first. The cars are deadlocked because no motorist will cross the intersection

before the other. The competition for resources, in this case the intersection, is one of the

main causes of deadlock [2]. Deadlock occurs when all of the following conditions, called the

Coffman conditions [108], arise in a system.

• Mutual exclusion - A resource may be used by only one process at a time.

• Hold and Wait - Some of the required resources of a process may be allocated, while

the process waits for the other resources to become available.

• No pre-emption - A resource cannot be removed from a process holding it, the process

must voluntarily release it.

• Circular wait - Processes wait on each other in such a way that a cycle of wait conditions

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

exists. Process P waits for Q, Q waits for R and R waits for P.

Livelock occurs when a process performs infinite internal actions without communicating

with its environment, which is also referred to as divergence. From a software programming

perspective, this is referred to as infinite loops. A concurrent system of processes has a

livelock condition when the processes infinitely perform internal actions without any external

interaction. From an observer’s perspective, the system seems deadlocked, which is clearly

not the case. The most common real world example is where two persons approach each other

on a walkway. When they want to pass each other, they both sway to the same side together

and then to the other side together. The two persons are in a livelock condition, they both

perform actions (swaying left and right), but none of them progress past each other.

Livelock properties cannot be checked with the traces model T of CSP and more complex

models like the stable failures model F or the failures/divergences model N are needed.

Instead, safety properties should be checked using the traces model. Safety can be described

as "nothing bad will ever happen", in contrast to liveness properties which indicate that

"eventually, something good will happen". Safety properties are defined as a sequence of

traces and this sequence can then be used in trace refinement checks to see of the property

can occur if not. This is confirmed by Roscoe [2] where it is stated that trace specifications

cannot force a system to do anything and are referred to as safety or partial correctness

conditions while liveness or total correctness conditions are capable of forcing a process to

do something. With this in mind, livelock will not be addressed by this dissertation because

of the use of the traces model. Safety properties are checked with the trace refinement tests

used later in this dissertation. It is still useful to do deadlock analysis because it can certainly

occur even if only the traces model is used for system definitions.

The following examples used to identify the problem are based on the high level observations

mentioned in [17], where optional parallelism was first introduced.

Consider a small WSN with nodes P , Q and R. This can be modelled in CSP by placing the

nodes in parallel as in Equation 4.1.

WSNPQR := P ‖
X
Q ‖
X
R

X := αP ∩ αQ ∩ αR (4.1)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

Say a WSN node measures humidity and temperature, represented by senseH and senseT .

A node sends its particular measured parameter after each measurement, represented by

sendH and sendT 1. The definitions of the nodes can be seen in Equation 4.2.

P := senseHp → sendH → senseTp → sendT → P

Q := senseHq → sendH → senseTq → sendT → Q

R := senseHr → sendH → senseTr → sendT → R

X := αP ∩ αQ ∩ αR = {sendH, sendT} (4.2)

TheWSNPQR system is deadlock free, with each process jointly synchronising on the sendH

and sendT events. If node P ′ represents a WSN node where its humidity sensor can fail, the

behaviour can be modelled as given in Equation 4.3. The WSN system with this definition

of process P ′ becomes WSNP ′QR.

P ′ := (senseHp → sendH → senseTp → sendT → P ′) u (senseTp → sendT → P ′) (4.3)

WSNP ′QR then has a deadlock condition if node P ′ has a humidity sensor failure and performs

senseTp first. Processes Q and R will block to synchronise on sendH, while node P ′ blocks

to perform sendT . The blocking is due tot he requirement of joint synchronisation on the

same event under parallelism in CSP.

Another scenario that could occur is that node P has the ability to sleep and wake at a

specific time to perform measurements and transmit its parameters. The definition for node

P ′′ is shown in Equation 4.4.

P ′′ := (senseHp → sendH → senseTp → sendT → P ′′) u (sleepp → P ′′) (4.4)

This introduces non-determinism as it cannot be guaranteed that node P ′′ ever wakes up to

synchronise with nodes Q and R. In this case, nodes Q and R will block indefinitely.

Expanding the example of WSNP ′QR where the nodes need to send their measurements to

a sink node S, the WSN is modelled as shown in Equation 4.5.

WSNP ′QRS := S ‖
X

(P ′ ‖
X
Q ‖
X
R)

X := αP ′ ∩ αQ ∩ αR ∩ αS (4.5)
1Note that this example, as like the rest of this dissertation, abstracts from transmitting data, i.e. sensed

values. The examples are trivial and at a systems-level of WSN nodes to simplify the concepts of the optional

parallel operator and its translation to classical CSP operators.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

The sink node process definition is given in Equation 4.6.

S := (sendH → S) 2 (sendT → S) (4.6)

Then, in the case where node P ′ has a humidity sensor failure, the system will deadlock, even

if P ′ is ready to send its measured temperature to the sink node S and both Q and R are

ready to send their humidity measurements to the sink S. The same happens when node P ′

is replaced by the definition of P ′′ to form WSNP ′′QRS . This occurs because the nodes are

required to jointly synchronise on the same events in X.

A possible solution to the problem is to make nodes P , Q and R independent by modelling

the WSN with the interleaving operator. The system definition of Equation 4.5 is modified by

exchanging the general parallel operator with an interleaving operator as shown in Equation

4.7

WSN Inter
P ′QRS := S ‖

X
(P ′ ||| Q ||| R)

X := αS ∩ (αP ′ ∪ αQ ∪ αR) (4.7)

In the WSN system of Equation 4.7, there will always be a node available to synchronise

with the sink S. This has the problem that at most one node is able to synchronise with the

sink S at any time, which is not the desired result. There is a need to model systems where

a subset of processes are able to jointly engage on a synchronisation event.

4.2 OPTIONAL PARALLELISM

The restriction of the parallel operator, which states that all processes under parallelism

should jointly engage on the same synchronisation event to proceed, limits the expressiveness

of WSN system definitions like Equation 4.5. There is currently no simple way of modelling

a system where only a subset of the node processes can synchronise with the sink. The

requirement is a single CSP operator which allows its processes to communicate events from

its synchronisation set even if there are no other processes to synchronise with.

Consider the WSN system example of Equation 4.5. If the node processes could be modelled

in such a way that the sink S can synchronise with any subset of the nodes which are ready,

the problem is solved. This allows the behaviour where a broadcast communication event

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

50

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

can originate from the sink to all of its connected nodes and only the nodes which are ready,

will receive the message.

With the synchronisation restriction lifted, all or any subset of processes under optional

parallelism are allowed to jointly synchronise on a common synchronisation event. Initial

work on optional parallelism (OptPar) has been presented in [17], and the solution in this

dissertation defines optional parallelism by making use of classical CSP operators (OptParT).

This approach is followed because a model-checker with an optional parallel implementation

does not exist. The new definition of optional parallelism, OptParT , will be given the symbol

‖̃ .

4.2.1 Defining optional parallelism using classical CSP operators

When using classical CSP operators to model the behaviour of optional parallelism in the

traces domain, the existing laws of the operators are inherited and should be adhered to. A

combination of the parallel and interleaving operators will be used, as optional parallelism

describes a hybrid functionality of both these operators. To allow a subset of processes to

synchronise with the sink has two effects:

1. The processes should be independent from each other, hence the use of the interleaving

operator.

2. The processes should be allowed to synchronise jointly, even if they are not ready. As

mentioned earlier, the joint synchronisation is a restriction of the CSP parallel operator.

By using the example of a broadcasting process and only a subset of processes receiving the

broadcast, a channel modelling artefact is introduced, which always receives the broadcast,

but decides to pass the message to the receiving process only if the process is ready to receive.

This will have the effect that the broadcaster can perform a synchronisation event, and all

channels jointly engage in the synchronisation, but the receiving processes are not required

to, as they are disconnected from each other. There will always be a joint synchronisation

and the processes are independent of each other. This covers the two effects of modelling

optional parallelism with classical CSP operators.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

51

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

4.2.1.1 Channel artefact

The approach of OptParT is based on lossy channels and the Alternating Bit Protocol (ABP)

[2, 42]. The ABP is used to overcome the difficulties of lossy channels where messages are re-

transmitted until they are acknowledged. The process structure definition of the ABP given

in [2] is similar to the structure of the channel artefact. OptParT involves the addition of an

artificial channel modelling artefact, prone to errors, to each common synchronisation event

between connected processes. The channel is modelled to guarantee synchronisation under

general parallelism with its attached processes, and is further able to allow or drop inbound

or outbound communication events. The approach followed here differs from the ABP in the

sense that duplication of messages are not defined. Time-outs and acknowledge messages are

also not considered in the channel definitions as this is a time independent solution, as are

most CSP definitions.

When the channel artefact is modelled with the WSN node process as a unit, the node process

will have no knowledge if a connected receiver process has received the communication event

or not. It is disconnected from its neighbouring node processes through the channels between

them and is therefore not dependent on the other node processes’ joint synchronisation. The

synchronisation is orchestrated only by the channel artefacts. The CSP representation is

given in Equation 4.8.

C := (internal → ((external→ C) 2 (drop→ C)))

2 (external → ((internal→ C) 2 (drop→ C))) \ {drop} (4.8)

The channel artefact definition of Equation 4.8 represents forward and backward communic-

ation. One for when its parent process communicates with the environment, and one where

the environment communicates with the parent process. It is defined to always be available

to perform an internal or an external event. The internal event represents the exclusive

event between a process and its channel. The common synchronisation events in process

definitions will be renamed to this internal event name. The external event represents the

common synchronisation event between the channel processes of the network. The drop event

is used to indicate that a synchronisation has been dropped by the channel due to either the

process or the environment not being ready to synchronise. The drop event is hidden from

external observation by hiding it. The choice to drop communication or forwarding it is non-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

52

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

deterministic from the view of the sending node process. The external choice operator 2 is

chosen because the channel is obliged to offer events external or drop after the internal event,

depending on the state of the receiving node process. The use of the internal choice operator

u requires that both external and drop need to be offered and a choice is made internally by

the channel artefact on which event will be next. In this approach, a communication event

should not happen if the receiving process cannot receive it, which is the main argument

behind the use of external choice to model the channel artefact. The channel artefact has

a simple definition, unlike in [2] where divergence is introduced with infinite duplication. C

is not considered to be a buffer because it does not satisfy all the requirements of a buffer,

i.e. it will not always output what has been input. It is also structurally simpler than a

buffer. Note that the drop event will be explicitly omitted in future channel definitions of

this dissertation.

4.2.1.2 Inserting channel artefacts into system definitions

The channel artefacts need to be added to the system definition to allow optional parallel

behaviour between the processes. Each process gets a channel, attached in parallel, for every

event in its synchronisation set. Consider the WSN network graph in Figure 4.1. Processes

P , Q and R are all connected with a hyper-edge, which represents a common synchronisation

event comm, between them. When one of the processes wants to synchronise on comm, all

of the other processes have to join on comm. For this example, the internal structure of the

processes are arbitrary, and it is only known that each process performs a comm event when

it is ready to do so.

When a channel artefact is added to each process, the graph transforms into the one shown in

Figure 4.2. The channels CHP , CHQ and CHR are inserted to disconnect the processes from

each other. The comm events of the processes P , Q and R are renamed to commp, commq

and commr respectively and the original synchronisation event comm is still observable from

the environment through the added channels. The internal events of CHP , CHQ and CHR

are renamed to commp, commq and commr respectively and their external events renamed

to comm. This is shown by renaming the events of Equation 4.8 for each channel to its

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

comm

comm

comm

P

Q R

Figure 4.1: Basic WSN network graph with hyper-edge.

corresponding synchronisation events as shown for CHP below in Equation 4.9

CHP := (commp → ((comm→ CHP) 2 CHP))

2 (comm → ((commp → CHP) 2 CHP)) (4.9)

commq

comm

commr

Q R

CHP

CHQ CHR

commcomm

commp

P

P’

Q’ R’

Figure 4.2: Basic network graph with hyper-edge and added channel artefacts.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

54

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

CHP is defined to always be available for internal commp events as well as external comm

events. If P wants to perform its synchronisation event, now renamed to commp, it synchron-

ises with its channel CHP , which translates the commp event to the global synchronisation

comm event. The channel will not allow the comm event if all the other channels are not

ready, effectively eliminating possible collisions. If another process wants to synchronise with

P on the global comm event, CHP does the initial synchronisation on comm to ensure joint

synchronisation, and then, depending on the internal state of P , tries to synchronise with P

on commp, or drops the communication. The channel will drop the communication if commp

is not offered by P , which emphasises the argument for using external choice of the channel

artefact definition of Equation 4.8. This has the effect that P ′ opts out of communication,

while still obeying the laws of parallelism in CSP, i.e. joint synchronisation. Channels CHQ

and CHR have the same behaviour as CHP .

The processes are modelled with their channels as in Equation 4.10.

P ′ := P ‖
{commp}

CHP

Q′ := Q ‖
{commq}

CHQ

R′ := R ‖
{commr}

CHR (4.10)

The WSN of P , Q and R of Figure 4.2 is modelled with the primes of each process as shown

in Equation 4.11.

WSNoptional
PQR := P ′ ‖

{comm}
Q′ ‖
{comm}

R′ (4.11)

In the case of the addition of a sink node S to the WSN definition, the desired behaviour of

optional parallelism is achieved because S will be able to synchronise with all other processes

or a subset thereof. The CSP definition, which resolves the problems identified in Equations

4.5 and 4.7, is shown in Equation 4.12

WSNoptional
P ′Q′R′S := S ‖

{comm}
(P ′ ‖

{comm}
Q′ ‖
{comm}

R′) (4.12)

The addition of channel artefacts to each process enables the initial system of Equation 4.1

to be modelled with optional parallelism for the cases where WSN nodes can have failures

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

as in Equation 4.3 and where the nodes are modelled in such a way where divergence is

present as in Equation 4.4. The WSN example definitions of Equations 4.11 and 4.12 can be

modelled by using the new optional parallel operator, which encapsulates the addition of a

channel artefact for each element in the synchronisation set between processes. This allows

an easy transition from system definitions using the general parallel operator of CSP where

the parallel operators are replaced with optional parallel operators where optional parallelism

is required. This is shown in Equation 4.13 for Equation 4.12

S ‖
X

(P ′ ‖
X

Q′ ‖
X

R′) = S ‖
X

(P ‖̃
X

Q ‖̃
X

R)

X := αP ∩ αQ ∩ αR ∩ αS (4.13)

Note that the alphabet X stays the same for both ends of the equation and the external

events observed will stay the same between the two definitions.

4.2.2 Preparing system definitions for optional parallelism analysis

OptPar is not currently defined in any model-checking tool. Systems with OptPar require-

ments can be converted to systems using classical CSP operators with OptParT , which can

be model-checked with existing model-checkers. One of the main design requirements is dead-

lock freeness, which is one of the core problems which optional parallelism attempts to solve,

hence the testing thereof later in the evaluation of OptParT .

In order to build the foundation for CSP deadlock analysis and to build on existing CSP

mechanisms like binary relationships, the following properties from [2] should be assumed of

the WSN.

• None of the component processes can terminate, i.e. they execute perpetually.

• The network is statically defined, i.e. ‖n
i=1 (Pi, Ai) where the communication of Pi are

entirely within Ai.

• Network is triple-disjoint, i.e. there is no event that requires more than two component

processes. More formally, if Pi, Pj and Pk are three distinct processes in the network,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

56

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

Ai ∩Aj ∩Ak = {}.

• The network is built using parallel composition from their component processes and

contain no renaming or hiding.

• The network is busy, meaning each component process is deadlock free.

From the properties above it is given that the WSN needs to be triple disjoint, which means

that for the edges E = {e1..en}, |ei| = 2 and 1 ≤ i ≤ n. This means that each edge must

have a depth of 2, which implicates binary relations.

From Figure 4.2 it can be seen that nodes P ′, Q′ and R′ are fully connected with each other

and forming a hyper-edge of three nodes. The hypergraph equation of the WSN in is given

in Equation 4.14.

WSN := (N,E)

N := {P ′, Q′, R′}

E := {{P ′, Q′, R′}} (4.14)

In [109] it is shown that an n-ary relation can be converted to a set of binary relations without

losing information. Roscoe [2] confirms this with the following relation:

‖3
i=1 Pi = (P1 ‖ P2 ‖ P3) = ((P1 ‖ P2) ‖ P3) = (P1 ‖ (P2 ‖ P3)) (4.15)

Based on these reasons, the hypergraph of Equation 4.14 can be converted to a normal graph

with binary relations as shown in Figure 4.3.

The new graph definition becomes:

WSN := (N,E)

N := {P ′, Q′, R′}

E := {{P ′, Q′}, {P ′, R′}, {Q′, R′}} (4.16)

The normal graph of Figure 4.3 can further be modified to simplify its analysis from a

modelling perspective. Although the normal graph solution of Figure 4.3 and Equation

4.16 satisfies the required triple disjointedness of [2] for deadlock analysis, it can further be

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

commq

comm

commr

Q R

CHP

CHQ CHR

comm

comm

commp

P

P’

Q’ R’

Figure 4.3: Normal graph representation of the hypergraph of Figure 4.2.

modified to allow for it to be easily applicable to WSN graph topologies with normal graph

definitions, i.e. binary connections between WSN nodes.

The conversion of the WSN graph of Figure 4.3 to a graph containing binary relationships

between the nodes entails the graphical duplication of the channel artefacts of a node to have

one for each connected node sharing the same synchronisation event. After this duplication,

the channel artefacts sharing the same binary connection between nodes are grouped together

to form a single channel artefact between two connected nodes. This is shown in Figure

4.4. Although the graph of Figure 4.4 is graphically different from the graph of Figure

4.3, nothing has changed in its CSP system definition except for the composition of the

concurrent processes, which will become apparent in the generalised OptParT definition of

Equation 4.21.

The alphabetised parallel operator is used in the CSP system definitions because it keeps track

of each process’ alphabet when computing the synchronisation sets between processes. This is

also confirmed by [2] in the needed assumptions for deadlock analysis. Alphabetised parallel

allows for more practical compositions at the expense of more streamlined definitions like the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

58

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

commq
commr

CHP

CHQ CHR

comm

commp

comm

comm

CHP

CHQ CHR

commp

commrcommq

P

Q R

CHPQ CHPR

CHQR

Figure 4.4: Binary relationship conversion of Figure 4.3.

use of the generalised parallel operator. The alphabets of the processes under alphabetised

parallelism need to be kept track of, while generalised parallelism is only concerned with one

set on intersections of all processes’ alphabets, hence the streamlined notation. Equation 3.10

gives the alphabetised parallel operator in an indexed notation for n-way parallel composition.

Using the index form of alphabetised parallelism of Equation 3.10, the WSN of Figure 4.4 is

defined as in Equation 4.17.

WSN := ‖6
i=1 (Pi, αPi) , where

(P1, αP1) = (P, αP)

(P2, αP2) = (Q,αQ)

(P3, αP3) = (R,αR)

(P4, αP4) = (CHPQ,αCHPQ)

(P5, αP5) = (CHPR,αCHPR)

(P6, αP6) = (CHQR,αCHQR) (4.17)

where αPi represents the alphabet of possible communications of process Pi.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

When this is expanded as per the definition of Equation 3.10, some simplifications can be

made to the model. When the node processes’ parallel interaction is viewed separately from

the channel processes, their synchronisation sets are all empty. This is shown in Equation

4.18 and Equation 4.19.

Nodes := ‖3
i=1 (Pi, αPi)

= P1 αP1‖αP2∪αP3 (P2 αP2‖αP3 P3) (4.18)

Substituting the process names and alphabets has the effect of interleaving because none

of the processes share communication events as there are channel artefacts defined to exist

between the processes. This is clear from Figure 4.4. Using the trace law of alphabetised

and the general parallel operators’ properties defined in [2], the definition in Equation 4.18

is reduced to:

Nodes := P αP ‖αQ∪αR (Q αQ‖αR R)

= P ‖
αP∩(αQ∪αR)

(Q ‖
αQ∩αR

R)

= P ‖
{}

(Q ‖
{}
R)

= P ||| (Q ||| R)

= P ||| Q ||| R (4.19)

The channel artefacts, however, do not share the same disconnectedness as the node processes,

although it seems as if they are disconnected from each other in Figure 4.4. This is because

of the shared channel artefacts of the processes in the binary relationships. Channel artefact

CHP is contained in both CHPQ and CHPR and thus creates a dependency between

CHPQ and CHPR. This has no restriction on the expressiveness of optional parallelism

using classical CSP operators, and the binary channel artefacts CHPQ, CHPR and CHQR

are modelled with the alphabetised parallel operator as in Equation 4.17. This shows that

the node processes are fully disconnected from each other, with only the channel artefacts

being allowed to orchestrate the synchronisations between node processes. The definition of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

60

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

the WSN can be given as:

WSN := Nodes αN‖αC Channels , where

Nodes := |||n
i=1Ni

Channels := ‖c
j=1 (Cj , αCj) (4.20)

4.2.3 Generalisation of optional parallelism with classical CSP operators

The definition of the WSN, and thus the translation of the behaviour of optional parallelism

into existing CSP operators is shown in Equation 4.21.

‖̃
n

i=1 (Ni, αNi) :=
(
|||n

i=1Ni

)
‖
X

(
‖c
j=1 (Cj , αCj)

)

X :=
(

n⋃
i=1

αNi

)⋂ c⋃
j=1

αCj

 (4.21)

With Ni representing all the processing nodes wishing to synchronise, and Cj the channel

definitions for each synchronisation element between all of the processes. The channel pro-

cess definitions are selected based on the required type of synchronisation indicated with a

directional notation of the synchronisation events of the processes. This is explained in §4.3

and a detailed example is given in §6.1.1.1.1. In short, the process definitions on the left

hand side of Equation 4.21 undergoes renaming to form the process definitions on the right

hand side. The channel definitions are added as a result of the OptParT operator ‖̃ and the

type of directional synchronisation indicated on the synchronisation events of the processes

on the left hand side of Equation 4.21. From a graph perspective, {Ni | 1 ≤ i ≤ n} indicates

the vertices V and {Cj | 1 ≤ j ≤ c} the edges E. This can be directly related to the example

of Equation 4.16.

The definition of optional parallelism in terms of classical CSP operators in Equation 4.21

indicates that all the node processes are independent from each other, whereas relationship

dependencies exist between the channel artefacts. The use of the central parallel operator,

here given as generalised parallel for expressiveness, between the group of node processes and

the group of channel artefacts, ensures that the node processes are well behaved and their

combination are divergence free [2]. The channel artefacts act as a monitor and restricts

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

the behaviour of the network, effectively eliminating livelock. The synchronisation set X

is defined to be the intersection between the union of alphabets of all the node processes

and the union of alphabets of the channel artefacts. This effectively breaks the common

synchronisation event, which would have been present in generalised parallel as in Equation

4.1, up into individual synchronisation events, one for each node process. The interest lies in

the shared events which can be given as ⋃{Ai ∩Aj |i 6= j} where A represents all processing

elements in the network. This is referred to as the vocabulary of the network. Furthermore,

all node processes connected with a channel artefact can synchronise, but if synchronisation

is not possible, the node processes can run independently from each other.

Equation 4.21 has the following mapping to a WSN:

• Ni represents only the WSN nodes.

• The channels are automatically added based on the intersections of the alphabets, αNi,

of the nodes.

• There exists a channel Cj for each common synchronisation event between each of the

node processes Ni.

• The definitions of the processes can vary, but the channel definitions are fixed as per

Equation 4.8.

• The alphabet αCj of each channel Cj is made up from the synchronisation events of

the two node processes Ni and Nk, i 6= k connected to each side of the channel Cj .

The topology structure of the WSN is contained in two parts of Equation 4.21. The first part

is the number of nodes present, defined by Ni, and the second part is defined in the combined

channel artefacts {Cj | 1 ≤ j ≤ c}, which indicates which processes can communicate with

each other. The alphabetised parallel structure of the channel artefacts Cj allows only the

channel artefacts with non-empty intersections of their alphabets to synchronise with each

other, which implicitly encapsulates the topology structure of the network.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

62

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

4.3 DIRECTIONAL SYNCHRONISATION FOR OPTIONAL PARALLEL-

ISM USING CHANNEL ARTEFACTS

The previous section focussed on fully connected networks where all processes share the same

synchronisation event. All nodes communicating under optional parallelism were allowed to

synchronise on a communication event, no matter from which process it is from. Broadcasting

is an example where this behaviour is not desirable. A broadcaster process synchronises with

its neighbour processes during a broadcast communication, but the neighbouring processes

are not allowed to synchronise with each other. In other words, information is passed from

the broadcaster to its neighbours, but not between the neighbours.

This is better described by example. Consider the cluster network topology of Figure 4.5.

It has a cluster head P and a set of neighbour nodes Q, R and S to which the cluster

head is broadcasting some data. The neighbour nodes are not connected to each other, so

if a broadcast message is transmitted from the cluster head, all neighbour nodes receive the

message, but when a neighbour node transmits a message, only the central node will receive it

individually. This has the implication that the dataflow is directional. With the CSP analysis

being data independent, the only way of indicating direction is by enabling a process definition

to initiate an event on its own, or by responding to an event from another process. This is

done by adding a channel artefact for each receiving event to each process with the particular

event. The definition of the channel artefact restricts its parent process from initiating a

communication by only allowing to synchronise on the parent process’ communication event

after one has been received from the cluster head.

The CSP system definition is given in Equation 4.22. Here, the cluster head senses some

environment variable and communicates it to its neighbours. Each of the neighbour processes

performs some work or calculations on the received measurement form the cluster head. Each

neighbour node is also allowed to go into a sleep state to save energy. When the cluster head

broadcasts its measurement to the neighbour nodes, it is not guaranteed that all neighbour

nodes will be awake to receive the measurement. Hence the requirement for optional parallel

behaviour.

In the system definition of Equation 4.22, the process P can only block for its comm event

after it has sensed some phenomenon. The process Q can either choose to block on its commq

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

P

Q

SR

Figure 4.5: Cluster topology with processes P , Q, R and S.

event or to sleepq. This decision is made internally by process Q, independent if an event is

offered by the environment, hence the internal choice operator. Process Q is allowed to sleep

for an indefinite period, which could simulate a node failure. Process P will be able to have

its comm event, because all the channel artefacts are by definition allowed to synchronise

jointly on the comm event. Now, depending on which event is offered by process Q, CHQ is

forced into an external decision on which event to perform. If process Q is ready for commq,

it will synchronise with channel artefact CHQ on commq and communication effectively

took place from process P to process Q. If process Q decided to sleep, CHQ is forced to

perform a hidden internal drop event, dropping the message from process P and waiting for

the next message. The exact behaviour is defined for processes R and S and their respective

channel artefacts CHR and CHS. This definition allows a neighbour process to be busy

with something like sleeping, while the other processes are allowed to synchronise on the

synchronisation event from the cluster head P .

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

64

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

P := sensep → comm→ P

Q := (commq → workq → Q) u (sleepq → Q)

R := (commr → workr → R) u (sleepr → R)

S := (comms → works → S) u (sleeps → S)

CHQ := comm→ ((commq → CHQ) 2 CHQ)

CHR := comm→ ((commr → CHR) 2 CHR)

CHS := comm→ ((comms → CHS) 2 CHS)

Q′ :=

Q ‖
{commq}

CHQ


R′ :=

R ‖
{commr}

CHR


S′ :=

S ‖
{comms}

CHS



WSN := P ‖
{comm}

Q′ ‖
{comm}

R′ ‖
{comm}

S′


:= P ‖

{comm}

Q ‖̃
{comm}

R ‖̃
{comm}

S

 (4.22)

The channel definitions CHQ, CHR and CHS of Equation 4.22 differ from the introduction

of the channel artefact in Equation 4.8. This is because the channel definitions of Equation

4.22 only allows incoming communication events from the cluster head. The channels restrict

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

the neighbour nodes to synchronise with each other.

Expanding on the notion of the channel artefacts orchestrating the direction of commu-

nication, the channel artefact definition of Equation 4.8 can vary depending on the type of

synchronisation required. Broadcasting, simplex, half-duplex and full-duplex synchronisation

can be defined. The atomic channel artefacts required for the different types of synchronisa-

tion are given in Equations 4.23 and 4.24. The meaning of the internal and external events

are the same as defined in §4.2.1.1.

Ctransmit := internal → ((external→ Ctransmit) 2 Ctransmit) (4.23)

Creceive := external → ((internal→ Creceive) 2 Creceive) (4.24)

The various synchronisation types mentioned can be constructed by using these atomic chan-

nel artefacts by combining them or using them as is. It is required to know when a specific

atomic channel artefact is to be used. This requires a new notation to indicate the direction

of synchronisation for each synchronisation event. This notation should not be confused with

the channel reading and writing definitions of [2], which are indicated with the symbols "?"

and "!" respectively. The CSP channel reading and writing notation still requires that syn-

chronisation occur jointly between processes, a restriction that optional parallelism resolves.

The new directional synchronisation notation is detailed in the next subsection.

4.3.1 Directional notation

When defining systems with optional parallelism, the direction of synchronisation needs to

be indicated. Instead of creating a different optional parallel operator for each of the syn-

chronisation types, it is rather contained in the notation of the synchronisation events, and

can therefore be mixed within definitions. The notation allows for arrows to be placed above

an optionally synchronised event to indicate its synchronisation direction. This notation

does not change the synchronisation events into different CSP symbols, but are rather just

added to guide the translation to select the appropriate channel artefacts. From a pure

CSP perspective, these events should be considered as the same events, and the directional

arrows above them as a guide to select the appropriate channel artefacts for the type of

synchronisation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

In process definitions of optionally synchronising processes, a right arrow is placed above the

events which are initiating synchronisation events. When a process definition should respond

to some other process initiating a synchronisation with it, a left arrow is placed above the

event. This is shown in Equation 4.25 below:

WSN := P ‖̃
{comm}

Q , where

P := −−−−→comm→ workp → P

Q :=←−−−−comm→ workq → Q (4.25)

Equation 4.25 defines a process P which is allowed to initiate the comm event and a process

Q which is only allowed to respond to such a synchronisation if it can. It is not allowed to

initiate the communication back to P . Process P will therefore be modelled with a transmit

channel artefact as defined in Equation 4.23 and process Q with a receive channel artefact of

Equation 4.24.

For half-duplex synchronisation, the notation changes to a double arrow above the syn-

chronisation event, which represents the bidirectional synchronisation. An example using

half-duplex synchronisation is given in Equation 4.26.

WSN := P ‖̃
{comm}

Q , where

P :=←−−→comm→ workp → P

Q :=←−−→comm→ workq → Q (4.26)

Equation 4.26 represents two processes P and Q which are each allowed to initiate a syn-

chronisation event. The only restriction is that when a process initiates an event, it will be

completed before the other process can start the synchronisation event. This is handled by

the half-duplex channel artefact which will be detailed in §4.3.4.

For full-duplex synchronisation, two double arrows are placed above the synchronisation

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

event. An example is given in Equation 4.27.

WSN := P ‖̃
{comm}

Q , where

P :=
←−−→←−−→comm→ workp → P

Q :=
←−−→←−−→comm→ workq → Q (4.27)

In this example, each process can initiate a synchronisation, even if one is already in pro-

gress. The details of the channel artefact used to allow full-duplex synchronisation is given

in §4.3.5.

It should be noted that the directional notation is only used to indicate the type of channel

artefact to be used for the optional parallel translation. The events are still the same from a

CSP alphabet point of view.

4.3.2 Broadcasting

Broadcasting synchronisation is made up of processes with transmitting and receiving channel

artefacts. The broadcaster will be paired with a transmitting channel of Equation 4.23 and

all its neighbour nodes paired with the receiving channel artefact of Equation 4.24. This

allows one process to initiate a synchronisation with its neighbours, but the neighbours are

not allowed to respond using the same synchronisation event. The result is that there is

directional synchronisation from the broadcaster to its neighbouring nodes. Figures 4.6a and

4.6b show how the Ctransmit and Creceive channel artefacts will be inserted into a broadcasting

example where process P is the broadcaster and processes Q, R, and S its neighbour nodes.

More broadcasting examples will be covered in Chapter 6.

4.3.3 Simplex

Simplex synchronisation works on exactly the same principle as broadcasting, but only

between two processes. It defines directional synchronisation only between two nodes where

there is one transmitter process, using a channel artefact of Equation 4.23 and one receiver

process paired with a channel artefact of Equation 4.24. Figures 4.7a and 4.7b show a simplex

synchronisation example. Synchronisation is only allowed from process P as the initiator to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

68

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

P

R

S

Q

(a) Broadcasting without channels.

P

R

S

Q

CHP

CHQ

CHS

CHR

Ctransmit

Creceive

Creceive

Creceive

(b) Broadcasting with channels.

Figure 4.6: Broadcasting example showing before and after channel insertion.

processQ as the receiver. Chapter 6 details scenarios using multiple simplex channels between

different nodes.

QP

(a) Simplex without channels.

QP CHP CHQ

Ctransmit Creceive

(b) Simplex with channels.

Figure 4.7: Simplex example showing before and after channel insertion.

4.3.4 Half-duplex

Half-duplex synchronisation is denoted with a double arrow above the synchronisation event

which indicates bidirectional synchronisation. It is established by combining the two atomic

channel artefacts of Equations 4.23 and 4.24 with the use of the external choice (2) operator of

CSP to form one half-duplex channel artefact. The use of the external choice operator means

that if one side of the operator is chosen as an execution path, it is completed before a choice

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

69

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

can be made again on which side the execution will occur, hence half-duplex synchronisation.

The half-duplex channel definition is given in Equation 4.28. Note that this equation is the

same as the one defined in Equation 4.8.

Chalf−duplex := Ctransmit 2 Creceive

:= (internal → ((external→ Ctransmit) 2 Ctransmit))

2 (external → ((internal→ Creceive) 2 Creceive)) (4.28)

All processes modelled with half-duplex synchronisation will have the same double arrow and

there is no distinction between a transmitter and a receiver process. Half-duplex synchron-

isation can be between two processes or multiple processes ans is typically used to model

fully connected networks under optional parallelism. Figures 4.8a and 4.8b depict a simple

half-duplex example where all processes are fully connected and all processes have the same

Chalf−duplex channel artefact type connected to them.

P

R

S

Q

(a) Half-duplex without channels.

P

R

S

Q

CHP

CHQ

CHS

CHR

Chalf-duplex

Chalf-duplex

Chalf-duplex

Chalf-duplex

(b) Half-duplex with channels.

Figure 4.8: Half-duplex example showing before and after channel insertion.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

70

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

4.3.5 Full-duplex

Full-duplex synchronisation share the same principles of half-duplex synchronisation, only

with a different operator being used to combine the two directional channel artefacts of

Equations 4.23 and 4.24 with each other. By using the interleaving operator (|||) of CSP,

synchronisation is allowed from both ends independently. The full-duplex channel artefact is

given in Equation 4.29.

Cfull−duplex := Ctransmit ||| Creceive

:= (internal → ((external→ Ctransmit) 2 Ctransmit))

||| (external → ((internal→ Creceive) 2 Creceive)) (4.29)

Figures 4.9a and 4.9b show a full-duplex example. It is identical to the half-duplex example,

except for the channel artefact types used, which in this case is Cfull−duplex.

P

R

S

Q

(a) Full-duplex without channels.

P

R

S

Q

CHP

CHQ

CHS

CHR

Cfull-duplex

Cfull-duplex

Cfull-duplex

Cfull-duplex

(b) Full-duplex with channels.

Figure 4.9: Full-duplex example showing before and after channel insertion.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

4.3.6 Notation and synchronisation summary

The different synchronisation constructs which can be used to model processes with optional

parallelism and their corresponding channel definitions are summarised in Table 4.1.

Synchronisation Channel Definition Event Notation

Broadcast Ctransmit and Creceive
−−−→
event and ←−−−event

Simplex Ctransmit and Creceive
−−−→
event and ←−−−event

Half-duplex Chalf−duplex
←−−→
event

Full-duplex Cfull−duplex
←−−→←−−→
event

Table 4.1: Summary of synchronisation and channel definitions.

4.4 OTHER APPROACHES CONSIDERED

Different approaches of the translational model for optional parallelism have been considered.

These approaches were added here for completeness, but could also be regarded as future

work.

4.4.1 Using synchronisation event artefacts

A different approach to develop translational semantics for optional parallelism using classical

CSP operators is to add artificial synchronisation events to each parallel connected node

process of a hypergraph of nodes. This is done for each set of node processes connected with

the same hyper-edge. From Figure 4.1, this is the edge between processes P , Q and R, and is

renamed from {comm} to {d} for this explanation. A synchronisation event is added between

each process and its connected neighbour processes. This is illustrated in Figure 4.10 with the

addition of the {a, b, c} events. The WSN is then defined with the function for synchronising

events as WSNse(N,M), where N denotes the number of nodes under optional parallelism

and M the number of nodes which are allowed to opt out of synchronisation. The value of

M implicitly defines the number and connections of the additional synchronisation events to

be added. This approach has the restriction that the minimum number of processes under

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

72

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

optional parallelism be N = 3 and the maximum number of processes allowed to opt out is

M = N − 2. The CSP representation of figure 4.10, using alphabetised parallel composition,

is given in Equation 4.30.

a

b

c

d

d

d

P

Q R

Figure 4.10: Example of 3-process hypergraph with additional synchronisation events ad-

ded.

WSNse(3, 1) := (P αP ‖αQ Q) αP∪αQ‖αR R (4.30)

αP := {a, c, d}

αQ := {a, b, d}

αR := {b, c, d}

From Figure 4.10, the event {d} corresponds the the hyper-edge, e1 of Equation 4.14. The

events {a, b, c} are artificially added to create a synchronisation event in the case a node opts

out. In other words, if process R decides to opt out, the common synchronisation {d} is not

possible and therefore {a} will be observed.

This approach is powerful to describe exactly which process(es) opted out, but implementing

the scenario becomes tedious because of the non-linear growth and overhead of the alphabets.

To illustrate the effect of alphabets, consider a fully connected network graph of N = 4

processes as in Figure 4.11a. The extra events needed to model optional parallelism for at

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

73

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

mostM = 2 processes opting out can be seen in Figure 4.11b. The effect of the extra alphabet

items needed is also visible in the CSP definition of Equation 4.31.

R

SP

Q

(a) Normal hyper-edge between 4 processes.

kk

j j

g

g

h h

i

j

i

h

g

i

d

a

b

cf e

R

SP

Q

(b) Graph with artificial synchronisation events

added.

Figure 4.11: Event definitions for N = 4 and M = 2.

The edges between the processes are defined with their shared events, these are indicated in

colour in Figure 4.11b.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

74

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

WSNse(4, 2) := ((P αP ‖αQ Q) αP∪αQ‖αR R) αP∪αQ∪αR‖αS S (4.31)

αP := {a, d, e, g, h, j, k}

αQ := {a, b, f, g, h, i, k}

αR := {b, c, e, h, i, j, k}

αS := {c, d, f, g, i, j, k}

From a modelling perspective, this approach is difficult because each process will need to be

ready to communicate any of its events as one process will have no a priori knowledge of

which neighbouring process will opt out at the next step. This has an enormous effect on

the number of possible states, as every process will need to cater for all possible synchron-

isation combinations, which increases non-linearly with the addition of a single process to

the network. This approach has not been further investigated as it seemed fruitless based on

too generic results of which the main contributing one is that all processes can perform any

combination of all events at any time. This has infinite, diverging traces for each process,

which falls out of the scope of the problem being addressed in this dissertation.

4.4.2 Using stochastic CSP

The opting out of processes could be stochastically defined by incorporating the rate of failure

of WSNs. This failure rate can be defined as any rate at which a process will stop engaging in

communication, because of resource depletion, component failure or communication failure.

While specifications are refined into actual implementations, reliability and design trade-offs

can be stochastically defined. This is implemented with an internal choice operator of the

channel artefact of Equation 4.8, as is shown in Equation 4.32. The internal choice operator

is used because the choice of opting out is now defined by the channel artefact and not on

the availability of a synchronisation event from the node process.

C := (internal → ((external→ C) up C))

2 (external → ((intenral→ C) up C)) (4.32)

The stochastic translation defines a failure rate or rate of opting out for each process. A value

of p = 0 means that the probability of a node opting out is 0, which means that the process will

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Definition of a new optional parallel operator

always synchronise on common events. This translates to general parallelism in CSP. A value

of p = 1 means that the process will always opt out, meaning it will never synchronise and by

the deadlock free definition, will never block to synchronise. This translates to interleaving

in CSP. With a failure rate 0 < p < 1, the processes are under optional parallel behaviour.

The general translation of optional parallelism of Equation 4.21 then includes a failure rate

parameter as is shown in Equation 4.33

‖̃
n

i=1 (Ni, αNi, pi) :=



‖
X

n

i=1
(Ni, αNi) if pi = 0 ∀ 1 ≤ i ≤ n

X = ⋃n
i=1 αNi

|||n
i=1(Ni, αNi) if pi = 1 ∀ 1 ≤ i ≤ n

(
|||n

i=1Ni

)
‖
Y

(
‖c
j=1 (Cj , αCj , pi)

)
otherwise

Y = (⋃ni=1 αNi)
⋂(⋃c

j=1 αCj
)

(4.33)

WSN system models can be more realistically modelled to represent real-world WSN beha-

viour.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

76

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5

SOFTWARE TOOLS

The CSP model-checker, ProCSP, can be used to check WSN systems for possible deadlocks

and if a specific trace can be generated by a WSN system definition, i.e. trace refinement.

Although ProCSP is only a research tool, its capabilities are sufficient to check the models

and trace refinements in concept of this dissertation. An additional tool is needed to convert

the CSP definitions containing the optional parallel operator to definitions containing only

classical CSP operators for ProCSP to be used. This is due to optional parallelism not being

implemented in current model-checkers yet. These conversions are suitable as input to CSP

model-checkers. A final tool is needed to check for trace refinement between OptParT , using

classical CSP operators and the channel artefact, and OptPar as per [17]. Traces of systems

communicating with OptPar are computed with a custom software implementation and a

model file is generated with the OptParT translation. The model file is a suitable input for

ProCSP for deadlock analysis and to check for trace refinement.

5.1 OPTIONAL PARALLEL TO CSP DEFINITION GENERATOR

The optional parallel to CSP definition generator, OptoCSP1, is used to convert CSP

definitions containing OptPar to CSP definitions containing only classical CSP operators

(OptParT). This is done by remodelling the process definitions and with the addition of the

channel artefact of Equation 4.8. OptoCSP is a new software tool developed to aid in the

conversion from CSP definitions containing OptPar to systems containing OptParT , while

still retaining the same behavioural characteristics in the traces domain T .
1Source can be found at https://github.com/theunssteyn/OptoCSP

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

5.1.1 Requirements

OptoCSP receives a file with the process and system definitions as input. The format of the

file has the requirements listed below.

1. All process definitions shall be defined under the "PROCESS:" heading.

2. The system definition shall be defined under the "SYSTEM:" heading.

3. All process and system definitions shall have space delimited operators and operands.

4. All process and system definitions shall be defined in a single line of text.

An example of an input file is shown in Listing 5.1. Note that the CSPM syntax for the

OptParT operator ‖̃
X

is given as [|||X|||], where X denotes the synchronisation set.

PROCESS:

P = meas_p -> comm -> P

Q = meas_q -> comm -> Q

SYSTEM:

WSN = P [|||comm|||] Q

Listing 5.1: Example input file ready for conversion from OptPar to OptParT .

The user interface of OptoCSP shall:

1. provide an output of the input file contents in a text editor;

2. provide the translated output in a text editor; and

3. be able to save the translated output.

The conversion engine of OptoCSP shall:

1. check the syntax of the given input;

2. provide output to the user in the case of an error; and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

78

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

3. convert systems to classical CSP, based on the input definition.

5.1.2 System overview

The block diagram of the conversion engine of OptoCSP is given below in Figure 5.1.

Optional

Parallel

Definition

FU1

Syntax Checker

C# FU2

String Parser

C# FU3

Definition

Analyser

C# FU4

Output

Formatter

C# FU5

CSPM

Definition

FU6

Figure 5.1: Functional block diagram of OptoCSP.

Functional Unit (FU) 1 represents the input file of Listing 5.1. This file contains all the process

and system definitions which need to be translated from an optional parallel definition to a

classical CSP definition. FU2, the Syntax Checker, is responsible for checking the input

file for syntax errors. If an error is detected, the conversion process is aborted. The Syntax

Checker also has the responsibility for providing details regarding the particular syntax error,

if one is found. FU3 parses the PROCESS and SYSTEM sections from strings into internal

Process and System objects. Each Process object has an internal data structure containing

a sequential list of operator/operand objects. This internal list represents each process’

definition as given in the input file FU1. The System object has an internal data structure

containing a sequential list of operators and processes. FU4 analyses the System object to

detect which processes are operating under optional parallelism. It then generates new process

definitions with their synchronisation events renamed to internal unique identifiers. Finally,

a Channel object is added to the process definitions for each synchronisation event that has

been renamed. A Channel object has a fixed internal process definition as per Equation

4.8, with only its events renamed to correspond to the renamed synchronisation event of

the process it is representing, and the external synchronisation event defined in the System

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

79

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

object. FU5 is responsible for formatting the Process, Channel and System objects into

a CSP system definition using only existing classical CSP operators. This FU generates the

CSP output file, FU6, which can be used in model-checking tools like ProCSP.

5.1.3 Implementation

OptoCSP is a Microsoft Windows Forms application, implemented in C# and using the .Net

Framework 4.5. The user interface is event-driven, with the user given the option to open

a file for input, do the conversion and provide a file name for the output. The input and

output are also presented next to each other in text format to the user. A screen capture of

the OptoCSP tool is given in Figure 5.2.

Figure 5.2: Screen capture of the user interface of OptoCSP.

The FU’s of Figure 5.1 are implemented using an object oriented approach, making the

modules reusable for more advanced future implementations.

5.1.4 Test and validation

The output of the OptoCSP translation was checked and scrutinised by hand. The examples

of Chapter 6 were given as input and each of the output model files were checked with the

expected result. The output model files were opened in ProCSP, which checked for CSP

syntax. After a successful syntax check, the model was marked as executable by ProCSP.

Specific system verifications like trace refinement and deadlock freedom are left for a later

stage of system analysis. The concern here is to test if the OptoCSP tool can correctly convert

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

80

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

a CSP definition using the optional parallel operator, to a definition containing only classical

CSP operators.

Table 5.1 gives a summary of the equations used to test the new OptoCSP tool. It was

decided to present the test results here in order to keep the details regarding the OptoCSP

tool together and because this is not the main focus of this dissertation. Each translated

equation has been validated against the output generated by a different tool, OpTrace, which

will be detailed in the next section. The model outputs were generated by the OpTrace

tool, given the adjacency lists defined in Chapter 6 for each of the equations tested. If the

translation of an equation using OptoCSP had the same CSP output as the model generated

by OpTrace, given its adjacency list, the test passed.

Equation Model Reference Pass Equation Model Reference Pass

6.2 B.1.1.1 X 6.27 B.3.1.3 X

6.7 B.1.1.2 X 6.29 B.3.2.1 X

6.9 B.1.1.3 X 6.31 B.3.2.2 X

6.11 B.1.2.1 X 6.33 B.3.2.3 X

6.13 B.1.2.2 X 6.35 B.3.3.1 X

6.15 B.1.2.3 X 6.37 B.3.3.2 X

6.17 B.2.1.1 X 6.39 B.3.3.3 X

6.19 B.2.1.2 X 6.41 B.4.1.1 X

6.21 B.2.1.3 X 6.43 B.4.1.2 X

6.23 B.3.1.1 X 6.45 B.4.1.3 X

6.25 B.3.1.2 X

Table 5.1: OptoCSP test results.

From Table 5.1, it is clear that all of the conversions were syntactically valid. For the given

applicability of OptoCSP, it was decided that these tests were sufficient. Formal unit testing

and software qualification seemed to fall outside of the scope of this dissertation. If OptoCSP

could handle the examples of this dissertation, it was deemed error free and safe to use in

this dissertation. It can therefore be concluded that OptoCSP can be used for the equations

with the same structure as the ones tested in this dissertation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

81

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

5.2 AUTOMATED TRACE VERIFICATION

With optional parallelism being a new addition to the CSP language, there is currently no

CSP tool implementing it. The implementation of optional parallelism needs to follow a

different approach. The translation of Equation 4.21 can be implemented in CSPM for a

given WSN scenario. This allows model properties to be checked such as deadlock, livelock,

divergence and safety. Other properties such as trace refinement and failure divergence re-

finement can also be checked by CSP model-checkers, given that the models have a trace

input generated from the step law of optional parallelism of Equation 3.32.

As a first model-checking test, the system should be deadlock free. Then it needs to be

confirmed if the two approaches to optional parallelism, the first approach being OptPar

and the second approach being OptParT , has a trace refinement relation for a given WSN

scenario. In the case where a refinement relation between the two approaches is found, it

can be concluded only that a trace refinement relation exists for that specific WSN scenario.

Proving this for all possible WSN scenarios is left for future work. In other words, to perform

this scenario-based verification, the traces of OptPar need to be compared against the traces

of OptParT for a specific WSN scenario to check if a refinement relation exists.

The step law of OptPar (Equation 3.32) has been implemented with a recursive routine to

compute the traces between processes. The implementation has been tediously scrutinised

by hand. The trace output of the program can then be used in a model-checking tool for

refinement checks.

Deadlock freedom of the translation has been confirmed with ProCSP, as was expected due

to the design principles used in §4.2.2. The trace refinement check was used to see if the

specification is refined by its implementation:

SPEC vT IMPL (5.1)

Where SPEC is OptParT of Equation 4.21 and IMPL the trace output of OpTrace, based

on OptPar [17].

To determine if OptParT has a refinement relationship with OptPar, all the possible traces

for the given scenario should be checked for trace refinement. ProCSP provides such a function

where it can be checked if a trace sequence can be generated by the system definition. Listing

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

82

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

5.2 shows how this is done for the trace set 〈measp, comm,measq,measp〉, using a system

definition WSNP,Q.
trace = meas_p -> comm -> meas_q -> meas_p -> STOP

assert WSN_P_Q [T= trace

Listing 5.2: CSPM syntax for trace refinement.

If all the possible traces of OptPar (⇑
X

of [17]) are checked against OptParT (‖̃
X

of Chapter 4),

as shown in listing 5.2, and all the traces are confirmed to refine OptParT , it can be deduced

that the specific optional parallel translation is refined by its implementation using OptPar.

To test the other way around, it is needed that ProCSP implements OptPar for system

analysis on network definitions with processes communicating under optional parallelism.

This is currently not the case and is left for future work. It can therefore currently only be

checked if OptPar refines OptParT , for a given WSN system definition, in the trace domain

T .

Trace verification of different systems is a cumbersome task as the traces of processes commu-

nicating under optional parallelism have to be computed from first principles, using the step

laws of [17], which are also given in Equation 3.32. A trace generator for OptPar is therefore

needed, which formats the result into CSPM such that a model-checker is able to decode the

result as input. This functionality was is implemented in the OpTrace2 tool.

5.2.1 Requirements

The following list details the software requirements of the OpTrace tool. OpTrace shall:

1. receive a file with the adjacency list of a network definition with the format given in

Listing 6.1;

2. compute all the possible traces between the processes under optional parallelism, using

the step laws of Equation 3.32;

3. reuse the OptoCSP translation engine to generate a CSP system definition of the input

adjacency list;
2Source can be found at https://github.com/theunssteyn/OpTrace

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

83

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

4. combine the computed traces with the translated CSP system definition into a single

CSPM output file;

5. call the ProCSP module with the output file for trace refinement checking; and

6. provide output to the user containing the results.

5.2.2 System overview

OpTrace is automated as far as possible for trace refinement checks. It accepts an adjacency

list, representing WSN topological definition as input. The node process and channel defin-

itions are fixed and are therefore added as per the topological definition of the WSN, one

node process for each WSN node and one channel for each communication link between two

nodes. The traces of the node processes are generated with the OptPar implementation. A

CSPM OptParT system definition, containing process- and channel definitions, is generated

based on the input topological information. A CSP model file is generated which contains

the CSPM statements required to check for trace refinement, using the traces computed by

the OptPar implementation. ProCSP is invoked from OpTrace with the model file as in-

put to check if the computed traces refine the CSPM model. In Figure 5.3, the functional

block diagram of OpTrace, FU1 represents the input adjacency list as a text file with the

format given as discussed in §5.2.3. The adjacency list defines the topology of the WSN. FU2

represents the WSN Definition Generator. With the given adjacency list (FU1), an internal

set of node- and channel processes is generated. The channel processes are linked to their

corresponding node processes with the use of the adjacency list definition. If a duplicate

channel is encountered, the previous definition will be re-used. Internally, the node processes

and channels are connected as per Figure 4.4. This FU is implemented in C#. The set of

node and channel processes is given as input to FU3, FU4 and FU5.

FU3 represents the Trace Generator, implemented in C#. This FU uses the OptPar im-

plementation discussed later in §5.2.4.2 to compute all the possible traces between the node

processes. The finite traces are computed with each process executing all of its possible

traces (in one cycle of execution before repeating a trace) and computing how these possible

traces interact with each other under optional parallelism. These traces are kept in expanded

form to be included in the CSP model file (FU6) for trace refinement checks. The channel

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

84

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

Adjacency List

FU1

WSN Definition

Generator

C# FU2

Trace

Generator

C# FU3

Model

Generator

C# FU4

Model Checker

ProCSP FU7

traces

CSP

Model File

FU6

Refinement

Result

Simulator

C# FU5

CSPM

traces

Figure 5.3: Functional block diagram of OpTrace.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

85

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

processes are not used in this FU because, as stated previously, it serves only as a modelling

artefact for the translation of optional parallelism to classical CSP. The step laws of Equation

3.32 are defined in this FU.

The Model Generator, represented by FU4, is used to generate a CSPM system definition

based on the list of node- and channel processes. The system definitions are generated by

using the process definitions of Chapter 6 and OptParT , according to the channel definition

of Equation 4.8. The definition is formatted so that ProCSP accepts it as a valid CSP input

file. This FU is implemented in C#.

The Simulator (FU5) simulates the communication between the node processes by instantiat-

ing multiple software processes, each running on its own CPU thread, representing the WSN

node and channel processes. The node processes are implemented as per their definitions

in Chapter 6 and the channel processes as per Equation 4.8. These instantiations interact

with each other randomly and their interaction, represented as traces, are recorded. A sim-

ulation run represents only one path of continuous execution of all the trace events of the

nodes and channels. The recorded traces serve as the trace input to FU6 for trace refinement

verification. More detail on the implementation of this FU is given in §5.2.5. This FU is

implemented in C#.

FU6 represents the model file. It comprises of CSPM process definitions, a system definition

and a set of possible traces to do trace refinement checking on. The traces are either given as

input from FU3, the theoretical trace generator, or FU5, the simulated trace generator.

The Model Checker, ProCSP, given as FU7, is used to check the CSP assertions in the model

file (FU6). It is invoked by OpTrace with a model file (FU6) as input. The results of ProCSP

are checked to see if all assertions pass the trace refinement check. If all assertions succeeds

the trace refinement check, it is concluded that OptParT is refined by OptPar, for the specific

input WSN.

OpTrace is a Microsoft Windows Forms application, implemented in C# and using the .Net

Framework 4.5. The user interface is event-driven, with the user given the option to load

a network adjacency list, generate the traces of the loaded network, build a CSP model-file

and invoke the ProCSP model-checker to check for trace refinement. The computed traces

are given as output and the results of the trace refinement checks are output to screen. A

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

86

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

screen capture of the OpTrace tool is given in Figure 5.4.

Figure 5.4: Screen capture of the user interface of OpTrace.

As with OptoCSP, the FU’s of OpTrace given in Figure 5.3 are implemented using an ob-

ject oriented approach, making the modules reusable for more advanced future implementa-

tions.

5.2.3 Adjacency list notation

Adjacency lists [110] are used to define the WSN topologies. An adjacency list comprises of

an array of vertex-indexed lists of the vertices adjacent to each vertex. In other words, it is

a list where all the connected processes of a system are given. An adjacency list was chosen

above an adjacency matrix or a set of edges, firstly because an adjacency matrix requires a

matrix of size N2 boolean variables where N represents the node count, and secondly because

a set of edges requires a lot of processing to determine if one node is adjacent to another.

An advantage of adjacency lists and adjacency matrices is that they can represent directional

graphs in the case where communication takes place in one direction only.

The notation used for the adjacency lists used in this dissertation is proprietary. The types

of synchronisation (discussed in §4.3) between processes need to be distinguished from the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

87

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

adjacency lists. The notation makes use of brackets and braces to distinguish directional and

non-directional edges. Note that a non-directional edge represents communication in both

directions and effectively represents a bidirectional edge. The following rules are defined for

the adjacency lists used in this dissertation.

• The first parameter in a line is always the source of an edge and all subsequent para-

meters in the line are the destination(s) of the edge.

• Parameters between brackets "(" and ")" indicate a directional edge.

• Parameters between braces "{" and "}" indicate a non-directional edge.

Figure 5.5 shows a network graph and its corresponding adjacency list for processes P and

Q. This definition is typically found in simplex synchronisation definitions.

QP

(a) Network graph.

(P,Q)

(b) Adjacency list.

Figure 5.5: Network graph and adjacency list for directional source P to destination Q.

Figure 5.6 gives a hyper-edge system and its corresponding adjacency list with source node

P and receiving nodes Q, R and S. This system is typically defined for broadcasting sys-

tems. Figure 5.7 shows a non-directional edge and its adjacency list for nodes P and Q. This

example will typically be used for a point-to-point bidirectional half-duplex synchronisation.

Figure 5.8 shows a network graph and its adjacency list for a non-directional hyper-edge

between nodes P , Q, R and S. This example is used for bidirectional half-duplex synchron-

isation.

OpTrace will decode the adjacency lists as per their directional definitions and indicate to

the user which synchronisation has been detected. More advanced adjacency list definitions

are given for various WSN topology scenarios in Chapter 6.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

88

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

P

R

S

Q

(a) Network graph.

(P,Q,R,S)

(b) Adjacency list.

Figure 5.6: Network graph and adjacency list for hyper-edge with source P to destinations

Q, R and S.

QP

(a) Network graph.

{P,Q}

(b) Adjacency list.

Figure 5.7: Network graph and adjacency list for non-directional edge between P and Q.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

P

R

S

Q

(a) Network graph.

{P,Q,R,S}

(b) Adjacency list.

Figure 5.8: Network graph and adjacency list for non-directional hyper-edge between P ,

Q, R and S.

5.2.4 Theoretical trace generation

The Trace Generator (FU3 of Figure 5.3) implements both optional- as well as generalised

parallelism. It generates all the possible trace combinations between two or more communic-

ating processes, given their finite set of individual traces. It also receives a synchronisation

set, which is the set of common events between processes. All processes with traces contain-

ing elements of the synchronisation set, are allowed to communicate with each other. All

possible combinations of traces between the processes are computed, based on the step laws

of either the generalised parallel operator of CSP [2] or OptPar [17]. The definitions of the

step laws for the generalised and the optional parallel operators are given in Chapter 3 in

Equations 3.22 and 3.32 respectively. By receiving an empty synchronisation set for either of

the two implemented operators, interleaving results, which is given in Equation 5.2.

P ‖
{}
Q = P ||| Q = P ⇑

{}
Q (5.2)

The implementation and checking approach followed was to first implement the operator be-

haviour which could be tested with another CSP tool like ProCSP. This approach had the

advantage of being able to test the implementation for usability and software defects with

an independent tool. With the generalised parallel operator being a commonly used CSP

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

90

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

operator, implemented in all credible CSP model-checkers, it was the operator of choice to be

implemented first. If the implementation of the generalised parallel operator could be tested

and qualified for the purpose of the scenarios presented in this dissertation, the implementa-

tion of optional parallelism is simplified by only lifting the synchronisation restrictions of the

general parallel operator. This approach was followed because there are no other tools that

could be used to test the implementation. The only way to check the newly developed OptPar

routine is to do it manually by hand. The implementation of the general parallel operator

function allows only for a binary process composition, but the function calls are allowed to

be staggered, effectively allowing multiple processes to synchronise on the same event, i.e.

n-ary synchronisation. The step laws of the general parallel operator (Equation 3.22) were

implemented by means of a recursive function. The function receives a set of possible traces

for two communicating processes as well as a synchronisation set. It was decided not to de-

rive the synchronisation set from the intersection of the alphabets of the two communicating

processes, to give the user more control over the synchronisation behaviour.

5.2.4.1 Generalised parallel implementation

Pseudo code of the recursive general parallel operator function is given in Algorithm 1. This

serves the purpose of not being programming-language specific. The function receives two

strings, s and t, representing traces as input, a synchronisation set X and a history of traces.

The history will be empty when the function is called for the first time. The start of the

function deals with the exit conditions of the recursive function where the one process is

allowed to continue after the other one has no more traces left. The recursion ends when

both trace sets have finished producing traces, or when a deadlock scenario occurs. The rest

of the function deals with the step laws of general parallelism. At first, in lines 11 to 22,

it is checked if s[0] is contained in the synchronisation set X. If it is equal to t[0], the first

condition of the step law of Equation 3.22 is met. If s[0] is not equal to t[0], the condition

where both processes are trying to communicate different events in their synchronisation set

occurs, and the communication deadlocks. If t[0] is not in the synchronisation set, s[0] blocks

for synchronisation and trace set t moves on. This is the third condition of the step law of

Equation 3.22. Lines 23 to 34 explain the same behaviour, but with s and t interchanged and

satisfying the fourth condition of Equation 3.22. The second condition of the step law, where

either process may proceed if their events are not in the synchronisation set X, is handled in

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

lines 36 to 39. This concludes the implementation of the generalised parallel operator as all

the conditions of the step law of Equation 3.22 are covered.

The trace semantics of the general parallel operator, given in §3.2.4.2, are encapsulated in the

operator implementation of Algorithm 1. The traces of general parallelism of Equation 3.28

indicates that all possible combinations of the traces between two processes are to be tested

with the step law and the trace semantics thereof. This is done in the parent function which

calls the recursive general parallel function by an exhaustive for loop. Finally, all duplicate

traces are removed from the set of resulting traces.

Algorithm 1 Pseudo code for general parallelism of [2].
1: procedure GenParallel(TraceSet s, TraceSet t, Set X, TraceSet traceHistory)

2: if s.Count == 0 and t.Count == 0 then

3: return

4: else if s.Count == 0 then

5: traceHistory.Append(t[0])

6: GenParallel(s, t[1..end], X, traceHistory)

7: else if t.Count == 0 then

8: traceHistory.Append(s[0])

9: GenParallel(s[1..end], t, X, traceHistory)

10: else

11: if s[0] is contained in X then

12: if s[0] == t[0] then /* Sync */

13: traceHistory.Append(s[0])

14: GenParallel(s[1..end], t[1..end], X, traceHistory)

15: else/* s needs to block */

16: if t[0] is contained in X then /* Deadlock */

17: traceHistory.Append(”DL”)

18: return

19: else/* s stays current, t moves on */

20: traceHistory.Append(t[0])

21: GenParallel(s, t[1..end], X, traceHistory)

22: end if

23: end if

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

92

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

Algorithm 1 Pseudo code for general parallelism of [2] (continued).
24: else if t[0] is contained in X then

25: if s[0] == t[0] then /* Sync */

26: traceHistory.Append(t[0])

27: GenParallel(s[1..end], t[1..end], X, traceHistory)

28: else/* t needs to block */

29: if s[0] is contained in X then /* Deadlock */

30: traceHistory.Append(”DL”)

31: return

32: else/* s moves on, t stays current */

33: traceHistory.Append(s[0])

34: GenParallel(s[1..end], t, X, traceHistory)

35: end if

36: end if

37: else/* Split, because 2 combinations are possible */

38: traceHistory.Append(s[0])

39: GenParallel(s[1..end], t, X, traceHistory)

40: traceHistory.Append(t[0])

41: GenParallel(s, t[1..end], X, traceHistory)

42: end if

43: end if

44: end procedure

5.2.4.1.1 Validation

The general parallel operator was first validated by using simple examples of two

communicating processes running concurrently. This tested the binary relationship of the

operator. The point-to-point example presented in Equation 6.1 was modified slightly to

keep the trace set results tidy. The process definitions of Equation 6.1 were renamed to only

contain the first letter of each event and another process R, with the same structure as P

and Q, was added. First, the definitions of P and Q were used and later on, the definition

of R was added to test the operator staggering functionality. The processes were renamed

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

93

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

to the following definitions:

P := mp → c→ wp → P (5.3)

Q := mq → c→ wq → Q

R := mr → c→ wr → R

X := αP ∩ αQ ∩ αR = {c}

The trace set scenario for each process contained a finite set of traces to complete one cycle

of execution. All the possible traces between processes P and Q in parallel, traces(P ‖
X
Q),

for their finite sets of traces, were generated by the general parallel function to be:

{<>,<mp>,<mq>,

<mp,mq>,<mq,mp>,

<mp,mq,c>,<mq,mp,c>,

<mp,mq,c,wp>,<mp,mq,c,wq>,<mq,mp,c,wp>,<mq,mp,c,wq>,

<mp,mq,c,wp,wq>,<mq,mp,c,wp,wq>,<mp,mq,c,wq,wp>,<mq,mp,c,wq,wp>}

For traces(P ‖
X
Q ‖
X
R), there are 123 trace set results, compared to 15 for traces(P ‖

X
Q). The

full set of traces for P ‖
X
Q ‖
X
R is given in Appendix A.

It can be noted that all trace results have at most one {c} event, indicating that the processes

have synchronised on the event. Deadlocked events are marked with a DL keyword. Consider

the process definitions of Equation 5.4 where each process operates normally, i.e. measuring,

communicating and working, or it can measure something, do a protocol synchronisation and

then start executing from the beginning, discarding the measurement.

S := (ms → c→ ws → S) 2 (ms → p→ S) (5.4)

T := (mt → c→ wt → T) 2 (mt → p→ T)

U := (mu → c→ wu → U) 2 (mu → p→ U)

Y := αS ∩ αT ∩ αU = {c, p}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

94

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

The traces(S ‖
Y
T) are given as:

{ <>,<mt>,<ms>

<ms,mt>,<mt,ms>,

<ms,mt,DL>,<mt,ms,DL>,

<ms,mt,c>,<mt,ms,c>,<ms,mt,p>,<mt,ms,p>

<ms,mt,c,wt>,<mt,ms,c,wt>,<ms,mt,c,ws>,<mt,ms,c,ws>,

<ms,mt,c,ws,wt>,<ms,mt,c,wt,ws>,<mt,ms,c,ws,wt>,<mt,ms,c,wt,ws> }

The deadlock scenarios are seen in the traces where process S is waiting for process T and

vice versa. This shows that no synchronisation event in set Y is communicated. The operator

has been tested with many process scenarios. Each of the result sets of the test scenarios

were tested for trace refinement using ProCSP. This was done by checking that the generated

traces are trace refinements of the specification in CSPM and then by confirming that the

whole state space is covered, a graphical function provided by ProCSP.

It has been found that all the scenarios tested were trace refinements of the specification.

The implementation is therefore accepted, based on the unit tests performed for each of the

possible outcomes for the step law of generalised parallelism.

5.2.4.2 Optional parallel implementation

The generalised parallel function was modified to lift the synchronisation restrictions to allow

for an optional parallel implementation. Pseudo code of the recursive optional parallel oper-

ator function is given in Algorithm 2. The function receives two strings, s and t, representing

traces as input, a synchronisation set X and an initially empty history of traces. The start of

the function deals with the exit conditions of the recursive function where a process is allowed

to continue after the other process has finished. The recursion ends when both trace sets

have finished producing traces. The rest of the function deals with the step laws of optional

parallelism. At first, in lines 11 to 15, it is checked if s[0] is contained in the synchronisation

set X. If it is equal to t[0], the first condition of the step law of Equation 3.32 is met. The

second condition of the step law, where either process may proceed if their events are not in

the synchronisation set X, is handled in lines 17 to 21. The last two conditions are handled

in lines 22 to 24 and lines 25 to 27. These conditions are unique to optional parallelism where

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

a process may proceed, regardless if its event is contained in the synchronisation set X.

5.2.4.2.1 Validation

As with the generalised parallel operator, the optional parallel operator was first val-

idated by using simple examples of two communicating processes running concurrently

which tested the binary relationship of the operator. The same examples of the generalised

parallel operator of equations 5.3 and 5.4 are used to illustrate the differences between the

two operators.

The trace set scenario for each process contained a finite set of traces for each process to

complete one cycle of execution. All the possible traces between processes P and Q in optional

parallel, traces(P ⇑
X
Q), for their finite sets of traces, were generated by the optional parallel

function to be:

{ <>, <mp>, <mq>

<mp,c>, <mp,mq>, <mq,mp>, <mq,c>

<mp,c,wp>, <mp,c,mq>, <mp,mq,c>, <mq,mp,c>, <mq,c,mp>, <mq,c,wq>

<mp,c,wp,mq>, <mp,c,mq,wp>, <mp,c,mq,c>, <mp,mq,c,wp>, <mp,mq,c,wq>,

<mp,mq,c,c>, <mq,mp,c,wp>, <mq,mp,c,wq>, <mq,mp,c,c>, <mq,c,mp,c>,

<mq,c,mp,wq>, <mq,c,wq,mp>,

<mp,c,wp,mq,c>, <mp,c,mq,wp,c>, <mp,c,mq,c,wp>, <mp,c,mq,c,wq>,

<mp,mq,c,wp,wq>, <mp,mq,c,wq,wp>, <mp,mq,c,wp,c>, <mp,mq,c,c,wp>,

<mp,mq,c,c,wq>, <mp,mq,c,wq,c>, <mq,mp,c,wp,wq>, <mq,mp,c,wq,wp>,

<mq,mp,c,wp,c>, <mq,mp,c,c,wp>, <mq,mp,c,c,wq>, <mq,mp,c,wq,c>,

<mq,c,mp,c,wp>, <mq,c,mp,c,wq>, <mq,c,mp,wq,c>, <mq,c,wq,mp,c>

<mp,c,wp,mq,c,wq>, <mp,c,mq,wp,c,wq>, <mp,c,mq,c,wp,wq>,

<mp,c,mq,c,wq,wp>, <mp,mq,c,wp,c,wq>, <mp,mq,c,c,wp,wq>,

<mp,mq,c,c,wq,wp>, <mp,mq,c,wq,c,wp>, <mq,mp,c,wp,c,wq>,

<mq,mp,c,c,wp,wq>, <mq,mp,c,c,wq,wp>, <mq,mp,c,wq,c,wp>,

<mq,c,mp,c,wp,wq>, <mq,c,mp,c,wq,wp>, <mq,c,mp,wq,c,wp>,

<mq,c,wq,mp,c,wp> }

From the results, there are 61 trace sets. It can be seen that in some traces, only one {c}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

96

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

Algorithm 2 Pseudo code for optional parallelism of [17].
1: procedure OptParallel(TraceSet s, TraceSet t, Set X, TraceSet traceHistory)

2: if s.Count == 0 and t.Count == 0 then

3: return

4: else if s.Count == 0 then

5: traceHistory.Append(t[0])

6: OptParallel(s, t[1..end], X, traceHistory)

7: else if t.Count == 0 then

8: traceHistory.Append(s[0])

9: OptParallel(s[1..end], t, X, traceHistory)

10: else

11: if s[0] and t[0] is contained in X then

12: if s[0] == t[0] then

13: traceHistory.Append(s[0])

14: OptParallel(s[1..end], t[1..end], X, traceHistory)

15: end if

16: else

17: if s[0] is contained in t.Alphabet then

18: traceHistory.Append(s[0])

19: OptParallel(s[1..end], t, X, traceHistory)

20: traceHistory.Append(t[0])

21: OptParallel(s, t[1..end], X, traceHistory)

22: else if s[0] is not contained in t.Alphabet then

23: traceHistory.Append(s[0])

24: OptParallel(s[1..end], t, X, traceHistory)

25: else if t[0] is not contained in s.Alphabet then

26: traceHistory.Append(t[0])

27: OptParallel(s, t[1..end], X, traceHistory)

28: end if

29: end if

30: end if

31: end procedure

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

97

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

is communicated which indicates synchronisation, and in other cases, two {c} events occur

in the same trace set. This happens because optional parallelism allows two processes to

synchronise when they can, and to proceed as if they are independent if they are not able

to synchronise. The results presented for traces(P ⇑
X
Q) represent the assumptions made in

Chapter 3, where unclear properties of the OptPar definition of [17] were defined, based on

the requirements of optional parallelism.

By applying OptPar in the example of Equation 5.4, the same traces are generated as if

the processes were communicating independently. The trace results are left out because

they contain every possible permutation of the combined traces of the processes S and T .

There are no trace sequences leading to deadlock and is confirmed by the overall goal of

optional parallelism, where processes are not required to synchronise in order to proceed

with execution, but are allowed to synchronise when they are able to do so.

After black box testing, the output was inspected and compared against the calculations

made by hand as there is no tool available yet which can be used as an external evaluation

tool. To aid the software testing process, the following checks were done on multiple trace

examples.

• Check that all traces are possible as per the step law of optional parallelism given in

Equation 3.32. (This is a tedious task to perform by hand, but is the only way to check

the trace validities.)

• Check that traces exist where synchronisation occurred, if theoretically possible.

• Check that interleaving of the synchronisation events are observed.

• Check that traces(P ⇑
X
Q) = traces(P ||| Q) for X = {}.

• Check if the traces of general parallelism are equal to the traces of optional parallelism

when the independent traces are removed [17]:

traces(P ‖
X
Q) \ traces(P ||| Q) = traces(P ⇑

X
Q) \ traces(P ||| Q).

• Check that no deadlock conditions are observed.

To conclude the black box testing process of the optional parallel implementation, the trace re-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

98

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

finement relationship between optional parallelism and general parallelism defined in [17] was

checked for each test example. The refinement relationship is shown in Equation 5.5.

traces(R1 ⇑
X
R2) vT traces(R1 ‖

X
R2) (5.5)

Equation 5.5 states that the traces of optional parallelism are refined by the traces of general-

ised parallelism. This is so by definition, where the general parallel operator is more restricted

than the optional parallel operator, requiring synchronising processes to do so jointly

5.2.5 Simulated trace generation

A simulator was developed to test the theory of WSN nodes communicating with each other

using OptParT . A set of threads are spawned for each of the node- and channel processes

given in a list as input. The Task Parallel Library 3 (TPL) [111] of the Microsoft .Net

Framework was used to simulate each node- and channel process in its own thread. The TPL

allows for a thread to be assigned to an individual CPU core which enables the simulated

node processes to run completely independently on its own CPU core, without having to

share processing resources with other threads. This is obviously limited to the number of

CPU cores available as well as the number of dedicated threads per core. The concept

is illustrated with examples of small node counts. It was later concluded that due to the

non-critical simulated timing between the processes, it was not needed for the simulator to

schedule each node- and channel process thread to its own CPU core because the interval of

communication is set to be slower for human observation. The TPL will do its best to ensure

that each thread gets sufficient CPU time. Each node process communicates to each of its

connected node processes at random intervals, through the channels. The channels randomly

elects to drop the communication or to allow it to pass through from sender to receiver,

simulating a process as ready to engage or not. The probability of a decision made by the

channel process can be defined as was discussed in §4.4.2. The synchronisation construct

used for thread synchronisation between the node- and channel processes makes use of events

which notifies listening threads that it should respond. If it does not respond, the thread

blocks indefinitely.

The node process implementation is done with a while loop, executing a Finite State Ma-

chine (FSM) which performs the events as defined in the node process equations of Chapter
3http://msdn.microsoft.com/concurrency

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

99

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Software tools

6. The while loop is aborted when the process gets a STOP command from the simulator

environment. The node process has an internal list of connected channel processes. Due to

the disconnected definition of the optional parallel translation, the processes are only dir-

ectly connected to channels, and the channels serve as the communication links between the

processes. A channel is added for each element in the synchronisation set between processes.

This means that there is one channel process between each of the connected processes. Syn-

chronisation between the node processes and the channel processes are done with signals and

threads waiting on these signals. This is done in C# with the AutoResetEvent. Although

not the most economic thread synchronisation mechanism in terms of overhead, it provides

a simple implementation. When a process is in its transmit state, the {communicate} event

is observed after a successful synchronisation with a particular channel. This is done after

the process has requested a channel synchronisation and the channel responds by setting the

AutoResetEvent on which the node process is blocking.

The channel process implementation has the same design as the node process implementation.

The FSM of the channel is implemented according to the channel definition of Equation 4.8.

When a synchronisation request is received from a connected node process, it gets handled

when the channel is in a state to process synchronisation requests. The process requesting the

synchronisation is in an indefinite blocked state until the event is set by the channel. After the

synchronisation is completed with the process, indicating the {internal} event of Equation

4.8, the channel randomly decides to forward the synchronisation to the process connected to

its {external} event. The frequency of the dropped packets are simulated using the pseudo

random function of the Microsoft .Net Framework which is based on the subtractive random

number generator algorithm from [112].

5.3 CHAPTER SUMMARY

This chapter was dedicated to the new software tools developed in aid of the optional parallel

theoretical validation process. OptoCSP and OpTrace can be used as tools for further research

of optional parallelism. Their implementation was done in such a manner that it can easily

be updated and modified for specific use. The tools were tested as far as was needed to be

used for the examples in this dissertation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

100

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6

OPTIONAL PARALLEL TEST SCENARIO

DESCRIPTION

The applicability of OptParT is to be tested with specific WSN system scenarios, which are

driven by the different categories of WSN topologies or graph structures 1. The scenarios

will be used to test optional parallelism from two perspectives. The first is from a theoretical

perspective, where the traces of the WSN systems will be compared between OptPar and

OptParT . The second perspective is from an practical perspective where the topologies will

be converted to CSP definitions which can be used in existing model-checkers.

Trace refinement checks are done for several scenarios to see if a trace relation exists between

the optional parallel operators ‖̃
X

and ⇑
X

for the same network. With the absence of an

implementation of OptPar of [17], a general trace refinement proof between the two optional

parallel operators becomes difficult. The topologies used in this chapter are selected from

the most common WSN graph structures found in practise. More complex networks can be

constructed from a combination of the basic topologies presented here.

6.1 TOPOLOGY SCENARIOS

WSNs can consist of hundreds of sensor nodes, and sometimes do not have a physical archi-

tecture as the nodes are often randomly deployed. WSN routing protocols create a logical

topology between the sensor nodes of which four main groups exist, flat topologies, cluster

topologies, chain topologies and tree topologies [113]. The logical topology defines the com-

munication links between the nodes and it does not necessarily mean that nodes which are in
1The terms graph structure and topology are used interchangeably in this chapter.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

each others’ range have an actual communication link between them. This is defined by the

WSN routing protocols, a topic outside of the scope of this section. The scenarios presented

in this section emulates a converged topology for a specific network, i.e. the topologies are

assumed to be fixed for the analysis.

The WSN topologies of the scenarios are presented with binary connections between the

sensor nodes. The interpretation of these binary connections will be explained for each

scenario and the CSP system definitions will be given.

The topology scenarios are by no means chosen to point out advantages or disadvantages

of the topology groups, but merely to illustrate the applicability of optional parallelism to

model it in CSP.

Where applicable, the scenarios will be detailed with directional communication and hence

directional synchronisation, as discussed in §4.3. Three different sub-scenarios will be defined,

where applicable, using directional synchronisation:

• Unidirectional, i.e. broadcasting. Transmitter node with multiple independent receiver

nodes.

• Bidirectional, half-duplex synchronisation. Normal bidirectional synchronisation events

between two processes.

• Individual unidirectional in both directions, simplex synchronisation. Two independent

simplex synchronisation events between two processes.

Full-duplex communication will be left out as the models have these same results as the

half-duplex models in terms of system structure, trace refinement and deadlock freedom, but

with added complexity and execution times on model-checking with ProCSP. Note that the

channel definition for half-duplex communication in Equation 4.28 is structurally the same as

the one for full-duplex in Equation 4.29, with the only difference being the choice of operator

between the sending and receiving atomic channel artefacts. External choice (2) is used

for half-duplex synchronisation and interleaving (|||) is used for full-duplex synchronisation.

Hence, to keep the test scenarios as short and tidy as possible, full-duplex communication

has been left out of the analysis.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

102

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The general behaviour of the processes used to model the WSN nodes are chosen to have basic

functionality. WSN nodes are modelled as processes which measures or senses an environment

variable (measure), communicates it with its neighbours (comm), and lastly performs some

internal operations (work). The nodes are also modelled to be able to sleep indefinitely (sleep)

to simulate a node which is not able to engage in synchronised communication events. In

some scenarios, some of the non-synchronised CSP events are left out purely to simplify the

models and give meaning to the processes and their applicability to their chosen WSN graph

structures.

6.1.1 Flat topology

6.1.1.1 Point-to-point

The point-to-point connection, depicted in Figure 6.1 for processes P and Q, is the most

basic connection. It is added as a control to see if the most basic connection pass the trace

refinement checks of the two optional parallel operators as well as the conversion from op-

tional parallelism to classical CSP operators. Broadcasting in this scenario is the same as a

single simplex synchronisation event, either from P to Q or from Q to P . A bidirectional

communication link between processes P and Q can also exist. As mentioned, the bidirec-

tional synchronisation can either be implemented with 2 individual simplex synchronisation

events or a single half-duplex synchronisation event. This is detailed in the sub-scenarios

that follow.

QP

Figure 6.1: Point-to-point connection between processes P and Q.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

103

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

6.1.1.1.1 Broadcasting

Figure 6.2 shows broadcasting between processes P and Q and its adjacency list is

given in Listing 6.1.

commpq

QP

Figure 6.2: Broadcasting between processes P and Q.

(P,Q)

Listing 6.1: Adjacency list for broadcasting from node P to Q.

The CSP process definitions for Figure 6.2 are given in Equation 6.1.

P := (measurep → −−−−−→commpq → workp → P) u (sleepp → P)

Q := (measureq →←−−−−−commpq → workq → Q) u (sleepq → Q) (6.1)

The network definition is given in Equation 6.2.

WSN := P ‖̃
{commpq}

Q (6.2)

The synchronisation set of Equation 6.2 shows that process P and Q optionally synchronises

on the commpq event. This means that a channel artefact should be added to each process

definition for P and Q for this synchronisation event. The arrow on top of the synchronisation

event indicates the channel artefact to be used, either broadcasting, simplex, half-duplex or

full-duplex (see §4.3). In this example, the broadcasting and simplex solutions are the same as

per Table 4.1 and a Ctransmit channel artefact of Equation 4.23 will be linked to node P with

a Creceive channel artefact of Equation 4.24 linked to node Q. The channel artefacts added to

processes P and Q will be called CHP and CHQ respectively. The commpq event of process

P will be renamed to a common event between process P and its channel CHP to form P ′.

This event will be renamed to commCHP and corresponds to the internal event of Equation

4.23. The external event of Ctransmit of Equation 4.23 corresponds to the synchronisation

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

104

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

event commpq and will be renamed to it. The new definition of process P , called P ′, as well

as its channel artefact definition are given below in Equation 6.3.

P ′ := (measurep → commCHP → workp → P ′) u (sleepp → P ′)

CHP := (commCHP → ((commpq → CHP) 2 CHP)) (6.3)

The same is done for process Q to form Q′ and CHQ as shown in Equation6.4 below.

Q′ := (measureq → commCHQ → workq → Q′) u (sleepq → Q′)

CHQ := commpq → ((commCHQ → CHQ) 2 CHQ) (6.4)

From Equations 6.3 and 6.4, it can be seen that P ′ and Q′ do not share an event any more

and are thus independent (interleaved). The channels CHP and CHQ share the commpq

event, which is the synchronisation event of the initial system definition of Equation 6.2.

From here, it is easy to write the translated system in the form given in Equation 4.21. This

is given below:

P ‖̃
{commpq}

Q =
(
P ′ ||| Q′

)
‖

{commCHP ,commCHQ}

(
CHP ‖

commpq

CHQ

)
(6.5)

These calculations are omitted for the rest of the scenario examples of this chapter as Op-

toCSP can be used to derive the translations.

6.1.1.1.2 Bidirectional - Half-duplex

Figure 6.3 depicts a half-duplex synchronisation event between processes P and Q.

This means that any of the two processes can initiate a synchronisation. The adjacency list

is given in Listing 6.2.

comm
QP

Figure 6.3: Bidirectional synchronisation between processes P and Q using a half-duplex

synchronisation event.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

{P,Q}

Listing 6.2: Adjacency list for half-duplex synchronisation between processes P and Q.

The CSP process definitions are given in Equation 6.6 and the network definition for optional

parallelism in Equation 6.7.

P := (measurep →←−−→comm→ workp → P) u (sleepp → P)

Q := (measureq →←−−→comm→ workq → Q) u (sleepq → Q) (6.6)

WSN := P ‖̃
{comm}

Q (6.7)

This allows P to have a comm event even if Q is never ready to synchronise on comm and

vice versa.

6.1.1.1.3 Bidirectional - Simplex

Figure 6.4 depicts bidirectional synchronisation between processes P and Q using 2

simplex synchronisation events. This means that any of the two processes can initiate a

synchronisation. The adjacency list is given in Listing 6.3.

commpq

QP
commqp

Figure 6.4: Bidirectional synchronisation between processes P and Q using 2 simplex syn-

chronisation events.

(P,Q)

(Q,P)

Listing 6.3: Adjacency list for bidirectional synchronisation between processes P and Q

using 2 simplex synchronisation events.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

106

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The CSP process definitions are given in Equation 6.8 and the network definition for optional

parallelism in Equation 6.9.

P := (measurep → −−−−−→commpq → workp → P) 2 (measurep →←−−−−−commqp → workp → P)

u (sleepp → P)

Q := (measureq →←−−−−−commpq → workq → Q) 2 (measureq → −−−−−→commqp → workq → Q)

u (sleepq → Q) (6.8)

WSN := P ‖̃
{commpq ,commqp}

Q (6.9)

6.1.1.2 Fully-connected mesh topology

A mesh topology allows sensor nodes in a WSN to not only send their own data to the sink,

but also to relay the data of its neighbours to the sink. This allows for route redundancy in

the case of a node failure.

The advantages of optional parallelism is most visible in fully connected mesh networks.

When a node process broadcasts a message, all available processes will synchronise with the

transmitting process. Any of the connected processes which are not ready to synchronise,

are allowed to opt out of synchronisation and the rest of the synchronising processes can

continue with their execution. When modelled explicitly with the help of different event

names in classical CSP, it comes at the cost of many extra states because all permutations

of possible synchronisations need to be considered.

A 4-node fully-connected mesh topology is given in Figure 6.5. This topology can be obtained

from two approaches. The first approach is as per the definition of a mesh topology, all the

nodes have a point-to-point connection with each of the other nodes in the network. From a

practical perspective, the communication between the nodes is defined to be a set of point-

to-point connections which makes the network more redundant because messages can be

relayed via another node if a communication link fails. The second approach comes from a

modelling perspective. The translation of an n-ary relation to a set of binary relations, as

was mentioned in §4.2.2, breaks a hyper-edge up into multiple point-to-point connections.

In this approach, the nodes seem as if they are connected in point-to-point connections, but

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

107

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

each node is listening for communication from any other node. In CSP, this is achieved by

enabling all nodes to synchronise on a network transmission, regardless where it is from.

Stated differently, when a process sends out a message, it is broadcast to all the other nodes

at the same time, as opposed to unicast where a message is sent to each neighbouring node

independently.

SP

Q R

Figure 6.5: Fully connected processes P , Q, R and S.

The 3 sub-scenarios detailing broadcasting, half-duplex bidirectional and simplex bidirec-

tional synchronisation are detailed below.

6.1.1.2.1 Broadcasting

Figure 6.6 shows the different broadcasting approaches between processes P , Q, R

and S. Each process has a unique broadcasting event to the other processes. A broadcaster

is identified and the other processes are only able to listen and synchronise if the broadcaster

has a broadcast event. The nodes are modelled so that they can send their measurements to

their neighbours, or receive a measurement from a neighbour and perform internal opera-

tions. In the case where a measurement is received, no attempt to transmit a measurement

will be made until a new measurement has been sensed. It is shown in Figure 6.6 that a

directional hyper-edge exists for the broadcasting event from the particular broadcasting

node. A common broadcasting event is shared between the broadcaster and the sensor

nodes, but not between the sensor nodes themselves. The adjacency list is given in Listing

6.4.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

108

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

commR

commS

commQ

commP

P

Q

S

R

Figure 6.6: Broadcasting approaches between processes P , Q, R and S.

(P,Q,R,S)

(Q,P,R,S)

(R,P,Q,S)

(S,P,Q,R)

Listing 6.4: Adjacency list for broadcasting synchronisation between processes P , Q, R and

S.

The CSP process definitions for Figure 6.6 are given in Equation 6.10.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

109

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

P := ((measurep →
−−−−−→
commP → workp → P) 2 (←−−−−−commQ→ workp → P)

2 (←−−−−−commR→ workp → P) 2 (←−−−−−commS → workp → P))

u (sleepp → P)

Q := ((measureq →
−−−−−→
commQ→ workq → Q) 2 (←−−−−−commP → workq → Q)

2 (←−−−−−commR→ workq → Q) 2 (←−−−−−commS → workq → Q))

u (sleepq → Q)

R := ((measurer →
−−−−−→
commR→ workr → R) 2 (←−−−−−commP → workr → R)

2 (←−−−−−commQ→ workr → R) 2 (←−−−−−commS → workr → R))

u (sleepr → R)

S := ((measures →
−−−−−→
commS → works → S) 2 (←−−−−−commP → works → S)

2 (←−−−−−commQ→ works → S) 2 (←−−−−−commR→ works → S))

u (sleeps → S) (6.10)

The network definition is given in Equation 6.11.

WSN := P ‖̃
X

Q ‖̃
X

R ‖̃
X

S , where

X := {commP, commQ, commR, commS} (6.11)

6.1.1.2.2 Bidirectional - Half-duplex

Figure 6.7 depicts the communication links between processes P , Q, R and S as a

hypergraph. This means that any of the processes can initiate a synchronisation and that

it can happen in any direction. The processes are modelled to all measure an environment

variable and exchange their data with each other simultaneously in a synchronised manner.

The adjacency list is given in Listing 6.5.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

110

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

SP

Q R

comm

Figure 6.7: Bidirectional synchronisation between processes P , Q, R and S using half-

duplex synchronisation.

{P,Q,R,S}

Listing 6.5: Adjacency list for half-duplex synchronisation between processes P , Q, R and

S.

The CSP process definitions are given in Equation 6.12 and the network definition for optional

parallelism in Equation 6.13.

P := (measurep →←−−→comm→ workp → P) u (sleepp → P)

Q := (measureq →←−−→comm→ workq → Q) u (sleepq → Q)

R := (measurer →←−−→comm→ workr → R) u (sleepr → R)

S := (measures →←−−→comm→ works → S) u (sleeps → S) (6.12)

WSN := P ‖̃
{comm}

Q ‖̃
{comm}

R ‖̃
{comm}

S (6.13)

This allows P to have a comm event even if Q, R and S are never ready to synchronise on

comm and vice versa.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

111

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

6.1.1.2.3 Bidirectional - Simplex

Figure 6.8 depicts bidirectional synchronisation between processes P , Q, R and S

using 2 simplex synchronisation events between all of the processes. The n-ary hyper-graph

is converted into a normal graph with binary connections as was previously mentioned. This

means that there exists a unique channel between any two processes with a separate channel

for each of the possible directions between the two connected processes. The adjacency list

for this scenario is given in Listing 6.6.

SP

Q R

commps

commsp

commpq

commqp

commqr

commrq

commsr

commrs

commpr

commrp commqs

commsq

Figure 6.8: Bidirectional synchronisation between processes P , Q, R and S using 2 simplex

synchronisation events.

(P,Q)

(P,R)

(P,S)

(Q,P)

(Q,R)

(Q,S)

(R,P)

(R,Q)

(R,S)

(S,P)

(S,Q)

(S,R)

Listing 6.6: Adjacency list for bidirectional synchronisation between processes P , Q, R and

S using 2 simplex synchronisation events.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

112

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The CSP process definitions are given in Equation 6.14 and the network definition for optional

parallelism in Equation 6.15.

P := (measurep → −−−−−→commpq → workp → P) 2 (measurep →←−−−−−commqp → workp → P)

2 (measurep → −−−−−→commpr → workp → P) 2 (measurep →←−−−−−commrp → workp → P)

2 (measurep → −−−−−→commps → workp → P) 2 (measurep →←−−−−−commsp → workp → P)

u (sleepp → P)

Q := (measureq → −−−−−→commqp → workq → Q) 2 (measureq →←−−−−−commpq → workq → Q)

2 (measurep → −−−−−→commqr → workp → P) 2 (measurep →←−−−−−commrq → workq → Q)

2 (measurep → −−−−−→commqs → workp → P) 2 (measurep →←−−−−−commsq → workq → Q)

u (sleepq → Q)

R := (measurer → −−−−−→commrp → workr → R) 2 (measurer →←−−−−−commpr → workr → R)

2 (measurer → −−−−−→commrq → workr → R) 2 (measurer →←−−−−−commqr → workr → R)

2 (measurer → −−−−−→commrs → workr → R) 2 (measurer →←−−−−−commsr → workr → R)

u (sleepr → R)

S := (measures → −−−−−→commsp → works → S) 2 (measures →←−−−−−commps → works → S)

2 (measures → −−−−−→commsq → works → S) 2 (measures →←−−−−−commqs → works → S)

2 (measures → −−−−−→commsr → works → S) 2 (measures →←−−−−−commrs → works → S)

u (sleeps → S) (6.14)

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commpq, commpr, commps, commqp, commrp, commsp, workp,measurep, sleepp})

(N2, αN2) = (Q, {commqp, commqr, commqs, commpq, commrq, commsq, workq,measureq, sleepq})

(N3, αN3) = (R, {commrp, commrq, commrs, commpr, commqr, commqs, workr,measurer, sleepr})

(N4, αN4) = (S, {commsp, commsq, commsr, commps, commqs, commrs, works,measures, sleeps})

(6.15)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

113

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

6.1.2 Cluster

A cluster topology can be arranged to form a star topology if there is one cluster head (or

sink node) and several directly connected sensor nodes, i.e. the node hierarchy is only one

level deep, as shown in Figure 6.9. In this scenario, the cluster head is allowed to broadcast a

message to all its connected sensor nodes, but if a sensor node wishes to respond to the cluster

head, that communication is point-to-point. Note that this structure differs from the example

in §4.3 where the neighbour nodes are not defined to communicate back to the cluster head.

With the communication strategy of this section, there exists a common synchronisation

event, but it has a direction from the cluster head to the sensor nodes. The sensor nodes

each have a direct, directional communication link back to the cluster head. This differs from

the broadcasting scenarios depicted in Figure 6.6 of §6.1.1.2 where the receiving nodes are

not defined to respond to the broadcaster. This approach is followed to limit the possible

duplication of scenarios. Details regarding directional communication using CSP are given in

§4.3, where the data direction is specifically modelled by the CSP definitions of the channel

artefacts of optional parallelism.

In the cluster scenarios, the cluster heads will have different process structures than the sensor

nodes. The process definitions of all the sensor nodes have the same structure, in contrast

with the cluster head, which adapts to the converged logical topology where it has a separate

communication event for responses from each logically connected sensor node.

The star topology is a common WSN topology where all nodes communicate with a sink

node. The use of optional parallelism to model this topology is useful where the sink needs to

communicate with all its nodes and only a subset of them can synchronise at that instance.

This will allow only the processes which are ready to respond to the broadcast communication

from the sink, to jointly synchronise on the broadcast event.

This topology tests the broadcasting communication approach where the sink node has many

receive events, one for each connected process, but only one transmit broadcast event. The

nodes on the edges are only aware of their point-to-point connections with the sink, and

therefore has only one transmit and one receive event. The difference between the point-to-

point approach will only be seen in the sink node process’ definition where there will be a

separate transmit event for each of its connected node processes. If the sink fails, the whole

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

114

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

network will be disconnected.

A 4-node star-topology is given in Figure 6.9. It is a simple scenario with one cluster head

and 3 sensor nodes. In this scenario, the cluster head sends some information to the sensor

nodes and receives measurements back from the sensor nodes.

P

Q

SR

Figure 6.9: Star topology with processes P , Q, R and S.

The 3 sub-scenarios detailing broadcasting, half-duplex bidirectional and simplex bidirec-

tional synchronisation are detailed below.

6.1.2.1 Broadcasting

In this cluster scenario, there is only one broadcasting process P . All the child nodes can only

receive on the broadcasting event of process P . When the cluster of Figure 6.9 is redrawn

showing its communication links as in Figure 6.10, it appears that a directional hyper-edge

exists for the broadcasting event from the head node, P , but individual events exist for each

of the possible responses from the sensor nodes (Q, R and S) back to node P . This is because

the sensor nodes have no information about each other, but only with the cluster head P . A

common broadcasting event is shared between the cluster head and the sensor nodes, but not

between the sensor nodes themselves. This is why there are unique directional events from

each of the sensor nodes back to the cluster head P . The adjacency list for this scenario is

given in Listing 6.7.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

115

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

commP

P

R S
commsp

commqp

commrp

Q

Figure 6.10: Directional communication links for the star topology of Figure 6.9.

(P,Q,R,S)

(Q,P)

(R,P)

(S,P)

Listing 6.7: Adjacency list with broadcaster process P .

The CSP process definitions are given in Equation 6.16 and the network definition for optional

parallelism in Equation 6.17.

P := ((−−−−−→commP → workp → P) 2 (←−−−−−commqp → workp → P) 2 (←−−−−−commrp → workp → P)

2 (←−−−−−commsp → workp → P))

u (sleepp → P)

Q :=
(
(←−−−−−commP → workq → Q) 2 (measureq → −−−−−→commqp → Q)

)
u (sleepq → Q)

R :=
(
(←−−−−−commP → workr → R) 2 (measurer → −−−−−→commrp → R)

)
u (sleepr → R)

S :=
(
(←−−−−−commP → works → S) 2 (measures → −−−−−→commsp → S)

)
u (sleeps → S) (6.16)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

116

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commP, commqp, commrp, commsp, workp, sleepp})

(N2, αN2) = (Q, {commP, commqp, workq,measureq, sleepq})

(N3, αN3) = (R, {commP, commrp, workr,measurer, sleepr})

(N4, αN4) = (S, {commP, commsp, works,measures, sleeps}) (6.17)

6.1.2.2 Bidirectional - Half-duplex

This scenario cannot be defined with a bidirectional hypergraph because there is only one

broadcasting process defined. The closest this scenario can get to half-duplex bidirectional

synchronisation is to define point-to-point connections between the cluster head and the

sensor node processes. Figure 6.11 depicts the communication links between processes P , Q,

R and S. These connections are all point-to-point, but synchronisation is done with optional

parallelism. This scenario has the same structure when the general parallel operator is used.

The adjacency list is given in Listing 6.8.

commPR

commPQ

commPS

P

Q

SR

Figure 6.11: Bidirectional synchronisation between processes P , Q, R and S using half-

duplex synchronisation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

117

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

{P,Q}

{P,R}

{P,S}

Listing 6.8: Adjacency list for half-duplex synchronisation between processes P , Q, R and

S.

The CSP process definitions are given in Equation 6.18 and the network definition for optional

parallelism in Equation 6.19.

P := ((measurep →
←−−−−−→
commPQ→ workp → P) 2 (measurep →

←−−−−−→
commPR→ workp → P)

2 (measurep →
←−−−−−→
commPS → workp → P)) u (sleepp → P)

Q := (measureq →
←−−−−−→
commPQ→ workq → Q) u (sleepq → Q)

R := (measurer →
←−−−−−→
commPR→ workr → R) u (sleepr → R)

S := (measures →
←−−−−−→
commPS → works → S) u (sleeps → S) (6.18)

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commPQ, commPR, commPS,workp,measurep, sleepp})

(N2, αN2) = (Q, {commPQ,workq,measureq, sleepq})

(N3, αN3) = (R, {commPR,workr,measurer, sleepr})

(N4, αN4) = (S, {commPS,works,measures, sleeps}) (6.19)

6.1.2.3 Bidirectional - Simplex

Figure 6.12 depicts bidirectional synchronisation between processes P and each of the sensor

nodes, Q, R and S, using 2 simplex synchronisation events between them. This means that

there exists a separate channel for each of the possible directions between the two connected

processes. The adjacency list for this scenario is given in Listing 6.9.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

118

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

commpr

commqp

commsp

P

Q

SR

commpq

commrp

commps

Figure 6.12: Bidirectional synchronisation between processes P , Q, R and S using 2 simplex

synchronisation events.

(P,Q)

(P,R)

(P,S)

(Q,P)

(R,P)

(S,P)

Listing 6.9: Adjacency list for bidirectional synchronisation between processes P , Q, R and

S using 2 simplex synchronisation events.

The CSP process definitions are given in Equation 6.20 and the network definition for optional

parallelism in Equation 6.21.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

119

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

P := (−−−−−→commpq → workp → P) 2 (←−−−−−commqp → workp → P)

2 (−−−−−→commpr → workp → P) 2 (←−−−−−commrp → workp → P)

2 (−−−−−→commps → workp → P) 2 (←−−−−−commsp → workp → P)

u (sleepp → P)

Q := (measureq → −−−−−→commqp → workq → Q) 2 (←−−−−−commpq → workq → Q)

u (sleepq → Q)

R := (measurer → −−−−−→commrp → workr → R) 2 (←−−−−−commpr → workr → R)

u (sleepr → R)

S := (measures → −−−−−→commsp → works → S) 2 (←−−−−−commps → works → S)

u (sleeps → S) (6.20)

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commpq, commpr, commps, commqp, commrp, commsp, workp, sleepp})

(N2, αN2) = (Q, {commqp, commpq, workq,measureq, sleepq})

(N3, αN3) = (R, {commrp, commpr, workr,measurer, sleepr})

(N4, αN4) = (S, {commsp, commps, works,measures, sleeps}) (6.21)

6.1.3 Chain

A chain topology involves the sensor nodes to be logically configured to form one or more

transmission chains to the selected sink node. The data is aggregated from node to node

until it is received by the sink node. The main objective of a chain topology is to reduce the

energy used for data transmission. The chain topology for WSNs is typically used for border

surveillance, transport route monitoring and pipeline monitoring. Although this approach is

prone to broken links when a node fails, there are redundancy mechanisms that can be used

to overcome this. These mechanisms fall outside of the scope of this scenario.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

120

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

In a ring topology, each sensor node has two neighbours and communication is usually only

in one direction. The examples here allow for communication in any direction at any time

to keep the analysis as generic as possible. In these examples, when a node fails, or stops

synchronising, the network effectively transforms into a chain topology. The ring topology

scenarios are added as a theoretical test case from a modelling perspective where all the

topologies are tested with optional parallelism in CSP. It also adds scenarios where possible

circular wait conditions can occur, a condition that results in possible deadlock.

6.1.3.1 3-Node ring-topology

A 3-node ring-topology is given in Figure 6.13. This could be tested in both the point-to-point

approach as well as the broadcasting communication approach. The point-to-point approach

breaks the system into 3 distinct point-to-point connections between the node processes,

resulting in a unique synchronisation set for each edge. It is up to the process definitions to

allow the communication to occur in a specific direction.

P

Q R

Figure 6.13: Ring topology with processes P , Q and R.

The 3 sub-scenarios detailing broadcasting, half-duplex bidirectional and simplex unidirec-

tional synchronisation are detailed below.

6.1.3.1.1 Broadcasting

Figure 6.14 shows the different broadcasting approaches between processes P , Q and

R. Each process has a unique broadcasting event to the other processes. A broadcaster is

identified and the other processes are only able to listen and synchronise if the broadcaster

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

121

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

has a broadcast event. It is shown in Figure 6.14 that a directional hyper-edge exists for the

broadcasting event from the particular broadcasting node. A common broadcasting event

is shared between the broadcaster and the sensor nodes, but not between the sensor nodes

themselves. The adjacency list is given in Listing 6.10. The 3-node ring scenario has the

same broadcasting structure as the 4-node fully connected mesh topology discussed earlier

in §6.1.1.2.

commR

R

commQ

commP

Q

P

Figure 6.14: Ring topology with processes P , Q and R.

(P,Q,R)

(Q,P,R)

(R,P,Q)

Listing 6.10: Adjacency list for broadcasting synchronisation between processes P , Q and

R.

The CSP process definitions for Figure 6.14 are given in Equation 6.22.

P := ((measurep →
−−−−−→
commP → workp → P) 2 (←−−−−−commQ→ workp → P)

2 (←−−−−−commR→ workp → P)) u (sleepp → P)

Q := ((measureq →
−−−−−→
commQ→ workq → Q) 2 (←−−−−−commP → workq → Q)

2 (←−−−−−commR→ workq → Q)) u (sleepq → Q)

R := ((measurer →
−−−−−→
commR→ workr → R) 2 (←−−−−−commP → workr → R)

2 (←−−−−−commQ→ workr → R)) u (sleepr → R) (6.22)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

122

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The network definition is given in Equation 6.23.

WSN := P ‖̃
X

Q ‖̃
X

R

X := {commP, commQ, commR} (6.23)

6.1.3.1.2 Bidirectional - Half-duplex

Figure 6.15 depicts the communication links between processes P , Q and R. These

connections are all point-to-point, but synchronisation is done with optional parallelism.

This scenario has the same structure when the general parallel operator is used. The

adjacency list is given in Listing 6.11.

commPQ

commQR

commPR

P

Q R

Figure 6.15: Bidirectional synchronisation between processes P , Q and R using half-duplex

synchronisation.

{P,Q}

{P,R}

{Q,R}

Listing 6.11: Adjacency list for half-duplex synchronisation between processes P , Q and R.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

123

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The CSP process definitions are given in Equation 6.24 and the network definition for optional

parallelism in Equation 6.25.

P := ((measurep →
←−−−−−→
commPQ→ workp → P) 2 (measurep →

←−−−−−→
commPR→ workp → P))

u (sleepp → P)

Q := ((measureq →
←−−−−−→
commPQ→ workq → Q) 2 (measureq →

←−−−−−→
commQR→ workq → Q))

u (sleepq → Q)

R := ((measurer →
←−−−−−→
commPR→ workr → R) 2 (measurer →

←−−−−−→
commQR→ workr → R))

u (sleepr → R) (6.24)

WSN := ‖̃
3

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commPQ, commPR,workp,measurep, sleepp})

(N2, αN2) = (Q, {commPQ, commQR,workq,measureq, sleepq})

(N3, αN3) = (R, {commPR, commQR,workr,measurer, sleepr}) (6.25)

6.1.3.1.3 Unidirectional - Simplex

The ring topology scenarios are best described with simplex synchronisation because

the communication occurs either in a clockwise or an anticlockwise direction. This scenario

will be described using a single simplex communication event between the processes, resulting

in unidirectional communication between the processes. For bidirectional communication,

two simplex definitions with different communication directions could be combined into one.

Figure 6.16 depicts uni-directional synchronisation between processes P , Q and R using a

simplex synchronisation event between all of the processes in a clockwise direction. The

adjacency list for this scenario is given in Listing 6.12.
(P,R)

(Q,P)

(R,Q)

Listing 6.12: Adjacency list for unidirectional synchronisation between processes P , Q and

R using one simplex synchronisation event.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

124

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

commqp

commrq

commpr

P

Q R

Figure 6.16: Unidirectional synchronisation between processes P , Q and R using one sim-

plex synchronisation event.

The CSP process definitions are given in Equation 6.26 and the network definition for optional

parallelism in Equation 6.27.

P := (measurep → −−−−−→commpr → workp → P) 2 (←−−−−−commqp → workp → P)

u (sleepp → P)

Q := (measureq → −−−−−→commqp → workq → Q) 2 (←−−−−−commrq → workq → Q)

u (sleepq → Q)

R := (measurer → −−−−−→commrq → workr → R) 2 (←−−−−−commpr → workr → R)

u (sleepr → R) (6.26)

WSN := ‖̃
3

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commpr, commqp, workp,measurep, sleepp})

(N2, αN2) = (Q, {commqp, commrq, workq,measureq, sleepq})

(N3, αN3) = (R, {commpr, commrq, workr,measurer, sleepr}) (6.27)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

125

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

6.1.3.2 4-Node ring-topology

A 4-node ring topology is used as a scenario to test the behaviour of the CSP model when

the network is not fully connected. In Figure 6.17 it can be noted that processes P and R do

not share an edge between them and the same for processes Q and S. This means that not

all node processes are able to receive all communication events. Broadcasting in this scenario

has a multicast flavour, where not all of the processes receive the broadcasting event. This

is per definition, hence the multicast reference.

P

Q

S

R

Figure 6.17: Ring topology with 4 node processes P , Q, R and S.

The 3 sub-scenarios detailing broadcasting, half-duplex bidirectional and simplex unidirec-

tional synchronisation are detailed below.

6.1.3.2.1 Broadcasting

Figure 6.18 shows the different broadcasting approaches between processes P , Q, R

and S. Each process has a unique broadcasting event to its connected processes. A

broadcaster is identified and the connected processes are only able to listen and synchronise

if the broadcaster performs a broadcast event. It is shown in Figure 6.18 that a directional

hyper-edge exists for the broadcasting event from the particular broadcasting node. A

common broadcasting event is shared between the broadcaster and the sensor nodes, but

not between the sensor nodes themselves. The adjacency list is given in Listing 6.13.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

126

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

commR

commS

commQ

commP

P

Q

S

R

Figure 6.18: Ring topology with processes P , Q, R and S.

(P,Q,S)

(Q,P,R)

(R,Q,S)

(S,P,R)

Listing 6.13: Adjacency list for broadcasting synchronisation between processes P , Q, R

and S.

The CSP process definitions for Figure 6.18 are given in Equation 6.28.

P := ((measurep →
−−−−−→
commP → workp → P) 2 (←−−−−−commQ→ workp → P)

2 (←−−−−−commS → workp → P)) u (sleepp → P)

Q := ((measureq →
−−−−−→
commQ→ workq → Q) 2 (←−−−−−commP → workq → Q)

2 (←−−−−−commR→ workq → Q)) u (sleepq → Q)

R := ((measurer →
−−−−−→
commR→ workr → R) 2 (←−−−−−commQ→ workr → R)

2 (←−−−−−commS → workr → R)) u (sleepr → R)

S := ((measures →
−−−−−→
commS → works → S) 2 (←−−−−−commP → works → S)

2 (←−−−−−commR→ works → S)) u (sleeps → S) (6.28)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

127

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The network definition is given in Equation 6.29.

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commP, commQ, commS,workp,measurep, sleepp})

(N2, αN2) = (Q, {commP, commQ, commR,workq,measureq, sleepq})

(N3, αN3) = (R, {commQ, commR, commS,workr,measurer, sleepr})

(N4, αN4) = (S, {commP, commR, commS,works,measures, sleeps}) (6.29)

6.1.3.2.2 Bidirectional - Half-duplex

Figure 6.19 depicts the communication links between processes P , Q, R and S. These

connections are all point-to-point, but synchronisation is done with optional parallelism.

This scenario has the same structure when the general parallel operator is used. The

adjacency list is given in Listing 6.14.

commPQ

commQR

commPSP

Q

S

commRS

R

Figure 6.19: Bidirectional synchronisation between processes P , Q, R and S using half-

duplex synchronisation.

{P,Q}

{P,S}

{Q,R}

{R,S}

Listing 6.14: Adjacency list for half-duplex synchronisation between processes P , Q, R and

S.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

128

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The CSP process definitions are given in Equation 6.30 and the network definition for optional

parallelism in Equation 6.31.

P := ((measurep →
←−−−−−→
commPQ→ workp → P) 2 (measurep →

←−−−−−→
commPS → workp → P))

u (sleepp → P)

Q := ((measureq →
←−−−−−→
commPQ→ workq → Q) 2 (measureq →

←−−−−−→
commQR→ workq → Q))

u (sleepq → Q)

R := ((measurer →
←−−−−−→
commQR→ workr → R) 2 (measurer →

←−−−−−→
commRS → workr → R))

u (sleepr → R)

S := ((measures →
←−−−−−→
commPS → works → S) 2 (measures →

←−−−−−→
commRS → works → S))

u (sleeps → S) (6.30)

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commPQ, commPS,workp,measurep, sleepp})

(N2, αN2) = (Q, {commPQ, commQR,workq,measureq, sleepq})

(N3, αN3) = (R, {commQR, commRS,workr,measurer, sleepr})

(N4, αN4) = (S, {commPS, commRS,works,measures, sleeps}) (6.31)

6.1.3.2.3 Unidirectional - Simplex

This scenario will be described using a single simplex communication event between

the processes, resulting in unidirectional communication between the processes. Figure 6.20

depicts uni-directional synchronisation between processes P , Q, R and S using a simplex

synchronisation event between all of the processes in a clockwise direction. The adjacency

list for this scenario is given in Listing 6.15.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

129

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

commqp

commrq

commpsP

Q

S

commsr

R

Figure 6.20: Unidirectional synchronisation between processes P , Q, R and S using one

simplex synchronisation event.

(P,S)

(Q,R)

(R,Q)

(S,R)

Listing 6.15: Adjacency list for unidirectional synchronisation between processes P , Q, R

and S using one simplex synchronisation event.

The CSP process definitions are given in Equation 6.32 and the network definition for optional

parallelism in Equation 6.33.

P := ((measurep → −−−−−→commps → workp → P) 2 (←−−−−−commqp → workp → P))

u (sleepp → P)

Q := ((measureq → −−−−−→commqp → workq → Q) 2 (←−−−−−commrq → workq → Q))

u (sleepq → Q)

R := ((measurer → −−−−−→commrq → workr → R) 2 (←−−−−−commsr → workr → R))

u (sleepr → R)

S := ((measures → −−−−−→commsr → works → S) 2 (←−−−−−commps → works → S))

u (sleeps → S) (6.32)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

130

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commps, commqp, workp,measurep, sleepp})

(N2, αN2) = (Q, {commqp, commrq, workq,measureq, sleepq})

(N3, αN3) = (R, {commrq, commsr, workr,measurer, sleepr})

(N4, αN4) = (S, {commsr, commps, works,measures, sleeps}) (6.33)

6.1.3.3 4-Node Linear Topology

A 4-node linear topology is given in Figure 6.21. This scenario is similar to the 4-node ring

topology of Figure 6.17 with the exception that nodes P and S are disconnected.

QP SR

Figure 6.21: Linear topology with node processes P , Q, R and S.

The 3 sub-scenarios detailing broadcasting, half-duplex bidirectional and simplex unidirec-

tional synchronisation are detailed below.

6.1.3.3.1 Broadcasting

Figure 6.22 shows the different broadcasting approaches between processes P , Q, R

and S. Each process has a unique broadcasting event to its connected processes. A

broadcaster is identified and the connected processes are only able to listen and synchronise

if the broadcaster has a broadcast event. It is shown in Figure 6.22 that a directional

hyper-edge exists for the broadcasting event from the particular broadcasting node. A

common broadcasting event is shared between the broadcaster and the sensor nodes, but

not between the sensor nodes themselves. The adjacency list is given in Listing 6.16.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

131

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

commP QP commS SR

commQ

commR

Figure 6.22: Linear topology with processes P , Q, R and S.

(P,Q)

(Q,P,R)

(R,Q,S)

(S,R)

Listing 6.16: Adjacency list for a linear topology between processes P , Q, R and S.

The CSP process definitions for Figure 6.22 are given in Equation 6.34.

P := ((measurep →
−−−−−→
commP → workp → P) 2 (←−−−−−commQ→ workp → P))

u (sleepp → P)

Q := ((measureq →
−−−−−→
commQ→ workq → Q) 2 (←−−−−−commP → workq → Q)

2 (←−−−−−commR→ workq → Q)) u (sleepq → Q)

R := ((measurer →
−−−−−→
commR→ workr → R) 2 (←−−−−−commQ→ workr → R)

2 (←−−−−−commS → workr → R)) u (sleepr → R)

S := ((measures →
−−−−−→
commS → works → S) 2 (←−−−−−commR→ works → S))

u (sleeps → S) (6.34)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

132

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The network definition is given in Equation 6.35.

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commP, commQ,workp,measurep, sleepp})

(N2, αN2) = (Q, {commP, commQ, commR,workq,measureq, sleepq})

(N3, αN3) = (R, {commQ, commR, commS,workr,measurer, sleepr})

(N4, αN4) = (S, {commS, commR,works,measures, sleeps}) (6.35)

6.1.3.3.2 Bidirectional - Half-duplex

Figure 6.23 depicts the communication links between processes P , Q, R and S. These

connections are all point-to-point, but synchronisation is done with optional parallelism.

This scenario has the same structure when the general parallel operator is used. The

adjacency list is given in Listing 6.17.

commQRcommPQ QP commRS SR

Figure 6.23: Bidirectional synchronisation between processes P , Q, R and S using half-

duplex synchronisation.

{P,Q}

{Q,R}

{R,S}

Listing 6.17: Adjacency list for half-duplex synchronisation between processes P , Q, R and

S.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

133

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The CSP process definitions are given in Equation 6.36 and the network definition for optional

parallelism in Equation 6.37.

P := (measurep →
←−−−−−→
commPQ→ workp → P) u (sleepp → P)

Q := ((measureq →
←−−−−−→
commPQ→ workq → Q) 2 (measureq →

←−−−−−→
commQR→ workq → Q))

u (sleepq → Q)

R := ((measurer →
←−−−−−→
commQR→ workr → R) 2 (measurer →

←−−−−−→
commRS → workr → R))

u (sleepr → R)

S := (measures →
←−−−−−→
commRS → works → S) u (sleeps → S) (6.36)

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commPQ,workp,measurep, sleepp})

(N2, αN2) = (Q, {commPQ, commQR,workq,measureq, sleepq})

(N3, αN3) = (R, {commQR, commRS,workr,measurer, sleepr})

(N4, αN4) = (S, {commRS,works,measures, sleeps}) (6.37)

6.1.3.3.3 Unidirectional - Simplex

This scenario will be described using a single simplex communication event between

the processes, resulting in unidirectional communication between the processes. Figure 6.24

depicts uni-directional synchronisation between processes P , Q, R and S using a simplex

synchronisation event between all of the processes in a direction from left to right. The

adjacency list for this scenario is given in Listing 6.18.

(P,Q)

(Q,R)

(R,S)

Listing 6.18: Adjacency list for unidirectional synchronisation between processes P , Q, R

and S using one simplex synchronisation event.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

134

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

commqrcommpq QP commrs SR

Figure 6.24: Unidirectional synchronisation between processes P , Q, R and S using one

simplex synchronisation event.

The CSP process definitions are given in Equation 6.38 and the network definition for optional

parallelism in Equation 6.39.

P := (measurep → −−−−−→commpq → workp → P)

u (sleepp → P)

Q := (measureq → −−−−−→commqr → workq → Q) 2 (←−−−−−commpq → workq → Q)

u (sleepq → Q)

R := (measurer → −−−−−→commrs → workr → R) 2 (←−−−−−commqr → workr → R)

u (sleepr → R)

S := (←−−−−−commrs → works → S)

u (sleeps → S) (6.38)

WSN := ‖̃
4

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commpq, workp,measurep, sleepp})

(N2, αN2) = (Q, {commpq, commqr, workq,measureq, sleepq})

(N3, αN3) = (R, {commrs, commqr, workr,measurer, sleepr})

(N4, αN4) = (S, {commrs, works,measures, sleeps}) (6.39)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

135

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

6.1.4 Tree

In a tree topology, the leaf nodes send their data to their parent nodes, which in turn send

the aggregated information to their own parent nodes. Using this data aggregation approach,

data is passed from the leaf nodes to the root node, which typically acts as the sink node.

Tree topologies attempt to avoid flooding and unicast can be used over broadcast. Optional

parallelism is used to model the point-to-point links where a leaf node can transmit a data

message even if its parent node is not ready to receive data. This allows the leaf node to

still be able to respond to its leaf nodes’ data transmissions. Stated differently, the use of

optional parallelism to model tree topologies in CSP covers cases where the whole branch

blocks if a parent node cannot service a data transmission request at that specific moment.

Optional parallelism is therefore used for the point-to-point (unicast) links. From a mod-

elling perspective, communication from the root node to the leaf nodes will be done with

broadcasting.

A 7-node tree-topology is given in Figure 6.25.

P

R

U VS

Q

T

Figure 6.25: Tree topology with processes P , Q, R, S, T , U and V .

The 3 sub-scenarios detailing broadcasting, half-duplex bidirectional and simplex unidirec-

tional synchronisation are detailed below.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

136

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

6.1.4.1 Broadcasting

Figure 6.26 shows the broadcasting approach between processes P , Q, R, S, T , U and

V . Communication takes place in one direction from the root node down to the leaf node.

Each process has a unique broadcasting event to its connected leaf nodes. A broadcaster is

identified and the connected leaf node processes are only able to listen and synchronise if

the broadcaster has a broadcast event. It is shown in Figure 6.26 that a directional hyper-

edge exists for the broadcasting event from the particular broadcasting node. A common

broadcasting event is shared between the broadcaster and the sensor nodes, but not between

the sensor nodes themselves. The adjacency list is given in Listing 6.19.

P

R

U VS

Q

T

commP

commRcommQ

Figure 6.26: Tree topology with processes P , Q, R, S, T , U and V .

(P,Q,R)

(Q,S,T)

(R,U,V)

Listing 6.19: Adjacency list for a tree topology between processes P , Q, R, S, T , U and V .

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

137

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The CSP process definitions for Figure 6.26 are given in Equation 6.40.

P := (measurep →
−−−−−→
commP → workp → P)

u (sleepp → P)

Q := ((measureq →
−−−−−→
commQ→ workq → Q) 2 (←−−−−−commP → workq → Q))

u (sleepq → Q)

R := ((measurer →
−−−−−→
commR→ workr → R) 2 (←−−−−−commP → workr → R))

u (sleepr → R)

S := (←−−−−−commQ→ works → S) u (sleeps → S)

T := (←−−−−−commQ→ workt → T) u (sleept → T)

U := (←−−−−−commR→ worku → U) u (sleepu → U)

V := (←−−−−−commR→ workv → V) u (sleepv → V) (6.40)

The network definition is given in Equation 6.41.

WSN := ‖̃
7

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commP,workp,measurep, sleepp})

(N2, αN2) = (Q, {commP, commQ,workq,measureq, sleepq})

(N3, αN3) = (R, {commP, commR,workr,measurer, sleepr})

(N4, αN4) = (S, {commQ,works, sleeps})

(N5, αN5) = (T, {commQ,workt, sleept})

(N6, αN6) = (U, {commR,worku, sleepu})

(N7, αN7) = (V, {commR,workv, sleepv}) (6.41)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

138

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

6.1.4.2 Bidirectional - Half-duplex

Figure 6.27 depicts the communication links between processes P , Q, R, S, T , U and V . These

connections are all point-to-point, but synchronisation is done with optional parallelism. This

scenario has the same structure when the general parallel operator is used. The adjacency

list is given in Listing 6.20.

commPQ commPR

P

R

U VS

Q

T

commQS commQT commRVcommRU

Figure 6.27: Bidirectional synchronisation between processes P , Q, R, S, T , U and V using

half-duplex synchronisation.

{P,Q}

{P,R}

{Q,S}

{Q,T}

{R,U}

{R,V}

Listing 6.20: Adjacency list for half-duplex synchronisation between processes P , Q, R, S,

T , U and V .

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

139

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

The CSP process definitions are given in Equation 6.42 and the network definition for optional

parallelism in Equation 6.43.

P := ((measurep →
←−−−−−→
commPQ→ workp → P) 2 (measurep →

←−−−−−→
commPR→ workp → P))

u (sleepp → P)

Q := ((measureq →
←−−−−−→
commPQ→ workq → Q) 2 (measureq →

←−−−−−→
commQS → workq → Q)

2 (measureq →
←−−−−−→
commQT → workq → Q)) u (sleepq → Q)

R := ((measurer →
←−−−−−→
commPR→ workr → R) 2 (measurer →

←−−−−−→
commRU → workr → R)

2 (measurer →
←−−−−−→
commRV → workr → R)) u (sleepr → R)

S := (measures →
←−−−−−→
commQS → works → S) u (sleeps → S)

T := (measuret →
←−−−−−→
commQT → workt → T) u (sleept → T)

U := (measureu →
←−−−−−→
commRU → worku → U) u (sleepu → U)

V := (measurev →
←−−−−−→
commRV → workv → V) u (sleepv → V) (6.42)

WSN := ‖̃
7

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commPQ, commPR,workp,measurep, sleepp})

(N2, αN2) = (Q, {commPQ, commQS, commQT,workq,measureq, sleepq})

(N3, αN3) = (R, {commPR, commRU, commRV,workr,measurer, sleepr})

(N4, αN4) = (S, {commQS,works,measures, sleeps})

(N5, αN5) = (S, {commQT,works,measures, sleeps})

(N6, αN6) = (S, {commRU,works,measures, sleeps})

(N7, αN7) = (S, {commRV,works,measures, sleeps}) (6.43)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

140

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

6.1.4.3 Unidirectional - Simplex

This scenario will be described using a single simplex communication event between the

processes, resulting in unidirectional communication between the processes from the leaf

nodes back to the root node. Figure 6.28 depicts uni-directional synchronisation between

processes P , Q, R, S, T , U and V using a simplex synchronisation event between all of the

processes in a direction from the leaf nodes to the root node (bottom to top). The adjacency

list for this scenario is given in Listing 6.21.

commqp commrp

P

R

U VS

Q

T

commsq commtq commvrcommur

Figure 6.28: Unidirectional synchronisation between processes P , Q, R, S, T , U and V

using one simplex synchronisation event.

(Q,P)

(R,P)

(S,Q)

(T,Q)

(U,R)

(V,R)

Listing 6.21: Adjacency list for unidirectional synchronisation between processes P , Q, R,

S, T , U and V using one simplex synchronisation event.

The CSP process definitions are given in Equation 6.44 and the network definition for optional

parallelism in Equation 6.45.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

141

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

P := ((←−−−−−commqp → workp → P) 2 (←−−−−−commrp → workp → P))

u (sleepp → P)

Q := ((measureq → −−−−−→commqp → workq → Q) 2 (←−−−−−commsq → workq → Q)

2 (←−−−−−commtq → workq → Q)) u (sleepq → Q)

R := ((measurer → −−−−−→commrp → workr → R) 2 (←−−−−−commur → workr → R)

2 (←−−−−−commvr → workr → R)) u (sleepr → R)

S := (measures → −−−−−→commsq → works → S) u (sleeps → S)

T := (measuret → −−−−−→commtq → workt → T) u (sleept → T)

U := (measureu → −−−−−→commur → worku → U) u (sleepu → U)

V := (measurev → −−−−−→commvr → workv → V) u (sleepv → V) (6.44)

WSN := ‖̃
7

i=1 (Ni, αNi) , where

(N1, αN1) = (P, {commqp, commrp, workp, sleepp})

(N2, αN2) = (Q, {commqp, commsq, commtq, workq,measureq, sleepq})

(N3, αN3) = (R, {commrp, commur, commvr, workr,measurer, sleepr})

(N4, αN4) = (S, {commsq, works,measures, sleeps})

(N5, αN5) = (T, {commtq, workt,measuret, sleept})

(N6, αN6) = (U, {commur, worku,measureu, sleepu})

(N7, αN7) = (V, {commvr, workv,measurev, sleepv}) (6.45)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

142

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Optional parallel test scenario description

6.2 CHAPTER SUMMARY

This chapter defined some common WSN topologies and typical CSP modelling scenarios

to be tested with the new optional parallel operators. The results of the tests to be done

will indicate if optional parallelism can be used to model these WSNs as well as if there

exists a trace relation between the two optional parallel operators. The sensor nodes were

modelled as processes, defining their basic operational behaviour. The common structure for

a sensor node’s behaviour is to measure a phenomenon, do some processing on the measured

phenomenon and communicate the processed data. In a typical practical scenario, a sensor

node will measure a phenomenon by sampling its Analog-to-Digital Converter (ADC), process

the reading by adding a conversion factor to it, filter out possible noise and transmit the

measurement to its neighbours. This structure was adhered to as far as possible for the

scenarios.

With the use of more complex topologies, the direction of the data-flow was taken into ac-

count. Although the CSP definitions in this dissertation are data-independent, the directional

flow of messages had to be mentioned. Optional parallelism implicitly defines directional

synchronisation due to its broadcasting principles, which was used to model the data-flow

direction on a higher level.

Three sub-scenarios with different synchronisation approaches were attempted for each of

the scenarios, broadcasting, bidirectional half-duplex and bidirectional simplex. Some of the

scenarios had their bidirectional simplex sub-scenarios replaced by unidirectional simplex

scenarios as to adhere to the goal of what the specific topology is trying to achieve.

Process definitions for the more complex topologies were given in indexed notation which in-

cluded the alphabet of each node process definition, the same notation as used in alphabetised

parallelism.

The optional parallel translation defined in Chapter 4 will be tested with the use of the

scenarios of this chapter and the software tools implemented in Chapter 5. Chapter 7 will

detail the test results in terms of CSP trace refinement and deadlock freedom of the WSN

scenarios presented in this chapter.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

143

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7

TESTING OPTIONAL PARALLELISM IN THE

TRACES DOMAIN

The scenarios of Chapter 6 are tested with software tools to determine if the classical CSP

conversion of optional parallelism of Chapter 4, OptParT , is a sufficient solution to OptPar.

The tests are performed with the use of the new tools developed, detailed in Chapter 5, and

the CSP model-checker ProCSP. The tests are done on an exploratory basis to empirically

determine if common WSN system definitions, based on their graph structures or topologies,

can be modelled with the optional parallel operator. The scenarios of Chapter 6 were chosen

to cover the most commonly used WSN topologies. This is by no means an exhaustive test

where it can be stated that there exists a trace relation between OptParT and OptPar for all

possible examples. These exploratory tests aim to cover simple, but expandable, scenarios of

common WSN topologies used in practice.

The traces of the WSN systems using OptPar and OptParT are compared to determine

if a trace refinement relation exist, which will show if the classical CSP translation can be

used in the place of the optional parallel operator. This is done because OptPar is yet to

be included in current model-checker implementations and if the applicability of optional

parallelism can be shown, it can be argued that the optional parallel operator should be

included in model-checking tool implementations.

Trace refinement between OptPar and OptParT is the ultimate test and the main result of

this dissertation. If this can be determined, it can be argued that the translation is a suitable

solution to model the behaviour of optional parallelism using classical CSP operators in

the traces domain. This allows the trace semantics of the classical CSP operators used in

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

OptParT to be inherited. Defining and proving the trace semantics of optional parallelism

from first principles is a difficult task and this approach makes it easier to adopt the optional

parallel operator in existing model-checkers because the trace semantics are composed of the

existing CSP operators’ trace semantics.

7.1 TEST DEFINITION

The WSN scenarios of Chapter 6 are tested for various properties. As previously mentioned,

these systems need to be translated from system definitions using the optional parallel op-

erator to system definitions using only the classical CSP operators. The conversion is done

with the OptoCSP tool by giving the process and system definitions of Chapter 6 in CSPM
format as detailed in §5.1.1. The tests are done with the help of software tools, the two new

tools OptoCSP and OpTrace as well as a third party tool, ProCSP. These converted systems

need to be tested for the following:

• Deadlock Freedom

• Trace Refinement

OpTrace and ProCSP were mostly used in the deadlock and trace refinement tests. The

adjacency lists for each of the test scenarios of Chapter 6 were given as a text file input to

OpTrace where an internal set of processes and channels were constructed. The traces of

these processes were computed by clicking the "Generate Traces" button on the user interface

of OpTrace, after which the "Build Model" and "Trace Refinement" buttons builds the CSP

model of the input text file and performs a trace refinement check by invoking ProCSP

respectively. The result on the user interface of OpTrace and ProCSP were used to evaluate

the pass criteria.

7.1.1 Deadlock freedom

Due to the networks not being triple disjoint, deadlock cannot be theoretically dismissed. It

is therefore required to perform a deadlock analysis on each scenario with the use of ProCSP.

This is done with the deadlock analysis function of ProCSP, given the CSPM representation

of the WSN as input. Some of the scenarios were chosen to create possible circular wait

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

145

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

deadlock scenarios in order to empirically check the behaviour of optional parallelism in

these scenarios. As a first test criterion, it is required that the system definitions using

the classical CSP translation of optional parallelism are all deadlock free. It is argued that

optional parallelism allows processes to synchronise when they are able to, and to proceed

independently if they are not, effectively eliminating the possibility of deadlock. This test

will confirm if this is true for the selected test scenarios.

7.1.2 Trace refinement

The traces are computed with the OpTrace tool where the adjacency list of the WSN topology

is given as input. OpTrace generates a system definition and performs trace refinement checks

between each of the generated traces and the system definition. These trace refinement checks

are performed with the help of ProCSP, where the traces are generated by OpTrace and the

refinement checks done by ProCSP. If all the generated traces are possible traces of the

system, it is concluded that there exists a trace refinement between OptPar and OptParT .

This will show that the optional parallel operator’s behaviour in the traces domain can be

defined using classical CSP operators.

7.1.3 Pass criteria

A test scenario will pass if it satisfies all the test criteria. The following pass criteria will be

evaluated to determine if a test scenario has passed.

• Deadlock Freedom - The output system generated by OpTrace should be deadlock

free. This is performed by ProCSP when the "Model Check" option is chosen from

the option menu. ProCSP traverses all possible unique states of the input system

and gives an output with details about the number of states and transitions as well

as possible deadlock conditions. The user is clearly notified if a deadlock condition is

found, showing the traces leading up to the deadlock condition. A pass condition will

be marked if ProCSP concludes that the system is deadlock free.

• Trace Refinement - The trace refinement check can be done in two ways. First, OpTrace

can invoke ProCSP in the background to perform CSP assertion checks on all the

generated traces and give output to the user on the number of traces checked, the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

146

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

number of passed assertions, the number of failed assertions and the number of errors.

Secondly, the trace refinement checks can be performed using ProCSP by selecting the

"Check CSP-M Assertions" function from the option menu. The test will pass if each of

the generated traces is a possible trace of the input system. This is shown by OpTrace

when the number of pass traces equals the number of checked traces and no errors or

failed states are present. Using ProCSP, a pass condition is found if all CSP trace

assertion checks are marked with a X mark.

7.2 LIMITATIONS

7.2.1 Problems encountered

While the tests were executed, various software limitations were encountered. When working

with large networks, memory constraints started to get problematic. OpTrace ran into the

state space explosion problem. The number of traces generated for the test scenarios grew

exponentially, eventually resulting in out of memory errors. This is contributed to the inter-

leaving nature of the optional parallel operator’s behaviour in the traces domain where any

number of processes can opt out of synchronisation events, and all permutations have to be

accounted for. The number of recursive function calls also had an effect on the amount of

memory required, which increased significantly with the number of process definitions used.

Stack overflow errors occurred frequently for larger systems where multiple recursive function

calls were made.

The other limitations were encountered by ProCSP. The structure of the CSP network and

the different synchronisation mechanisms influenced ProCSP’s ability to model-check it. For

system definitions which were too complex in terms of the number of processes and channel

artefacts, stack overflow and out of memory errors occurred. Furthermore, if the number of

trace refinement tests to be done exceeded 10,000, the CSPM parser of ProCSP encountered

a stack overflow error.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

147

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

7.2.2 Solutions

Some system simplifications were made to alleviate the problems, but the same memory issues

were eventually encountered by OpTrace as well as ProCSP.

OpTrace was modified to use more efficient datasets to store the traces and the details of the

traces were reduced to only contain the essential information. The use of references instead

of duplicating the data significantly reduced the amount of data kept in memory for each

trace. This is known as pass by reference in contrast to pass by value, where the former only

keeps a memory reference to the data and the latter a duplication of the data. The amount

of memory required for the multiple recursion calls could unfortunately not be solved as

recursion seemed to be the only implementation strategy viable for the implementation of

the optional parallel trace generator of OpTrace. Increasing the stack size of the software

reduced the frequency of the stack overflow errors, but they eventually started to occur once

larger systems were tested.

To alleviate the memory errors of ProCSP, the simplifications made on the CSP system

definitions was to hide all the internal independent traces of each node process. This had

the result that the system definitions only contained traces of synchronisation events. It was

decided that this is sufficient because the synchronising events are the only points of interest.

For ProCSP’s CSPM parser running out of memory on large trace sets, the number of trace

refinement checks were split into blocks of 10,000 tests, with a model file generated for each

block of trace tests. There was no means to increase the stack or the total allowed memory to

be used by ProCSP and therefore the memory issues could not be resolved completely.

7.2.3 Ignored metrics

With the number of theoretically generated traces having such significance on the examples

that could be tested, this is also given in the test results. Other test metrics have been left

out as they do not contribute to the analysis.

• Memory - Memory usage is implementation specific. Although the memory limitations

limit the number of nodes in the test scenarios, it is a secondary effect of the vast number

of states being generated. Adding more system memory to the test hardware will not

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

148

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

have an effect as the memory requirement grows at the same exponential rate as the

number of states. This does not add any value to see if the theoretical traces refines

the translation.

• Execution Time - The execution time needed for model-checking increases as the

complexity of the system model increases. Although it is an indication on the complexity

of the model, it does not add any value to see if the theoretical traces refines the

translation.

7.3 RESULTS

The results of the analysis of the WSN topology scenarios of Chapter 6 are given in Table

7.1. The following abbreviations and notation is used:

DF Deadlock free

ND Not determined

TR Trace refinement

X Test passed

× Test failed

Topology Sync Description Diagram CSPM Model Traces DF TR

Reference Reference

Flat, Broadcasting 6.1.1.1.1
commpq

QP B.1.1.1 3 X X

point-to-point

Bidirectional 6.1.1.1.2 comm
QP B.1.1.2 7 X X

Half-duplex

Bidirectional 6.1.1.1.3
commpq

QP
commqp

B.1.1.3 7 X X

Simplex

Mesh Broadcasting 6.1.1.2.1

commR

commS

commQ

commP

P

Q

S

R

B.1.2.1 509 ND X

Fully Connected

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

149

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

Topology Sync Description Diagram CSPM Model Traces DF TR

Reference Reference

Bidirectional 6.1.1.2.2

SP

Q R

comm

B.1.2.2 234 X X

Half-duplex

Bidirectional 6.1.1.2.3

SP

Q R

commps

commsp

commpq

commqp

commqr

commrq

commsr

commrs

commpr

commrp commqs

commsq

B.1.2.3 4309 ND X

Simplex

Cluster Broadcasting 6.1.2.1
commP

P

R S
commsp

commqp

commrp

Q

B.2.1.1 215 X X

Star

Bidirectional 6.1.2.2

commPR

commPQ

commPS

P

Q

SR

B.2.1.2 277 X X

Half-duplex

Bidirectional 6.1.2.3

commpr

commqp

commsp

P

Q

SR

commpq

commrp

commps

B.2.1.3 277 X X

Simplex

Chain Broadcasting 6.1.3.1.1

commR

R

commQ

commP

Q

P

B.3.1.1 46 X X

3 Node Ring

Bidirectional 6.1.3.1.2 commPQ

commQR

commPR

P

Q R

B.3.1.2 121 X X

Half-duplex

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

150

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

Topology Sync Description Diagram CSPM Model Traces DF TR

Reference Reference

Unidirectional 6.1.3.1.3 commqp

commrq

commpr

P

Q R

B.3.1.3 28 X X

Simplex

Chain Broadcasting 6.1.3.2.1

commR

commS

commQ

commP

P

Q

S

R

B.3.2.1 305 X X

4 Node Ring

Bidirectional 6.1.3.2.2 commPQ

commQR

commPSP

Q

S

commRS

R

B.3.2.2 1169 X X

Half-duplex

Unidirectional 6.1.3.2.3 commqp

commrq

commpsP

Q

S

commsr

R

B.3.2.3 153 X X

Simplex

Chain Broadcasting 6.1.3.3.1 commP QP commS SR

commQ

commR

B.3.3.1 223 X X

4 Node Line

Bidirectional 6.1.3.3.2 commQRcommPQ QP commRS SR B.3.3.2 399 X X

Half-duplex

Unidirectional 6.1.3.3.3 commqrcommpq QP commrs SR B.3.3.3 49 X X

Simplex

Tree Broadcasting 6.1.4.1

P

R

U VS

Q

T

commP

commRcommQ
B.4.1.1 1626 X X

Bidirectional 6.1.4.2

commPQ commPR

P

R

U VS

Q

T

commQS commQT commRVcommRU

B.4.1.2 536567 X X

Half-duplex

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

151

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

Topology Sync Description Diagram CSPM Model Traces DF TR

Reference Reference

Unidirectional 6.1.4.3

commqp commrp

P

R

U VS

Q

T

commsq commtq commvrcommur

B.4.1.3 23377 X X

Simplex

Table 7.1: Result summary of topology tests.

7.4 DISCUSSION OF RESULTS

The software limitations of both OpTrace and ProCSP restricted the network sizes of the

test scenarios. WSN simulations are often done on hundreds of nodes. This, however, is

not possible with CSP models as each possible state of the network is computed based on

the laws and semantics of CSP, much of which are defined in [2]. The tests which were not

possible to be executed were also detailed for completeness. FDR3 was considered to be used

instead of ProCSP, due to its improved simplifications and better memory management, but

it was decided that it will not add value as only two scenarios could not be proven deadlock

free, but all scenarios could successfully be checked for trace refinement. It was also too late

in the project to change the CSP model-checker to FDR3 as it would have required software

design changes as well as re-testing all previously tested scenarios.

7.4.1 Traces

The two tests which had no result on their deadlock freeness tests was due to ProCSP running

out of memory. Both of these tests were from the fully connected mesh topology group, using

broadcasting and bidirectional simplex channels, where all processes are connected to each

other. It is clear from their network graphs that their CSP definitions would be complex,

with many processes and channel artefacts. When the broadcasting and bidirectional simplex

scenarios of the fully connected mesh topology are compared to their bidirectional half-duplex

counterpart, it can be seen that the number of traces are a lot less, in contrast with all the

other scenarios where the number of traces of bidirectional half-duplex channels are the same

as the bidirectional simplex channels. This is due to the fact that this is the best example to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

152

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

illustrate optional parallelism. In the bidirectional half-duplex scenario, there is one common

synchronisation event comm between the processes, and each process has an equal chance

to either be a transmitter or receiver, as well as to opt out of being one of the receiving

processes. This example shows that the commonly used generalised parallelism examples

in CSP, where all processes share the same synchronisation event, can be modelled with

relatively low complexity using optional parallelism as only one channel artefact is added per

process.

In each of the scenarios, except for the fully connected mesh topology scenario, the number of

traces of the bidirectional half-duplex and bidirectional simplex are the same. Further analysis

in ProCSP indicated that the number of state transitions and the number of states differ for

the cases where the possible traces were the same. The bidirectional simplex scenarios had

more than double the amount of states and state transitions, which were expected because the

number of channel artefacts are doubled in the bidirectional simplex cases. For this reason,

some of the scenarios were modified to have unidirectional simplex definitions to see if some

other trace related conclusions could me made. In these scenarios, the amount of possible

traces were significantly reduced due to only half the amount of channel artefacts used. The

number of states and state transitions followed this trend accordingly.

When the 4-node ring and 4-node chain scenarios are compared to each other, it can be seen

that the addition of the extra channel artefacts to convert from a line to a ring topology

greatly increased the number of traces. It was expected that the number of traces would

only increase by a few traces as the channels added only influenced the two of the processes.

In the bidirectional and unidirectional scenarios of the 4-node line topology, the increase in

the number of traces was almost threefold more when the topology was converted to a chain

topology. It was later found, by inspection of the traces, that many new permutations of the

traces were found due to the additional channel artefacts.

The tree topology had the most amount of traces, significantly more than all the other

scenarios. This is due to these scenarios having more processes and therefore more channel

artefacts connected to them.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

153

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Testing optional parallelism in the traces domain

7.4.2 Deadlock

The two tests on which no verdict could be given regarding their deadlock freeness were not

marked as failed, but only as not testable because more refined model-checkers could be used

for analysis. Simulation runs where the node processes were simulated in independent soft-

ware threads gave initial insight to whether a complex network configuration could possibly

be testable. After a successfully completed simulation run, it could be concluded that there

could possibly exist a trace refinement and the system could be checked for deadlock free-

ness. Trace discrepancies and deadlock conditions are easily shown with the simulator where

time-out errors are shown to the user. For the tests performed in this chapter, no possible

deadlock conditions or trace discrepancies have been found with the simulation runs.

It has been found that all tests which did not suffer from state space explosion passed the

deadlock test criterion. They were all deadlock free, even in the cases where possible circular-

wait conditions could have occurred like the fully connected mesh and ring topologies.

7.4.3 Trace refinement

All the tests’ mathematically computed traces with the use of OpTrace were refinements of

their optional parallel translation, confirming the specification and implementation relation

of Equation 5.1. It can be concluded, from the proof tests, that OptParT is refined by

OptPar for these specific test scenarios. These test scenarios serve as a good result set as

more complex topologies can be built from a combination of the tested topologies. Currently,

nothing can be said about a possible trace refinement relation where OptParT refines OptPar.

To test a refinement relation as Equation 5.1 where the SPEC and IMPL are swapped

requires a CSP model-checker to have OptPar implemented. Then, the traces of systems

using OptParT can be tested for refinement against systems containing OptPar with the

use of a CSP model-checker. If a trace refinement could be found in both directions where

OptParT and OptPar both refine each other, it could be concluded that OptParT is an exact

translation of OptPar.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

154

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8

CONCLUSION AND OUTLOOK

Communicating processes under parallelism in CSP require them to synchronise jointly. It is

often found in real-world scenarios that this is not possible. A WSN is a textbook example of

a scenario where a node communicates with its neighbours, and not all neighbouring nodes

are required to respond. In some cases the neighbouring nodes are not able to respond due to

the limiting factors of WSNs, described in §2.1. This is typically seen during broadcasting,

which is not natively supported in CSP. The introduction of optional parallelism addresses

this shortfall in the current CSP language. The notion of broadcasting nodes can easily

be modelled as CSP processes using the optional parallel operator. This allows for partial

synchronisation between processes which are able to synchronise and allows processes to opt

out of synchronisation when they are not ready to do so.

This dissertation explored the initial work on optional parallelism of [17] (referred to as

OptPar) by modelling its behaviour with classical CSP operators (referred to as OptParT).

This was done by adding a CSP channel artefact to each of the processes’ definitions. The

channel artefacts, one for each synchronising event, were added under alphabetised parallelism

to the corresponding process. The processes effectively had their external synchronisation

events hidden to only be communicated with its attached channel artefacts. The channel

artefacts orchestrate the communication with each other, so that when the traces of interest

of the system are observed, the traces of the step laws of OptPar are represented. This

addition of the channel artefacts to the communicating processes serve as a translation from

CSP systems defined with the optional parallel operator of [17] to CSP systems using only

classical CSP operators. It has been found that various communication properties can be

modelled with the atomic channel artefacts. This allows for broadcasting, simplex, half-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8 Conclusion and outlook

duplex and full-duplex communication per channel to be modelled.

OptParT was tested for trace refinement against the step laws of OptPar [17] by means of

OpTrace, a newly developed CSP trace generator, and the model-checking tool ProCSP, an

extension of the ProB tool to support CSP. Various WSN graph topologies were modelled in

CSP from real-world applications. The traces of these systems were computed by OpTrace’s

optional parallel operator implementation. The traces were checked for trace refinement

against the translated WSN CSP model with the use of ProCSP. All the tested scenarios

passed the trace refinement checks, meaning that all the generated traces can be observed

from the system definitions. All the scenarios were proven to be deadlock free with the

deadlock analysis function of ProCSP, except for two as their systems were too complex for

ProCSP to analyse.

With the software limitations encountered, not all scenarios could be tested for deadlock

freedom. It was still useful to do as the concept of the translation of optional parallelism

could be tested, albeit for small scenarios. ProCSP is not a production model-checker such

as FDR, but was sufficient in the task to prove the concept of translating optional parallelism

to a combination of classical CSP operators.

The hypothesis of §1.3 can be evaluated with the results of the test scenarios. It is restated

below:

“Optional parallelism can be defined using classical CSP operators to have the

same behaviour in the traces domain.”

The hypothesis is partially accepted. It is true for the WSN scenarios tested, but it can not

be concluded that it will hold true for all examples. This is a topic for future research.

The research contribution of this dissertation is the in depth study of optional parallelism

and testing its applicability to model WSNs. The translation of the behaviour of optional

parallelism in the traces domain and successfully testing it against the optional parallel

definition of [17] serves as a good result on the topic of optional parallelism. The overall goal is

to accept the optional parallel operator as a CSP operator such that it can be implemented in

model-checking tools. New tools, OptoCSP and OpTrace were developed to aid in the task of

testing various network scenarios. These tools can be used in further research on the topic and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

156

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8 Conclusion and outlook

assist in the implementation of optional parallelism in existing CSP model-checkers.

The results show that optional parallelism provides a means to check network parameters

without delving too deep into the protocol specifics, although it could be useful, especially

to model the broadcasting parts of current WSN communication and routing protocols as

well as collision detection. Modelling WSNs in CSP is used to highlight different parameters

from conventional WSN simulators [114] and [115], such as the absence of system failures and

deadlock. Optional parallelism aids in this task as it is more applicable to real-world WSN

scenarios where nodes can run out of power resources and stop engaging in communication.

The solution of this dissertation provides a means to thoroughly check WSN behaviour where

all possible states of the network is computed and tested against its specification. With the

notion of time not being included in classical CSP, the models are not concerned when a state

is reached, but rather if a state is reached.

It would have been a good result if the laws of the operational semantics of optional parallelism

given in [17] could be proven mathematically. The approach used in this dissertation was

to translate the operational semantics of optional parallelism into existing CSP operators,

eliminating the need for a mathematical proof. The results are thus based on empirical

research in a field where mathematical proof is better known to be used. If the step laws

of optional parallelism could be implemented in an existing CSP model-checker, a two-way

trace refinement relationship between OptPar (⇑
X
) and OptParT (‖̃

X
) could be investigated.

The results presented in this dissertation only confirms a one-way trace refinement relation

between optional parallelism and its translation.

The complexity of a system definition is increased with the addition of the channel modelling

artefacts used in OptParT , especially because of the use of the interleaving operator. CSP

model-checkers such as ProCSP struggle to perform model-checking and deadlock analysis of

large system definitions, which limits the applicability to test real-world WSN specifications

where hundreds of nodes could form a WSN. This therefore solicits the need for optional

parallelism to be implemented in CSP model-checkers so that it can be optimised for formal

analysis.

It is concluded that optional parallelism opens new avenues to WSN modelling in CSP with

the introduction to model broadcasting with pragmatic ease.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

157

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8 Conclusion and outlook

Future work regarding the study of optional parallelism includes the following:

• Formal Proof - The step laws of the optional parallelism given in [17] need to be

formally verified with mathematics. If this could be done, its incorporation into model-

checkers will be much easier and more widely accepted. This dissertation focussed more

on the operational semantics of optional parallelism in the traces domain, but further

research is required to develop the denotational and axiomatic semantics which are

needed for this operator to become part of the classical CSP set of operators.

• Other domains - Optional parallelism should be investigated in other models of CSP

such as the failures/divergences and the stable failures model. Initial work on failures

and divergences were briefly given in [17] and could serve as a starting point for future

development of optional parallelism in other CSP domains.

• Termination - Various approaches to termination of CSP has been attempted. Some

of these approaches were mentioned in §2.2.5.5 and termination of optional parallelism

was only briefly described in [17]. It would be useful to detail the termination semantics

of optional parallelism together with the work mentioned in §2.2.5.5 to clarify possible

unnatural process definitions where an event can occur after the termination event X.

This is especially useful as optional parallelism incorporates semantics of interleaving

which does allow for unnatural process definitions in terms of termination [77].

• Model-Checkers - The step laws of optional parallelism could be implemented into

existing CSP model-checkers. If it is implemented in Prolog, it can be included into

ProCSP. The work of this dissertation proved that optional parallelism can be used to

model systems where partial synchronisation is needed. Tool support will make the

optional parallel operator a better known and more frequently used operator of the

CSP language.

• Stochastic CSP - The use of probabilities can be added to the channel artefacts so that

the probability of communication or node failures can be modelled with CSP system

definitions. Stochastic CSP is yet to be included in standard CSP model-checkers, but

could prove useful if it could be combined with optional parallelism.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

158

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[1] T. Strauss, D. G. Kourie, and B. W. Watson, “A concurrent specification of an incre-

mental DFA minimisation algorithm,” in Proceedings of the Prague Stringology Confer-

ence 2008, J. Holub and J. Žďárek, Eds., Czech Technical University in Prague, Czech

Republic, 2008, pp. 218–226.

[2] A. W. Roscoe, The Theory and Practice of Concurrency. Prentice-Hall (Pearson),

2005.

[3] A. Intana, M. Poppleton, and G. Merrett, “Adding value to WSN simulation through

formal modelling and analysis,” in Software Engineering for Sensor Network Applica-

tions (SESENA), 2013 4th International Workshop on, May 2013, pp. 24–29.

[4] A. Testa, A. Coronato, M. Cinque, and J. Augusto, “Static Verification of Wireless

Sensor Networks with Formal Methods,” in Signal Image Technology and Internet Based

Systems (SITIS), 2012 Eighth International Conference on, Nov 2012, pp. 587–594.

[5] M. Zheng, J. Sun, Y. Liu, J. Dong, and Y. Gu, “Towards a Model Checker for NesC and

Wireless Sensor Networks,” in Formal Methods and Software Engineering, ser. Lecture

Notes in Computer Science, S. Qin and Z. Qiu, Eds. Springer Berlin Heidelberg, 2011,

vol. 6991, pp. 372–387.

[6] S. Nanz and C. Hankin, “A framework for security analysis of mobile wireless net-

works,” Theoretical Computer Science, vol. 367, no. 1-2, pp. 203 – 227, 2006, automated

Reasoning for Security Protocol Analysis Automated Reasoning for Security Protocol

Analysis.

[7] J. Godskesen, “A Calculus for Mobile Ad Hoc Networks,” in Coordination Models and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

Languages, ser. Lecture Notes in Computer Science, A. Murphy and J. Vitek, Eds.

Springer Berlin Heidelberg, 2007, vol. 4467, pp. 132–150.

[8] A. Singh, C. Ramakrishnan, and S. Smolka, “A Process Calculus for mobile ad hoc

networks,” in Coordination Models and Languages, ser. Lecture Notes in Computer

Science, D. Lea and G. Zavattaro, Eds. Springer Berlin Heidelberg, 2008, vol. 5052,

pp. 296–314.

[9] M. Merro, “An observational theory for mobile ad hoc networks (full version),” Inform-

ation and Computation, vol. 207, no. 2, pp. 194 – 208, 2009, special issue on Structural

Operational Semantics (SOS).

[10] M. Merro, F. Ballardin, and E. Sibilio, “A timed calculus for wireless systems,” Theor-

etical Computer Science, vol. 412, no. 47, pp. 6585 – 6611, 2011.

[11] C. A. R. Hoare, Communicating sequential processes. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1985.

[12] M. G. Hinchey, J. L. Rash, C. A. Rouff, and D. Gracanin, “Achieving dependability

in sensor networks through automated requirements-based programming,” Computer

Communications, vol. 29, no. 2, pp. 246 – 256, 2006.

[13] S. J. Creese and A. W. Roscoe, “Verifying an infinite family of inductions simultan-

eously using data independence and FDR,” in Proceedings of the IFIP TC6 WG6.1

Joint International Conference on Formal Description Techniques for Distributed Sys-

tems and Communication Protocols (FORTE XII) and Protocol Specification, Testing

and Verification (PSTV XIX), ser. FORTE XII / PSTV XIX ’99. Deventer, The

Netherlands, The Netherlands: Kluwer, B.V., 1999, pp. 437–452.

[14] I. Zakiuddin, M. Goldsmith, P. Whittaker, and P. Gardiner, “A methodology for model-

checking ad-hoc networks,” in Proceedings of the 10th international conference on Model

checking software, ser. SPIN’03. Berlin, Heidelberg: Springer-Verlag, 2003, pp. 181–

196.

[15] S. Liu, X. Wu, Q. Li, H. Zhu, and Q. Wang, “Formal Approaches to Wireless Sensor

Networks,” in Secure Software Integration Reliability Improvement Companion (SSIRI-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

160

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

C), 2011 5th International Conference on, June 2011, pp. 11–18.

[16] Y. Isobe and M. Roggenbach, “A generic theorem prover of CSP refinement,” in In

TACAS 2005, LNCS 3440. Springer, 2005, pp. 108–123.

[17] M. Roggenbach, S. Gruner, D. Kourie, T. Strauss, and B. Watson, “A New CSP Op-

erator for Optional Parallelism,” in Computer Science and Software Engineering, 2008

International Conference on, vol. 2, dec. 2008, pp. 788 –791.

[18] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation (3rd Edition). Boston, Massachusets, USA: Addison-

Wesley Longman Publishing Co., Inc., 2006.

[19] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-

works: A survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002.

[20] A.-S. Pathan and C. Hong, “A Secure Energy-Efficient Routing Protocol for WSN,” in

Parallel and Distributed Processing and Applications, ser. Lecture Notes in Computer

Science, I. Stojmenovic, R. Thulasiram, L. Yang, W. Jia, M. Guo, and R. de Mello,

Eds. Springer Berlin Heidelberg, 2007, vol. 4742, pp. 407–418.

[21] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan,

“Physical layer driven protocol and algorithm design for energy-efficient wireless sensor

networks,” in Proceedings of the 7th annual international conference on Mobile com-

puting and networking, ser. MobiCom ’01. New York, NY, USA: ACM, 2001, pp.

272–287.

[22] D. Baghyalakshmi, J. Ebenezer, and S. A. V. SatyaMurty, “Low latency and energy

efficient routing protocols for wireless sensor networks,” in Wireless Communication

and Sensor Computing, 2010. ICWCSC 2010. International Conference on, Jan 2010,

pp. 1–6.

[23] D. Singh and R. Goudar, “Energy efficient clearance routing in WSN,” International

Journal of System Assurance Engineering and Management, pp. 1–26, 2014.

[24] J. Liu, J. Li, X. Niu, X. Cui, and Y. Sun, “GreenOCR: An Energy-Efficient Optimal

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

161

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

Clustering Routing Protocol,” The Computer Journal, 2014.

[25] K. Mikhaylov and J. Tervonen, “Optimization of microcontroller hardware paramet-

ers for Wireless Sensor Network node power consumption and lifetime improvement,”

in Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT),

2010 International Congress on, Oct 2010, pp. 1150–1156.

[26] C. Torres and P. Glosekotter, “Reliable and energy optimized WSN design for a train

application,” Journal of Systems Architecture, vol. 57, no. 10, pp. 896 – 904, 2011,

emerging Applications of Embedded Systems Research.

[27] A. Castagnetti, A. Pegatoquet, C. Belleudy, and M. Auguin, “A framework for mod-

eling and simulating energy harvesting WSN nodes with efficient power management

policies,” EURASIP Journal on Embedded Systems, vol. 2012, no. 1, 2012.

[28] P. De Mil, T. Allemeersch, I. Moerman, P. Demeester, and W. De Kimpe, “A Scalable

Low-Power WSAN Solution for Large-Scale Building Automation,” in Communications,

2008. ICC ’08. IEEE International Conference on, May 2008, pp. 3130–3135.

[29] E. Cayirci, “Wireless Sensor and Actuator Network Applications and Challenges,” in

Autonomous Sensor Networks, ser. Springer Series on Chemical Sensors and Biosensors,

D. Filippini, Ed. Springer Berlin Heidelberg, 2013, vol. 13, pp. 1–15.

[30] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler, “An analysis of

a large scale habitat monitoring application,” in Proceedings of the 2nd international

conference on Embedded networked sensor systems, ser. SenSys ’04. New York, NY,

USA: ACM, 2004, pp. 214–226.

[31] J. L. Hill, “System architecture for wireless sensor networks,” Ph.D. dissertation, Uni-

versity of California, Berkeley, 2003.

[32] D. Guyomar and M. Lallart, “Recent Progress in Piezoelectric Conversion and Energy

Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implement-

ation,” Micromachines, vol. 2, no. 2, pp. 274–294, 2011.

[33] S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

162

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

source for wireless sensor nodes,” Comput. Commun., vol. 26, no. 11, pp. 1131–1144,

Jul. 2003.

[34] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, “Power Sources for

Wireless Sensor Networks,” in Wireless Sensor Networks, ser. Lecture Notes in Com-

puter Science, H. Karl, A. Wolisz, and A. Willig, Eds. Springer Berlin Heidelberg,

2004, vol. 2920, pp. 1–17.

[35] R. Mulligan and H. M. Ammari, “Coverage in Wireless Sensor Networks: A Survey,”

Network Protocols and Algorithms, vol. 2, no. 2, pp. 27–53, Apr. 2010.

[36] B. Wang, “Coverage problems in sensor networks: A survey,” ACM Comput. Surv.,

vol. 43, no. 4, pp. 32:1–32:53, Oct. 2011.

[37] I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas, “Modeling and evaluation of the

effect of obstacles on the performance of wireless sensor networks,” in Simulation Sym-

posium, 2006. 39th Annual, april 2006, p. 11 pp.

[38] G. Hoblos, M. Staroswiecki, and A. Aitouche, “Optimal design of fault tolerant sensor

networks,” in Control Applications, 2000. Proceedings of the 2000 IEEE International

Conference on, 2000, pp. 467 –472.

[39] T. Antoine-Santoni, J.-F. Santucci, E. De Gentili, X. Silvani, and F. Morandini, “Per-

formance of a Protected Wireless Sensor Network in a Fire. Analysis of Fire Spread

and Data Transmission,” Sensors, vol. 9, no. 8, pp. 5878–5893, 2009.

[40] C. Clapham and J. Nicholson, The Concise Oxford Dictionary of Mathematics, 4th

Edition. Oxford University Press, 2009.

[41] S. Schwartzman, The Words of Mathematics: An Etymological Dictionary of Math-

ematical Terms Used in English, ser. MAA spectrum. Mathematical Association of

America, 1994.

[42] W. Fokkink, Introduction to Process Algebra, 1st ed. Springer Publishing Company,

Incorporated, 2010.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

163

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[43] W. Fokkink, J. F. Groote, and M. Reners, “Process Algebra Needs Proof Methodology

(Columns: Concurrency).” Bulletin of the EATCS, vol. 82, pp. 109–125, 2004.

[44] J. C. M. Baeten, “A brief history of process algebra,” Theor. Comput. Sci., vol. 335,

no. 2-3, pp. 131–146, May 2005.

[45] R. Milner, A Calculus of Communicating Systems. Secaucus, NJ, USA: Springer-Verlag

New York, Inc., 1982.

[46] J. C. M. Baeten and W. P. Weijland, Process Algebra. New York, NY, USA: Cambridge

University Press, 1990.

[47] S. Schneider and R. Delicata, “Verifying security protocols: An application of CSP,”

in Proceedings of the 2004 international conference on Communicating Sequential Pro-

cesses: the First 25 Years, ser. CSP’04. Berlin, Heidelberg: Springer-Verlag, 2005, pp.

243–263.

[48] A. Simpson, “The application of formal methods to the development of an ATP (auto-

matic train protection) system,” in Communication Networks in Transportation, IEE

Colloquium on, Jan 1995, pp. 5/1–5/4.

[49] ——, “Model Checking for Interlocking Safety,” in In Proceedings of the Second

FMERail Seminar, 1998, pp. 15–16.

[50] W. Su, F. Yang, X. Wu, J. Guo, and H. Zhu, “Formal Approaches to Mode Conversion

and Positioning for Vehicle System,” in Computer Software and Applications Conference

Workshops (COMPSACW), 2011 IEEE 35th Annual, July 2011, pp. 416–421.

[51] P. Welch, G. Hilderink, A. Bakkers, and G. Stiles, “Safe and Verifiable Design of Con-

current Java Programs,” International Journal of Computers and Application, vol. 23,

no. 3, pp. 159–165, 2001.

[52] A. I. McInnes, “Using CSP to Model and Analyze TinyOS Applications,” in Proceedings

of the 2009 16th Annual IEEE International Conference and Workshop on the Engin-

eering of Computer Based Systems, ser. ECBS ’09. Washington, DC, USA: IEEE

Computer Society, 2009, pp. 79–88.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

164

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[53] A. W. Roscoe and N. Dathi, “The pursuit of deadlock freedom,” Inf. Comput., vol. 75,

no. 3, pp. 289–327, Dec. 1987.

[54] S. Gruner and T. J. Steyn, “Deadlock-freeness of hexagonal systolic arrays,” Inf. Pro-

cess. Lett., vol. 110, no. 14-15, pp. 539–543, Jul. 2010.

[55] H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in Sparse matrix pro-

ceedings, 1978, G. W. Duff, I. S.and Stewart, Ed. Philadelphia, USA: Society for

Industrial and Applied Mathematics, Dec. 1978, pp. 256–282.

[56] H. R. Nielson and F. Nielson, Semantics with Applications: A Formal Introduction.

New York, NY, USA: John Wiley & Sons, Inc., 1992.

[57] S. Ripon, “Extending and Relating Semantic Models of Compensating CSP,” Ph.D.

dissertation, University of Southampton, August 2008.

[58] G. D. Plotkin, “A structural approach to operational semantics,” The Journal of Logic

and Algebraic Programming, vol. 60-61, pp. 17–139, Dec. 2004.

[59] P. D. Mosses, “Formal semantics of programming languages: An overview,” Electronic

Notes in Theoretical Computer Science, vol. 148, no. 1, pp. 41 – 73, 2006, proceedings of

the School of SegraVis Research Training Network on Foundations of Visual Modelling

Techniques (FoVMT 2004) Foundations of Visual Modelling Techniques 2004.

[60] G. Kahn, “Natural Semantics,” in Proceedings of the 4th Annual Symposium on Theor-

etical Aspects of Computer Science, ser. STACS ’87. London, UK, UK: Springer-Verlag,

1987, pp. 22–39.

[61] D. Scott and C. Strachey, “Toward A Mathematical Semantics for Computer Lan-

guages,” in Proceedings of the Symposium on Computers and Automata, J. Fox, Ed.,

vol. XXI. Brooklyn, N.Y.: Polytechnic Press, Apr. 1971, pp. 19–46.

[62] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM,

vol. 12, no. 10, pp. 576–580, Oct. 1969.

[63] G. M. Reed, “A uniform mathematical theory for real-time distributed computing,”

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

165

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

Ph.D. dissertation, University of Oxford, 1988, aAID-85967.

[64] A. Lawrence, “Extending CSP: Denotational Semantics,” Software, IEE Proceedings -,

vol. 150, no. 2, pp. 51 – 60, April 2003.

[65] A. W. Roscoe, “On The Expressiveness of CSP,” February 2011.

[66] M. O. Larsen, “Exception Handling in Communicating Sequential Processes,” Master’s

thesis, University of Copenhagen, Copenhagen, Denmark, August 2012.

[67] G. M. Reed and A. W. Roscoe, “A Timed Model for Communicating Sequential Pro-

cesses,” in ICALP, ser. Lecture Notes in Computer Science, L. Kott, Ed., vol. 226.

Springer, 1986, pp. 314–323.

[68] ——, “Metric Spaces as Models for Real-Time Concurrency,” in Proceedings of the 3rd

Workshop on Mathematical Foundations of Programming Language Semantics. Lon-

don, UK, UK: Springer-Verlag, 1988, pp. 331–343.

[69] J. Davies and S. Schneider, “An introduction to timed CSP,” OUCL, Tech. Rep.

PRG75, August 1989.

[70] ——, “A brief history of timed CSP,” Theor. Comput. Sci., vol. 138, no. 2, pp. 243–271,

1995.

[71] S. Schneider, “An Operational Semantics for Timed CSP,” Information and Computa-

tion, vol. 116, no. 2, pp. 193 – 213, 1995.

[72] J. Ouaknine and S. Schneider, “Timed CSP: A Retrospective,” Electronic Notes in

Theoretical Computer Science, vol. 162, pp. 273–276, Sep. 2006.

[73] K. Prasad, “A calculus of broadcasting systems,” Science of Computer Programming,

vol. 25, no. 2 - 3, pp. 285 – 327, 1995, selected Papers of ESOP’94, the 5th European

Symposium on Programming.

[74] M. Butler, T. Hoare, and C. Ferreira, “A Trace Semantics for Long-Running Transac-

tions,” in Communicating Sequential Processes. The First 25 Years, ser. Lecture Notes

in Computer Science, A. Abdallah, C. Jones, and J. Sanders, Eds. Springer Berlin

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

166

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

Heidelberg, 2005, vol. 3525, pp. 133–150.

[75] M. Butler and S. Ripon, “Executable Semantics for Compensating CSP,” in Formal

Techniques for Computer Systems and Business Processes, ser. Lecture Notes in Com-

puter Science, M. Bravetti, L. Kloul, and G. Zavattaro, Eds. Springer Berlin Heidel-

berg, 2005, vol. 3670, pp. 243–256.

[76] K. Wan, H. K. Kapoor, S. Das, B. Raju, T. Krilavicius, and K. L. Man, “Modelling and

Verification of Compensating Transactions using the Spin Tool,” in In Proceedings of

the International MultiConference of Engineers and Computer Scientists, vol. II, Hong

Kong, Jul 2012.

[77] P. Howells and M. d’Inverno, “A CSP model with flexible parallel termination se-

mantics,” Formal Asp. Comput., vol. 21, no. 5, pp. 421–449, 2009.

[78] H. Tej and B. Wolff, “A Corrected Failure-Divergence Model for CSP in Isabelle/HOL,”

in Proceedings of the FME 97 — Industrial Applications and Strengthened Founda-

tions of Formal Methods, ser. LNCS 1313, J. Fitzgerald, C. Jones, and P. Lucas, Eds.

Springer Verlag, 1997, pp. 318–337.

[79] C. Lüth, H. Shi, and H. Tej, “Formal Development of Processes by Model-Checking and

Theorem Proving with FDR and HOL-CSP,” Inf. Comput., vol. 75, no. 3, pp. 289–327,

Dec. 1987.

[80] Y. Isobe and M. Roggenbach, “A Generic Theorem Prover of CSP Refinement,” in

TACAS, ser. Lecture Notes in Computer Science, N. Halbwachs and L. D. Zuck, Eds.,

vol. 3440. Springer, 2005, pp. 108–123.

[81] L. C. Paulson, Isabelle: a Generic Theorem Prover, ser. Lecture Notes in Computer

Science. Springer – Berlin, 1994, no. 828.

[82] Y. Isobe, M. Roggenbach, and S. Gruner, “Extending CSP-Prover by deadlock-analysis:

Towards the verification of systolic arrays,” in FOSE 2005, ser. Japanese Lecture Notes

Series 31. Kindai-kagaku-sha, 2005.

[83] F. S. E. Limited. (2009, Sep.) Failures-Divergence Refinement: FDR2. [Online].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

167

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

Available: http://www.fsel.com

[84] A. Valmari, “The State Explosion Problem,” in Lectures on Petri Nets I: Basic Models,

Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets.

London, UK: Springer-Verlag, 1998, pp. 429–528.

[85] M. Goldsmith and J. Martin, “Parallelization of FDR,” Workshop on Parallel and

Distributed Model Checking, afiliated to CONCUR, 2002.

[86] A. B. A. R. Thomas Gibson-Robinson, Philip Armstrong, “FDR3 — A Modern Refine-

ment Checker for CSP,” in Tools and Algorithms for the Construction and Analysis of

Systems, ser. Lecture Notes in Computer Science, E. ÃĄbrahÃąm and K. Havelund,

Eds., vol. 8413, 2014, pp. 187–201.

[87] ——, Failures Divergences Refinement (FDR) Version 3, 2013. [Online]. Available:

https://www.cs.ox.ac.uk/projects/fdr/

[88] M. Leuschel and M. Butler, “ProB: A Model Checker for B,” in FME 2003: Formal

Methods, ser. LNCS 2805, K. Araki, S. Gnesi, and D. Mandrioli, Eds. Springer-Verlag,

2003, pp. 855–874.

[89] R. Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking Proto-

cols (2nd Edition), 2nd ed. Addison-Wesley Professional, Sep. 1999.

[90] S. Creese, “Data Independent Induction: CSP Model Checking of Arbitrary Sized

Networks,” Ph.D. dissertation, University of Oxford, Computing Laboratory, 2001.

[91] S. Curtis, J. Mica, J. Nuth, G. Marr, M. Rilee, and M. Bhat, “ANTS (Autonomous

Nano-Technology Swarm): An artificial intelligence approach to asteroid belt resource

exploration,” in International Astronautical Federation, 51th Congress, 2000.

[92] C. A. Rouff, A. Vanderbilt, W. Truszkowski, J. L. Rash, and M. G. Hinchey, “Formal

Methods for Autonomic and Swarm-based Systems,” in ISoLA (Preliminary proceed-

ings), ser. Technical Report, T. Margaria, B. Steffen, A. Philippou, and M. Reitenspieß,

Eds., vol. TR-2004-6. Department of Computer Science, University of Cyprus, 2004,

pp. 100–102.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

168

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.fsel.com
https://www.cs.ox.ac.uk/projects/fdr/

References

[93] J. S. Dong, J. Sun, J. Sun, K. Taguchi, and X. Zhang, “Specifying and Verifying Sensor

Networks: An Experiment of Formal Methods,” in Proceedings of the 10th International

Conference on Formal Methods and Software Engineering, ser. ICFEM ’08. Berlin,

Heidelberg: Springer-Verlag, 2008, pp. 318–337.

[94] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Ros-

coe, “Timed CSP: Theory and Practice,” in Proceedings of the Real-Time: Theory in

Practice, REX Workshop. London, UK, UK: Springer-Verlag, 1992, pp. 640–675.

[95] B. Mahony and J. S. Dong, “Timed Communicating Object Z,” Software Engineering,

IEEE Transactions on, vol. 26, no. 2, pp. 150–177, 2000.

[96] S. Jasko and G. Simon, “CSP-Based Sensor Network Architecture for Reconfigur-

able Measurement Systems,” IEEE Transactions on Instrumentation and Measurement,

vol. 60, pp. 2104–2117, 2011.

[97] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a Nutshell,” Int. Journal on

Software Tools for Technology Transfer, vol. 1, no. 1–2, pp. 134–152, Oct. 1997.

[98] M. Botts and A. Robin, “OpenGIS Sensor Model Language SensorML Implementation

Specification,” 2007.

[99] S. Jasko and G. Simon, “Reconfigurable sensor network architecture for distributed

measurement systems,” in Instrumentation and Measurement Technology Conference

(I2MTC), 2010 IEEE, may 2010, pp. 198 –203.

[100] J. M. R. Martin and P. H. Welch, “A Design Strategy for Deadlock-Free Concurrent

Systems,” Transputer Communications, vol. 3, no. 4, pp. 215–232, 1997.

[101] A. Basu, L. Mounier, M. Poulhies, J. Pulou, and J. Sifakis, “Using BIP for Modeling

and Verification of Networked Systems - A Case Study on TinyOS-based Networks,” in

IEEE NCA’07, Cambridge, USA, July 2007, pp. 257–260.

[102] A. Basu, M. Bozga, and J. Sifakis, “Modeling Heterogeneous Real-Time Components in

BIP,” in In 4 th IEEE International Conference on Software Engineering and Formal

Methods (SEFM06), 2006, pp. 3–12.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

169

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[103] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC

Language: A Holistic Approach to Networked Embedded Systems,” SIGPLAN Not.,

vol. 38, no. 5, pp. 1–11, May 2003.

[104] S. Bliudze and J. Sifakis, “The Algebra of Connectors: Structuring Interaction in BIP,”

in Proceedings of the 7th ACM & IEEE International Conference on Embedded Software,

ser. EMSOFT ’07. New York, NY, USA: ACM, 2007, pp. 11–20.

[105] M. Shanahan, “The Event Calculus Explained,” in Artificial Intelligence Today, ser.

Lecture Notes in Computer Science, M. Wooldridge and M. Veloso, Eds. Springer

Berlin Heidelberg, 1999, vol. 1600, pp. 409–430.

[106] P. Boonma and J. Suzuki, “Model-driven performance engineering for wireless sensor

networks with feature modeling and event calculus,” in Proceedings of the 3rd Workshop

on Biologically Inspired Algorithms for Distributed Systems, ser. BADS ’11. New York,

NY, USA: ACM, 2011, pp. 17–24.

[107] Y. Choe and M. Lee, “δ-Calculus: Process Algebra to model Secure Movements of

Distributed Mobile Processes in Real-Time Business Applications.” in Proceedings 23rd

ECIS’2015: European Conference on Information Systems, ser. ECIS’2015, vol. 8413,

May 2015, pp. 187–201.

[108] E. G. Coffman, M. Elphick, and A. Shoshani, “System Deadlocks,” ACM Comput.

Surv., vol. 3, no. 2, pp. 67–78, Jun. 1971.

[109] R. Dechter, “Decomposing an N-ary relation into a tree of binary relations,” in Pro-

ceedings of the sixth ACM SIGACT-SIGMOD-SIGART symposium on Principles of

database systems, ser. PODS ’87. New York, NY, USA: ACM, 1987, pp. 185–189.

[110] R. Sedgewick and K. Wayne, Algorithms, 4th Edition. Addison-Wesley, 2011.

[111] D. Leijen, W. Schulte, and S. Burckhardt, “The design of a task parallel library,”

SIGPLAN Not., vol. 44, no. 10, pp. 227–242, Oct. 2009.

[112] D. E. Knuth, The art of computer programming, volume 2 (3rd ed.): seminumerical

algorithms. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

170

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[113] Q. Mamun, “A Qualitative Comparison of Different Logical Topologies for Wireless

Sensor Networks,” Sensors, vol. 12, no. 11, pp. 14 887–14 913, 2012.

[114] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2, 1st ed. Springer

Publishing Company, Incorporated, 2008.

[115] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment,”

in Proceedings of the 1st international conference on Simulation tools and techniques

for communications, networks and systems & workshops, ser. Simutools ’08. ICST,

Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering), 2008, pp. 60:1–60:10.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

171

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX A

TRACE RESULTS

Below is the trace results of traces(P ‖
X
Q ‖
X
R) described in §5.2.4.1.1.

{<>,<mr>,<mp>,<mq>

<mr,DL>,<mq,mr>,<mp,mr>,<mr,mp>,<mp,mq>,<mr,mq>,<mq,mp>,

<mp,mr,DL>,<mr,mp,DL>,<mp,mq,mr>,<mq,mr,DL>,<mr,mq,DL>,

<mq,mp,mr>,<mp,mr,mq>,<mr,mp,mq>, <mq,mr,mp>,<mr,mq,mp>,

<mp,mq,mr,DL>,<mp,mr,mq,DL>,<mr,mp,mq,DL>,<mp,mq,mr,s>,

<mp,mr,mq,s>,<mr,mp,mq,s>,<mq,mp,mr,DL>,<mq,mr,mp,DL>,

<mr,mq,mp,DL>,<mq,mp,mr,s>,<mq,mr,mp,s>,<mr,mq,mp,s>,

<mp,mq,mr,s,wr>,<mp,mr,mq,s,wr>,<mr,mp,mq,s,wr>,

<mp,mq,mr,s,wp>,<mp,mr,mq,s,wp>,<mr,mp,mq,s,wp>,

<mp,mq,mr,s,wq>,<mr,mp,mq,s,wq>,<mq,mp,mr,s,wr>,

<mq,mr,mp,s,wr>,<mr,mq,mp,s,wr>,<mq,mp,mr,s,wp>,

<mq,mr,mp,s,wp>,<mr,mq,mp,s,wp>,<mq,mp,mr,s,wq>,

<mq,mr,mp,s,wq>,<mr,mq,mp,s,wq>,<mp,mr,mq,s,wq>,

<mp,mq,mr,s,wp,wr>,<mp,mq,mr,s,wr,wp>,<mp,mr,mq,s,wp,wr>,

<mp,mr,mq,s,wr,wp>,<mr,mp,mq,s,wp,wr>,<mr,mp,mq,s,wr,wp>,

<mp,mq,mr,s,wp,wq>,<mp,mr,mq,s,wp,wq>,<mr,mp,mq,s,wp,wq>,

<mp,mq,mr,s,wq,wr>,<mp,mq,mr,s,wr,wq>,<mp,mr,mq,s,wq,wr>,

<mp,mr,mq,s,wr,wq>,<mr,mp,mq,s,wq,wr>,<mr,mp,mq,s,wr,wq>,

<mp,mq,mr,s,wq,wp>,<mp,mr,mq,s,wq,wp>,<mr,mp,mq,s,wq,wp>,

<mq,mp,mr,s,wp,wr>,<mq,mp,mr,s,wr,wp>,<mq,mr,mp,s,wp,wr>,

<mq,mr,mp,s,wr,wp>,<mr,mq,mp,s,wp,wr>,<mr,mq,mp,s,wr,wp>,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Trace results

<mq,mp,mr,s,wp,wq>,<mq,mr,mp,s,wp,wq>,<mr,mq,mp,s,wp,wq>,

<mq,mp,mr,s,wq,wr>,<mq,mp,mr,s,wr,wq>,<mq,mr,mp,s,wq,wr>,

<mq,mr,mp,s,wr,wq>,<mr,mq,mp,s,wq,wr>,<mr,mq,mp,s,wr,wq>,

<mq,mp,mr,s,wq,wp>,<mq,mr,mp,s,wq,wp>,<mr,mq,mp,s,wq,wp>,

<mp,mq,mr,s,wp,wq,wr>,<mp,mq,mr,s,wp,wr,wq>,<mp,mq,mr,s,wr,wp,wq>,

<mp,mr,mq,s,wp,wq,wr>,<mp,mr,mq,s,wp,wr,wq>,<mp,mr,mq,s,wr,wp,wq>,

<mr,mp,mq,s,wp,wq,wr>,<mr,mp,mq,s,wp,wr,wq>,<mr,mp,mq,s,wr,wp,wq>,

<mp,mq,mr,s,wq,wp,wr>,<mp,mq,mr,s,wq,wr,wp>,<mp,mq,mr,s,wr,wq,wp>,

<mp,mr,mq,s,wq,wp,wr>,<mp,mr,mq,s,wq,wr,wp>,<mp,mr,mq,s,wr,wq,wp>,

<mr,mp,mq,s,wq,wp,wr>,<mr,mp,mq,s,wq,wr,wp>,<mr,mp,mq,s,wr,wq,wp>,

<mq,mp,mr,s,wp,wq,wr>,<mq,mp,mr,s,wp,wr,wq>,<mq,mp,mr,s,wr,wp,wq>,

<mq,mr,mp,s,wp,wq,wr>,<mq,mr,mp,s,wp,wr,wq>,<mq,mr,mp,s,wr,wp,wq>,

<mr,mq,mp,s,wp,wq,wr>,<mr,mq,mp,s,wp,wr,wq>,<mr,mq,mp,s,wr,wp,wq>,

<mq,mp,mr,s,wq,wp,wr>,<mq,mp,mr,s,wq,wr,wp>,<mq,mp,mr,s,wr,wq,wp>,

<mq,mr,mp,s,wq,wp,wr>,<mq,mr,mp,s,wq,wr,wp>,<mq,mr,mp,s,wr,wq,wp>,

<mr,mq,mp,s,wq,wp,wr>,<mr,mq,mp,s,wq,wr,wp>,<mr,mq,mp,s,wr,wq,wp>}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

173

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX B

TOPOLOGY SCENARIO MODELS

This appendix gives the CSPM models of the topology scenarios presented in Chapter 6. The

models were generated by OpTrace, with the given adjacency list definitions and the mode

of synchronisation, i.e. broadcasting, half-duplex or simplex.

B.1 FLAT TOPOLOGY

B.1.1 Point-to-point

B.1.1.1 Broadcasting

-- Auto generated CSPM model by OpTrace

-- Broadcasting

-- Input:

-- (P,Q)

channel Ap,A,Aq

aP = {| Ap |}

NodeP = (Ap -> NodeP)

aQ = {| Aq |}

NodeQ = (Aq -> NodeQ)

aCPA = {| Ap, A |}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

SYSTEM = (NodeP ||| NodeQ) [| {Ap, Aq} |] (ChanP_A [{|Ap,A|} || {|Aq,A|}] ←↩

ChanQ_A)

MAIN = SYSTEM

Listing B.1: Generated CSPM model of Listing 6.1.

B.1.1.2 Bidirectional - Half-duplex

-- Auto generated CSPM model by OpTrace

-- HalfDuplex

-- Input:

-- {P,Q}

channel Ap,A,Aq

aP = {| Ap |}

NodeP = (Ap -> NodeP)

aQ = {| Aq |}

NodeQ = (Aq -> NodeQ)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A)) [] (A -> (Ap -> ChanP_A [] ChanP_A))

aCQA = {| Aq, A |}

ChanQ_A = (Aq -> (A -> ChanQ_A [] ChanQ_A)) [] (A -> (Aq -> ChanQ_A [] ChanQ_A))

SYSTEM = (NodeP ||| NodeQ) [| {Ap, Aq} |] (ChanP_A [{|Ap,A|} || {|Aq,A|}] ←↩

ChanQ_A)

MAIN = SYSTEM

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

175

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

Listing B.2: Generated CSPM model of Listing 6.2.

B.1.1.3 Bidirectional - Simplex

-- Auto generated CSPM model by OpTrace

-- Simplex

-- Input:

-- (P,Q)

-- (Q,P)

channel Ap,A,Bp,B,Aq,Bq

aP = {| Ap,Bp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP)

aQ = {| Bq,Aq |}

NodeQ = (Aq -> NodeQ) [](Bq -> NodeQ)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (B -> (Bp -> ChanP_B [] ChanP_B))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

SYSTEM = (NodeP ||| NodeQ) [| {Ap, Bp, Aq, Bq} |] (((ChanP_A [{|Ap,A|} || {|Bp,B←↩

|}] ChanP_B) [{|Ap,A,Bp,B|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,Bp,B,Aq|} || {|Bq,←↩

B|}] ChanQ_B)

MAIN = SYSTEM

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

176

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

Listing B.3: Generated CSPM model of Listing 6.3.

B.1.2 Fully Connected Mesh

B.1.2.1 Broadcasting

-- Auto generated CSPM model by OpTrace

-- Broadcasting

-- Input:

-- (P,Q,R,S)

-- (Q,P,R,S)

-- (R,P,Q,S)

-- (S,P,Q,R)

channel Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Cq,Dq,Ar,Br,Cr,Dr,As,Bs,Cs,Ds

aP = {| Ap,Bp,Cp,Dp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP) [](Cp -> NodeP) [](Dp -> NodeP)

aQ = {| Bq,Aq,Cq,Dq |}

NodeQ = (Aq -> NodeQ) [](Bq -> NodeQ) [](Cq -> NodeQ) [](Dq -> NodeQ)

aR = {| Cr,Ar,Br,Dr |}

NodeR = (Ar -> NodeR) [](Br -> NodeR) [](Cr -> NodeR) [](Dr -> NodeR)

aS = {| Ds,As,Bs,Cs |}

NodeS = (As -> NodeS) [](Bs -> NodeS) [](Cs -> NodeS) [](Ds -> NodeS)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (B -> (Bp -> ChanP_B [] ChanP_B))

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

177

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aCPC = {| Cp, C |}

ChanP_C = (C -> (Cp -> ChanP_C [] ChanP_C))

aCPD = {| Dp, D |}

ChanP_D = (D -> (Dp -> ChanP_D [] ChanP_D))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

aCQC = {| Cq, C |}

ChanQ_C = (C -> (Cq -> ChanQ_C [] ChanQ_C))

aCQD = {| Dq, D |}

ChanQ_D = (D -> (Dq -> ChanQ_D [] ChanQ_D))

aCRA = {| Ar, A |}

ChanR_A = (A -> (Ar -> ChanR_A [] ChanR_A))

aCRB = {| Br, B |}

ChanR_B = (B -> (Br -> ChanR_B [] ChanR_B))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C))

aCRD = {| Dr, D |}

ChanR_D = (D -> (Dr -> ChanR_D [] ChanR_D))

aCSA = {| As, A |}

ChanS_A = (A -> (As -> ChanS_A [] ChanS_A))

aCSB = {| Bs, B |}

ChanS_B = (B -> (Bs -> ChanS_B [] ChanS_B))

aCSC = {| Cs, C |}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

178

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

ChanS_C = (C -> (Cs -> ChanS_C [] ChanS_C))

aCSD = {| Ds, D |}

ChanS_D = (Ds -> (D -> ChanS_D [] ChanS_D))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS) [| {Ap, Bp, Cp, Dp, Aq, Bq, Cq, Dq,←↩

Ar, Br, Cr, Dr, As, Bs, Cs, Ds} |] (((((((((((((((ChanP_A [{|Ap,A|} || {|Bp,B←↩

|}] ChanP_B) [{|Ap,A,Bp,B|} || {|Cp,C|}] ChanP_C) [{|Ap,A,Bp,B,Cp,C|} || {|←↩

Dp,D|}] ChanP_D) [{|Ap,A,Bp,B,Cp,C,Dp,D|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,Bp,B←↩

,Cp,C,Dp,D,Aq|} || {|Bq,B|}] ChanQ_B) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq|} || {|Cq,C←↩

|}] ChanQ_C) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Cq|} || {|Dq,D|}] ChanQ_D) [{|Ap,A←↩

,Bp,B,Cp,C,Dp,D,Aq,Bq,Cq,Dq|} || {|Ar,A|}] ChanR_A) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,←↩

Bq,Cq,Dq,Ar|} || {|Br,B|}] ChanR_B) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Cq,Dq,Ar,Br|}←↩

|| {|Cr,C|}] ChanR_C) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Cq,Dq,Ar,Br,Cr|} || {|Dr,D←↩

|}] ChanR_D) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Cq,Dq,Ar,Br,Cr,Dr|} || {|As,A|}] ←↩

ChanS_A) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Cq,Dq,Ar,Br,Cr,Dr,As|} || {|Bs,B|}] ←↩

ChanS_B) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Cq,Dq,Ar,Br,Cr,Dr,As,Bs|} || {|Cs,C|}] ←↩

ChanS_C) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Cq,Dq,Ar,Br,Cr,Dr,As,Bs,Cs|} || {|Ds,D|} ←↩

] ChanS_D)

MAIN = SYSTEM

Listing B.4: Generated CSPM model of Listing 6.4.

B.1.2.2 Bidirectional - Half-duplex

-- Auto generated CSPM model by OpTrace

-- HalfDuplex

-- Input:

-- {P,Q,R,S}

channel Ap,A,Aq,Ar,As

aP = {| Ap |}

NodeP = (Ap -> NodeP)

aQ = {| Aq |}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

179

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

NodeQ = (Aq -> NodeQ)

aR = {| Ar |}

NodeR = (Ar -> NodeR)

aS = {| As |}

NodeS = (As -> NodeS)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A)) [] (A -> (Ap -> ChanP_A [] ChanP_A))

aCQA = {| Aq, A |}

ChanQ_A = (Aq -> (A -> ChanQ_A [] ChanQ_A)) [] (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCRA = {| Ar, A |}

ChanR_A = (Ar -> (A -> ChanR_A [] ChanR_A)) [] (A -> (Ar -> ChanR_A [] ChanR_A))

aCSA = {| As, A |}

ChanS_A = (As -> (A -> ChanS_A [] ChanS_A)) [] (A -> (As -> ChanS_A [] ChanS_A))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS) [| {Ap, Aq, Ar, As} |] (((ChanP_A [←↩

{|Ap,A|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,Aq|} || {|Ar,A|}] ChanR_A) [{|Ap,A,←↩

Aq,Ar|} || {|As,A|}] ChanS_A)

MAIN = SYSTEM

Listing B.5: Generated CSPM model of Listing 6.5.

B.1.2.3 Bidirectional - Simplex

-- Auto generated CSPM model by OpTrace

-- Simplex

-- Input:

-- (P,Q)

-- (P,R)

-- (P,S)

-- (Q,P)

-- (Q,R)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

180

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

-- (Q,S)

-- (R,P)

-- (R,Q)

-- (R,S)

-- (S,P)

-- (S,Q)

-- (S,R)

channel Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq,H,Kq,K,Br,Er,Gr,Hr,Ir,I,Lr,←↩

L,Cs,Fs,Is,Js,Ks,Ls

aP = {| Ap,Bp,Cp,Dp,Gp,Jp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP) [](Cp -> NodeP) [](Dp -> NodeP) [](Gp←↩

-> NodeP) [](Jp -> NodeP)

aQ = {| Dq,Eq,Fq,Aq,Hq,Kq |}

NodeQ = (Aq -> NodeQ) [](Dq -> NodeQ) [](Eq -> NodeQ) [](Fq -> NodeQ) [](Hq←↩

-> NodeQ) [](Kq -> NodeQ)

aR = {| Gr,Hr,Ir,Br,Er,Lr |}

NodeR = (Br -> NodeR) [](Er -> NodeR) [](Gr -> NodeR) [](Hr -> NodeR) [](Ir←↩

-> NodeR) [](Lr -> NodeR)

aS = {| Js,Ks,Ls,Cs,Fs,Is |}

NodeS = (Cs -> NodeS) [](Fs -> NodeS) [](Is -> NodeS) [](Js -> NodeS) [](Ks←↩

-> NodeS) [](Ls -> NodeS)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (Bp -> (B -> ChanP_B [] ChanP_B))

aCPC = {| Cp, C |}

ChanP_C = (Cp -> (C -> ChanP_C [] ChanP_C))

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

181

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aCPD = {| Dp, D |}

ChanP_D = (D -> (Dp -> ChanP_D [] ChanP_D))

aCPG = {| Gp, G |}

ChanP_G = (G -> (Gp -> ChanP_G [] ChanP_G))

aCPJ = {| Jp, J |}

ChanP_J = (J -> (Jp -> ChanP_J [] ChanP_J))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQD = {| Dq, D |}

ChanQ_D = (Dq -> (D -> ChanQ_D [] ChanQ_D))

aCQE = {| Eq, E |}

ChanQ_E = (Eq -> (E -> ChanQ_E [] ChanQ_E))

aCQF = {| Fq, F |}

ChanQ_F = (Fq -> (F -> ChanQ_F [] ChanQ_F))

aCQH = {| Hq, H |}

ChanQ_H = (H -> (Hq -> ChanQ_H [] ChanQ_H))

aCQK = {| Kq, K |}

ChanQ_K = (K -> (Kq -> ChanQ_K [] ChanQ_K))

aCRB = {| Br, B |}

ChanR_B = (B -> (Br -> ChanR_B [] ChanR_B))

aCRE = {| Er, E |}

ChanR_E = (E -> (Er -> ChanR_E [] ChanR_E))

aCRG = {| Gr, G |}

ChanR_G = (Gr -> (G -> ChanR_G [] ChanR_G))

aCRH = {| Hr, H |}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

182

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

ChanR_H = (Hr -> (H -> ChanR_H [] ChanR_H))

aCRI = {| Ir, I |}

ChanR_I = (Ir -> (I -> ChanR_I [] ChanR_I))

aCRL = {| Lr, L |}

ChanR_L = (L -> (Lr -> ChanR_L [] ChanR_L))

aCSC = {| Cs, C |}

ChanS_C = (C -> (Cs -> ChanS_C [] ChanS_C))

aCSF = {| Fs, F |}

ChanS_F = (F -> (Fs -> ChanS_F [] ChanS_F))

aCSI = {| Is, I |}

ChanS_I = (I -> (Is -> ChanS_I [] ChanS_I))

aCSJ = {| Js, J |}

ChanS_J = (Js -> (J -> ChanS_J [] ChanS_J))

aCSK = {| Ks, K |}

ChanS_K = (Ks -> (K -> ChanS_K [] ChanS_K))

aCSL = {| Ls, L |}

ChanS_L = (Ls -> (L -> ChanS_L [] ChanS_L))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS) [| {Ap, Bp, Cp, Dp, Gp, Jp, Aq, Dq,←↩

Eq, Fq, Hq, Kq, Br, Er, Gr, Hr, Ir, Lr, Cs, Fs, Is, Js, Ks, Ls} |] ←↩

(((((((((((((((((((((((ChanP_A [{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,A,Bp,B|}←↩

|| {|Cp,C|}] ChanP_C) [{|Ap,A,Bp,B,Cp,C|} || {|Dp,D|}] ChanP_D) [{|Ap,A,Bp,←↩

B,Cp,C,Dp,D|} || {|Gp,G|}] ChanP_G) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G|} || {|Jp,J|} ←↩

] ChanP_J) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,←↩

Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq|} || {|Dq,D|}] ChanQ_D) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,←↩

G,Jp,J,Aq,Dq|} || {|Eq,E|}] ChanQ_E) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq←↩

,E|} || {|Fq,F|}] ChanQ_F) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F|} ←↩

|| {|Hq,H|}] ChanQ_H) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq,H|} ←↩

|| {|Kq,K|}] ChanQ_K) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq,H,Kq←↩

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

183

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

,K|} || {|Br,B|}] ChanR_B) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq←↩

,H,Kq,K,Br|} || {|Er,E|}] ChanR_E) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E←↩

,Fq,F,Hq,H,Kq,K,Br,Er|} || {|Gr,G|}] ChanR_G) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J←↩

,Aq,Dq,Eq,E,Fq,F,Hq,H,Kq,K,Br,Er,Gr|} || {|Hr,H|}] ChanR_H) [{|Ap,A,Bp,B,Cp,C,←↩

Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq,H,Kq,K,Br,Er,Gr,Hr|} || {|Ir,I|}] ChanR_I) [←↩

{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq,H,Kq,K,Br,Er,Gr,Hr,Ir,I|} || ←↩

{|Lr,L|}] ChanR_L) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq,H,Kq,K,←↩

Br,Er,Gr,Hr,Ir,I,Lr,L|} || {|Cs,C|}] ChanS_C) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J←↩

,Aq,Dq,Eq,E,Fq,F,Hq,H,Kq,K,Br,Er,Gr,Hr,Ir,I,Lr,L,Cs|} || {|Fs,F|}] ChanS_F) [←↩

{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq,H,Kq,K,Br,Er,Gr,Hr,Ir,I,Lr,L,←↩

Cs,Fs|} || {|Is,I|}] ChanS_I) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F←↩

,Hq,H,Kq,K,Br,Er,Gr,Hr,Ir,I,Lr,L,Cs,Fs,Is|} || {|Js,J|}] ChanS_J) [{|Ap,A,Bp,B←↩

,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq,H,Kq,K,Br,Er,Gr,Hr,Ir,I,Lr,L,Cs,Fs,Is,Js←↩

|} || {|Ks,K|}] ChanS_K) [{|Ap,A,Bp,B,Cp,C,Dp,D,Gp,G,Jp,J,Aq,Dq,Eq,E,Fq,F,Hq,H←↩

,Kq,K,Br,Er,Gr,Hr,Ir,I,Lr,L,Cs,Fs,Is,Js,Ks|} || {|Ls,L|}] ChanS_L)

MAIN = SYSTEM

Listing B.6: Generated CSPM model of Listing 6.6.

B.2 CLUSTER TOPOLOGY

B.2.1 Star

B.2.1.1 Broadcasting

-- Auto generated CSPM model by OpTrace

-- Broadcasting

-- Input:

-- (P,Q,R,S)

-- (Q,P)

-- (R,P)

-- (S,P)

channel Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Ar,Cr,As,Ds

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

184

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aP = {| Ap,Bp,Cp,Dp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP) [](Cp -> NodeP) [](Dp -> NodeP)

aQ = {| Bq,Aq |}

NodeQ = (Aq -> NodeQ) [](Bq -> NodeQ)

aR = {| Cr,Ar |}

NodeR = (Ar -> NodeR) [](Cr -> NodeR)

aS = {| Ds,As |}

NodeS = (As -> NodeS) [](Ds -> NodeS)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (B -> (Bp -> ChanP_B [] ChanP_B))

aCPC = {| Cp, C |}

ChanP_C = (C -> (Cp -> ChanP_C [] ChanP_C))

aCPD = {| Dp, D |}

ChanP_D = (D -> (Dp -> ChanP_D [] ChanP_D))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

aCRA = {| Ar, A |}

ChanR_A = (A -> (Ar -> ChanR_A [] ChanR_A))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C))

aCSA = {| As, A |}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

185

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

ChanS_A = (A -> (As -> ChanS_A [] ChanS_A))

aCSD = {| Ds, D |}

ChanS_D = (Ds -> (D -> ChanS_D [] ChanS_D))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS) [| {Ap, Bp, Cp, Dp, Aq, Bq, Ar, Cr,←↩

As, Ds} |] (((((((((ChanP_A [{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,A,Bp,B|} ←↩

|| {|Cp,C|}] ChanP_C) [{|Ap,A,Bp,B,Cp,C|} || {|Dp,D|}] ChanP_D) [{|Ap,A,Bp,B←↩

,Cp,C,Dp,D|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq|} || {|Bq,B|}] ←↩

ChanQ_B) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq|} || {|Ar,A|}] ChanR_A) [{|Ap,A,Bp,B,Cp←↩

,C,Dp,D,Aq,Bq,Ar|} || {|Cr,C|}] ChanR_C) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Ar,Cr|} ←↩

|| {|As,A|}] ChanS_A) [{|Ap,A,Bp,B,Cp,C,Dp,D,Aq,Bq,Ar,Cr,As|} || {|Ds,D|}] ←↩

ChanS_D)

MAIN = SYSTEM

Listing B.7: Generated CSPM model of Listing 6.7.

B.2.1.2 Bidirectional - Half-duplex

-- Auto generated CSPM model by OpTrace

-- HalfDuplex

-- Input:

-- {P,Q}

-- {P,R}

-- {P,S}

channel Ap,A,Bp,B,Cp,C,Aq,Br,Cs

aP = {| Ap,Bp,Cp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP) [](Cp -> NodeP)

aQ = {| Aq |}

NodeQ = (Aq -> NodeQ)

aR = {| Br |}

NodeR = (Br -> NodeR)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

186

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aS = {| Cs |}

NodeS = (Cs -> NodeS)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A)) [] (A -> (Ap -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (Bp -> (B -> ChanP_B [] ChanP_B)) [] (B -> (Bp -> ChanP_B [] ChanP_B))

aCPC = {| Cp, C |}

ChanP_C = (Cp -> (C -> ChanP_C [] ChanP_C)) [] (C -> (Cp -> ChanP_C [] ChanP_C))

aCQA = {| Aq, A |}

ChanQ_A = (Aq -> (A -> ChanQ_A [] ChanQ_A)) [] (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCRB = {| Br, B |}

ChanR_B = (Br -> (B -> ChanR_B [] ChanR_B)) [] (B -> (Br -> ChanR_B [] ChanR_B))

aCSC = {| Cs, C |}

ChanS_C = (Cs -> (C -> ChanS_C [] ChanS_C)) [] (C -> (Cs -> ChanS_C [] ChanS_C))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS) [| {Ap, Bp, Cp, Aq, Br, Cs} |] ←↩

(((((ChanP_A [{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,A,Bp,B|} || {|Cp,C|}] ←↩

ChanP_C) [{|Ap,A,Bp,B,Cp,C|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,Bp,B,Cp,C,Aq|} || ←↩

{|Br,B|}] ChanR_B) [{|Ap,A,Bp,B,Cp,C,Aq,Br|} || {|Cs,C|}] ChanS_C)

MAIN = SYSTEM

Listing B.8: Generated CSPM model of Listing 6.8.

B.2.1.3 Bidirectional - Simplex

-- Auto generated CSPM model by OpTrace

-- Simplex

-- Input:

-- (P,Q)

-- (P,R)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

187

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

-- (P,S)

-- (Q,P)

-- (R,P)

-- (S,P)

channel Ap,A,Bp,B,Cp,C,Dp,D,Ep,E,Fp,F,Aq,Dq,Br,Er,Cs,Fs

aP = {| Ap,Bp,Cp,Dp,Ep,Fp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP) [](Cp -> NodeP) [](Dp -> NodeP) [](Ep←↩

-> NodeP) [](Fp -> NodeP)

aQ = {| Dq,Aq |}

NodeQ = (Aq -> NodeQ) [](Dq -> NodeQ)

aR = {| Er,Br |}

NodeR = (Br -> NodeR) [](Er -> NodeR)

aS = {| Fs,Cs |}

NodeS = (Cs -> NodeS) [](Fs -> NodeS)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (Bp -> (B -> ChanP_B [] ChanP_B))

aCPC = {| Cp, C |}

ChanP_C = (Cp -> (C -> ChanP_C [] ChanP_C))

aCPD = {| Dp, D |}

ChanP_D = (D -> (Dp -> ChanP_D [] ChanP_D))

aCPE = {| Ep, E |}

ChanP_E = (E -> (Ep -> ChanP_E [] ChanP_E))

aCPF = {| Fp, F |}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

188

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

ChanP_F = (F -> (Fp -> ChanP_F [] ChanP_F))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQD = {| Dq, D |}

ChanQ_D = (Dq -> (D -> ChanQ_D [] ChanQ_D))

aCRB = {| Br, B |}

ChanR_B = (B -> (Br -> ChanR_B [] ChanR_B))

aCRE = {| Er, E |}

ChanR_E = (Er -> (E -> ChanR_E [] ChanR_E))

aCSC = {| Cs, C |}

ChanS_C = (C -> (Cs -> ChanS_C [] ChanS_C))

aCSF = {| Fs, F |}

ChanS_F = (Fs -> (F -> ChanS_F [] ChanS_F))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS) [| {Ap, Bp, Cp, Dp, Ep, Fp, Aq, Dq,←↩

Br, Er, Cs, Fs} |] (((((((((((ChanP_A [{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,←↩

A,Bp,B|} || {|Cp,C|}] ChanP_C) [{|Ap,A,Bp,B,Cp,C|} || {|Dp,D|}] ChanP_D) [{|←↩

Ap,A,Bp,B,Cp,C,Dp,D|} || {|Ep,E|}] ChanP_E) [{|Ap,A,Bp,B,Cp,C,Dp,D,Ep,E|} || ←↩

{|Fp,F|}] ChanP_F) [{|Ap,A,Bp,B,Cp,C,Dp,D,Ep,E,Fp,F|} || {|Aq,A|}] ChanQ_A) [←↩

{|Ap,A,Bp,B,Cp,C,Dp,D,Ep,E,Fp,F,Aq|} || {|Dq,D|}] ChanQ_D) [{|Ap,A,Bp,B,Cp,C,←↩

Dp,D,Ep,E,Fp,F,Aq,Dq|} || {|Br,B|}] ChanR_B) [{|Ap,A,Bp,B,Cp,C,Dp,D,Ep,E,Fp,F,←↩

Aq,Dq,Br|} || {|Er,E|}] ChanR_E) [{|Ap,A,Bp,B,Cp,C,Dp,D,Ep,E,Fp,F,Aq,Dq,Br,Er←↩

|} || {|Cs,C|}] ChanS_C) [{|Ap,A,Bp,B,Cp,C,Dp,D,Ep,E,Fp,F,Aq,Dq,Br,Er,Cs|} || ←↩

{|Fs,F|}] ChanS_F)

MAIN = SYSTEM

Listing B.9: Generated CSPM model of Listing 6.9.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

189

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

B.3 CHAIN TOPOLOGY

B.3.1 3-Node Ring

B.3.1.1 Broadcasting

-- Auto generated CSPM model by OpTrace

-- Broadcasting

-- Input:

-- (P,Q,R)

-- (Q,P,R)

-- (R,P,Q)

channel Ap,A,Bp,B,Cp,C,Aq,Bq,Cq,Ar,Br,Cr

aP = {| Ap,Bp,Cp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP) [](Cp -> NodeP)

aQ = {| Bq,Aq,Cq |}

NodeQ = (Aq -> NodeQ) [](Bq -> NodeQ) [](Cq -> NodeQ)

aR = {| Cr,Ar,Br |}

NodeR = (Ar -> NodeR) [](Br -> NodeR) [](Cr -> NodeR)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (B -> (Bp -> ChanP_B [] ChanP_B))

aCPC = {| Cp, C |}

ChanP_C = (C -> (Cp -> ChanP_C [] ChanP_C))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

190

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

aCQC = {| Cq, C |}

ChanQ_C = (C -> (Cq -> ChanQ_C [] ChanQ_C))

aCRA = {| Ar, A |}

ChanR_A = (A -> (Ar -> ChanR_A [] ChanR_A))

aCRB = {| Br, B |}

ChanR_B = (B -> (Br -> ChanR_B [] ChanR_B))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C))

SYSTEM = (NodeP ||| NodeQ ||| NodeR) [| {Ap, Bp, Cp, Aq, Bq, Cq, Ar, Br, Cr} |] ←↩

((((((((ChanP_A [{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,A,Bp,B|} || {|Cp,C|}] ←↩

ChanP_C) [{|Ap,A,Bp,B,Cp,C|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,Bp,B,Cp,C,Aq|} || ←↩

{|Bq,B|}] ChanQ_B) [{|Ap,A,Bp,B,Cp,C,Aq,Bq|} || {|Cq,C|}] ChanQ_C) [{|Ap,A,←↩

Bp,B,Cp,C,Aq,Bq,Cq|} || {|Ar,A|}] ChanR_A) [{|Ap,A,Bp,B,Cp,C,Aq,Bq,Cq,Ar|} || ←↩

{|Br,B|}] ChanR_B) [{|Ap,A,Bp,B,Cp,C,Aq,Bq,Cq,Ar,Br|} || {|Cr,C|}] ChanR_C)

MAIN = SYSTEM

Listing B.10: Generated CSPM model of Listing 6.10.

B.3.1.2 Bidirectional - Half-duplex

-- Auto generated CSPM model by OpTrace

-- HalfDuplex

-- Input:

-- {P,Q}

-- {P,R}

-- {Q,R}

channel Ap,A,Bp,B,Aq,Cq,C,Br,Cr

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

191

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aP = {| Ap,Bp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP)

aQ = {| Aq,Cq |}

NodeQ = (Aq -> NodeQ) [](Cq -> NodeQ)

aR = {| Br,Cr |}

NodeR = (Br -> NodeR) [](Cr -> NodeR)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A)) [] (A -> (Ap -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (Bp -> (B -> ChanP_B [] ChanP_B)) [] (B -> (Bp -> ChanP_B [] ChanP_B))

aCQA = {| Aq, A |}

ChanQ_A = (Aq -> (A -> ChanQ_A [] ChanQ_A)) [] (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQC = {| Cq, C |}

ChanQ_C = (Cq -> (C -> ChanQ_C [] ChanQ_C)) [] (C -> (Cq -> ChanQ_C [] ChanQ_C))

aCRB = {| Br, B |}

ChanR_B = (Br -> (B -> ChanR_B [] ChanR_B)) [] (B -> (Br -> ChanR_B [] ChanR_B))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C)) [] (C -> (Cr -> ChanR_C [] ChanR_C))

SYSTEM = (NodeP ||| NodeQ ||| NodeR) [| {Ap, Bp, Aq, Cq, Br, Cr} |] (((((ChanP_A [←↩

{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,A,Bp,B|} || {|Aq,A|}] ChanQ_A) [{|Ap,A←↩

,Bp,B,Aq|} || {|Cq,C|}] ChanQ_C) [{|Ap,A,Bp,B,Aq,Cq,C|} || {|Br,B|}] ChanR_B)←↩

[{|Ap,A,Bp,B,Aq,Cq,C,Br|} || {|Cr,C|}] ChanR_C)

MAIN = SYSTEM

Listing B.11: Generated CSPM model of Listing 6.11.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

192

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

B.3.1.3 Unidirectional - Simplex

-- Auto generated CSPM model by OpTrace

-- Simplex

-- Input:

-- (P,R)

-- (Q,P)

-- (R,Q)

channel Ap,A,Bp,B,Ar,Cr,C,Bq,Cq

aP = {| Ap,Bp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP)

aR = {| Cr,Ar |}

NodeR = (Ar -> NodeR) [](Cr -> NodeR)

aQ = {| Bq,Cq |}

NodeQ = (Bq -> NodeQ) [](Cq -> NodeQ)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (B -> (Bp -> ChanP_B [] ChanP_B))

aCRA = {| Ar, A |}

ChanR_A = (A -> (Ar -> ChanR_A [] ChanR_A))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

aCQC = {| Cq, C |}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

193

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

ChanQ_C = (C -> (Cq -> ChanQ_C [] ChanQ_C))

SYSTEM = (NodeP ||| NodeR ||| NodeQ) [| {Ap, Bp, Ar, Cr, Bq, Cq} |] (((((ChanP_A [←↩

{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,A,Bp,B|} || {|Ar,A|}] ChanR_A) [{|Ap,A←↩

,Bp,B,Ar|} || {|Cr,C|}] ChanR_C) [{|Ap,A,Bp,B,Ar,Cr,C|} || {|Bq,B|}] ChanQ_B)←↩

[{|Ap,A,Bp,B,Ar,Cr,C,Bq|} || {|Cq,C|}] ChanQ_C)

MAIN = SYSTEM

Listing B.12: Generated CSPM model of Listing 6.12.

B.3.2 4-Node Ring

B.3.2.1 Broadcasting

-- Auto generated CSPM model by OpTrace

-- Broadcasting

-- Input:

-- (P,Q,S)

-- (Q,P,R)

-- (R,Q,S)

-- (S,P,R)

channel Ap,A,Bp,B,Dp,D,Aq,Bq,Cq,C,As,Cs,Ds,Br,Cr,Dr

aP = {| Ap,Bp,Dp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP) [](Dp -> NodeP)

aQ = {| Bq,Aq,Cq |}

NodeQ = (Aq -> NodeQ) [](Bq -> NodeQ) [](Cq -> NodeQ)

aS = {| Ds,As,Cs |}

NodeS = (As -> NodeS) [](Cs -> NodeS) [](Ds -> NodeS)

aR = {| Cr,Br,Dr |}

NodeR = (Br -> NodeR) [](Cr -> NodeR) [](Dr -> NodeR)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

194

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (B -> (Bp -> ChanP_B [] ChanP_B))

aCPD = {| Dp, D |}

ChanP_D = (D -> (Dp -> ChanP_D [] ChanP_D))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

aCQC = {| Cq, C |}

ChanQ_C = (C -> (Cq -> ChanQ_C [] ChanQ_C))

aCSA = {| As, A |}

ChanS_A = (A -> (As -> ChanS_A [] ChanS_A))

aCSC = {| Cs, C |}

ChanS_C = (C -> (Cs -> ChanS_C [] ChanS_C))

aCSD = {| Ds, D |}

ChanS_D = (Ds -> (D -> ChanS_D [] ChanS_D))

aCRB = {| Br, B |}

ChanR_B = (B -> (Br -> ChanR_B [] ChanR_B))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C))

aCRD = {| Dr, D |}

ChanR_D = (D -> (Dr -> ChanR_D [] ChanR_D))

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

195

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

SYSTEM = (NodeP ||| NodeQ ||| NodeS ||| NodeR) [| {Ap, Bp, Dp, Aq, Bq, Cq, As, Cs,←↩

Ds, Br, Cr, Dr} |] (((((((((((ChanP_A [{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,←↩

A,Bp,B|} || {|Dp,D|}] ChanP_D) [{|Ap,A,Bp,B,Dp,D|} || {|Aq,A|}] ChanQ_A) [{|←↩

Ap,A,Bp,B,Dp,D,Aq|} || {|Bq,B|}] ChanQ_B) [{|Ap,A,Bp,B,Dp,D,Aq,Bq|} || {|Cq,C←↩

|}] ChanQ_C) [{|Ap,A,Bp,B,Dp,D,Aq,Bq,Cq,C|} || {|As,A|}] ChanS_A) [{|Ap,A,Bp←↩

,B,Dp,D,Aq,Bq,Cq,C,As|} || {|Cs,C|}] ChanS_C) [{|Ap,A,Bp,B,Dp,D,Aq,Bq,Cq,C,As,←↩

Cs|} || {|Ds,D|}] ChanS_D) [{|Ap,A,Bp,B,Dp,D,Aq,Bq,Cq,C,As,Cs,Ds|} || {|Br,B|}←↩

] ChanR_B) [{|Ap,A,Bp,B,Dp,D,Aq,Bq,Cq,C,As,Cs,Ds,Br|} || {|Cr,C|}] ChanR_C) [←↩

{|Ap,A,Bp,B,Dp,D,Aq,Bq,Cq,C,As,Cs,Ds,Br,Cr|} || {|Dr,D|}] ChanR_D)

MAIN = SYSTEM

Listing B.13: Generated CSPM model of Listing 6.13.

B.3.2.2 Bidirectional - Half-duplex

-- Auto generated CSPM model by OpTrace

-- HalfDuplex

-- Input:

-- {P,Q}

-- {P,S}

-- {Q,R}

-- {R,S}

channel Ap,A,Bp,B,Aq,Cq,C,Bs,Ds,D,Cr,Dr

aP = {| Ap,Bp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP)

aQ = {| Aq,Cq |}

NodeQ = (Aq -> NodeQ) [](Cq -> NodeQ)

aS = {| Bs,Ds |}

NodeS = (Bs -> NodeS) [](Ds -> NodeS)

aR = {| Cr,Dr |}

NodeR = (Cr -> NodeR) [](Dr -> NodeR)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

196

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A)) [] (A -> (Ap -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (Bp -> (B -> ChanP_B [] ChanP_B)) [] (B -> (Bp -> ChanP_B [] ChanP_B))

aCQA = {| Aq, A |}

ChanQ_A = (Aq -> (A -> ChanQ_A [] ChanQ_A)) [] (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQC = {| Cq, C |}

ChanQ_C = (Cq -> (C -> ChanQ_C [] ChanQ_C)) [] (C -> (Cq -> ChanQ_C [] ChanQ_C))

aCSB = {| Bs, B |}

ChanS_B = (Bs -> (B -> ChanS_B [] ChanS_B)) [] (B -> (Bs -> ChanS_B [] ChanS_B))

aCSD = {| Ds, D |}

ChanS_D = (Ds -> (D -> ChanS_D [] ChanS_D)) [] (D -> (Ds -> ChanS_D [] ChanS_D))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C)) [] (C -> (Cr -> ChanR_C [] ChanR_C))

aCRD = {| Dr, D |}

ChanR_D = (Dr -> (D -> ChanR_D [] ChanR_D)) [] (D -> (Dr -> ChanR_D [] ChanR_D))

SYSTEM = (NodeP ||| NodeQ ||| NodeS ||| NodeR) [| {Ap, Bp, Aq, Cq, Bs, Ds, Cr, Dr}←↩

|] (((((((ChanP_A [{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,A,Bp,B|} || {|Aq,A|}←↩

] ChanQ_A) [{|Ap,A,Bp,B,Aq|} || {|Cq,C|}] ChanQ_C) [{|Ap,A,Bp,B,Aq,Cq,C|} ||←↩

{|Bs,B|}] ChanS_B) [{|Ap,A,Bp,B,Aq,Cq,C,Bs|} || {|Ds,D|}] ChanS_D) [{|Ap,A,←↩

Bp,B,Aq,Cq,C,Bs,Ds,D|} || {|Cr,C|}] ChanR_C) [{|Ap,A,Bp,B,Aq,Cq,C,Bs,Ds,D,Cr|}←↩

|| {|Dr,D|}] ChanR_D)

MAIN = SYSTEM

Listing B.14: Generated CSPM model of Listing 6.14.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

197

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

B.3.2.3 Unidirectional - Simplex

-- Auto generated CSPM model by OpTrace

-- Simplex

-- Input:

-- (P,S)

-- (Q,R)

-- (R,Q)

-- (S,R)

channel Ap,A,As,Ds,D,Bq,B,Cq,C,Br,Cr,Dr

aP = {| Ap |}

NodeP = (Ap -> NodeP)

aS = {| Ds,As |}

NodeS = (As -> NodeS) [](Ds -> NodeS)

aQ = {| Bq,Cq |}

NodeQ = (Bq -> NodeQ) [](Cq -> NodeQ)

aR = {| Cr,Br,Dr |}

NodeR = (Br -> NodeR) [](Cr -> NodeR) [](Dr -> NodeR)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCSA = {| As, A |}

ChanS_A = (A -> (As -> ChanS_A [] ChanS_A))

aCSD = {| Ds, D |}

ChanS_D = (Ds -> (D -> ChanS_D [] ChanS_D))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

198

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aCQC = {| Cq, C |}

ChanQ_C = (C -> (Cq -> ChanQ_C [] ChanQ_C))

aCRB = {| Br, B |}

ChanR_B = (B -> (Br -> ChanR_B [] ChanR_B))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C))

aCRD = {| Dr, D |}

ChanR_D = (D -> (Dr -> ChanR_D [] ChanR_D))

SYSTEM = (NodeP ||| NodeS ||| NodeQ ||| NodeR) [| {Ap, As, Ds, Bq, Cq, Br, Cr, Dr}←↩

|] (((((((ChanP_A [{|Ap,A|} || {|As,A|}] ChanS_A) [{|Ap,A,As|} || {|Ds,D|}]←↩

ChanS_D) [{|Ap,A,As,Ds,D|} || {|Bq,B|}] ChanQ_B) [{|Ap,A,As,Ds,D,Bq,B|} || ←↩

{|Cq,C|}] ChanQ_C) [{|Ap,A,As,Ds,D,Bq,B,Cq,C|} || {|Br,B|}] ChanR_B) [{|Ap,A←↩

,As,Ds,D,Bq,B,Cq,C,Br|} || {|Cr,C|}] ChanR_C) [{|Ap,A,As,Ds,D,Bq,B,Cq,C,Br,Cr←↩

|} || {|Dr,D|}] ChanR_D)

MAIN = SYSTEM

Listing B.15: Generated CSPM model of Listing 6.15.

B.3.3 4-Node Linear

B.3.3.1 Broadcasting

-- Auto generated CSPM model by OpTrace

-- Broadcasting

-- Input:

-- (P,Q)

-- (Q,P,R)

-- (R,Q,S)

-- (S,R)

channel Ap,A,Bp,B,Aq,Bq,Cq,C,Br,Cr,Dr,D,Cs,Ds

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

199

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aP = {| Ap,Bp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP)

aQ = {| Bq,Aq,Cq |}

NodeQ = (Aq -> NodeQ) [](Bq -> NodeQ) [](Cq -> NodeQ)

aR = {| Cr,Br,Dr |}

NodeR = (Br -> NodeR) [](Cr -> NodeR) [](Dr -> NodeR)

aS = {| Ds,Cs |}

NodeS = (Cs -> NodeS) [](Ds -> NodeS)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (B -> (Bp -> ChanP_B [] ChanP_B))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

aCQC = {| Cq, C |}

ChanQ_C = (C -> (Cq -> ChanQ_C [] ChanQ_C))

aCRB = {| Br, B |}

ChanR_B = (B -> (Br -> ChanR_B [] ChanR_B))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C))

aCRD = {| Dr, D |}

ChanR_D = (D -> (Dr -> ChanR_D [] ChanR_D))

aCSC = {| Cs, C |}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

200

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

ChanS_C = (C -> (Cs -> ChanS_C [] ChanS_C))

aCSD = {| Ds, D |}

ChanS_D = (Ds -> (D -> ChanS_D [] ChanS_D))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS) [| {Ap, Bp, Aq, Bq, Cq, Br, Cr, Dr,←↩

Cs, Ds} |] (((((((((ChanP_A [{|Ap,A|} || {|Bp,B|}] ChanP_B) [{|Ap,A,Bp,B|} ←↩

|| {|Aq,A|}] ChanQ_A) [{|Ap,A,Bp,B,Aq|} || {|Bq,B|}] ChanQ_B) [{|Ap,A,Bp,B,←↩

Aq,Bq|} || {|Cq,C|}] ChanQ_C) [{|Ap,A,Bp,B,Aq,Bq,Cq,C|} || {|Br,B|}] ChanR_B)←↩

[{|Ap,A,Bp,B,Aq,Bq,Cq,C,Br|} || {|Cr,C|}] ChanR_C) [{|Ap,A,Bp,B,Aq,Bq,Cq,C,←↩

Br,Cr|} || {|Dr,D|}] ChanR_D) [{|Ap,A,Bp,B,Aq,Bq,Cq,C,Br,Cr,Dr,D|} || {|Cs,C|}←↩

] ChanS_C) [{|Ap,A,Bp,B,Aq,Bq,Cq,C,Br,Cr,Dr,D,Cs|} || {|Ds,D|}] ChanS_D)

MAIN = SYSTEM

Listing B.16: Generated CSPM model of Listing 6.16.

B.3.3.2 Bidirectional - Half-duplex

-- Auto generated CSPM model by OpTrace

-- HalfDuplex

-- Input:

-- {P,Q}

-- {Q,R}

-- {R,S}

channel Ap,A,Aq,Bq,B,Br,Cr,C,Cs

aP = {| Ap |}

NodeP = (Ap -> NodeP)

aQ = {| Aq,Bq |}

NodeQ = (Aq -> NodeQ) [](Bq -> NodeQ)

aR = {| Br,Cr |}

NodeR = (Br -> NodeR) [](Cr -> NodeR)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

201

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aS = {| Cs |}

NodeS = (Cs -> NodeS)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A)) [] (A -> (Ap -> ChanP_A [] ChanP_A))

aCQA = {| Aq, A |}

ChanQ_A = (Aq -> (A -> ChanQ_A [] ChanQ_A)) [] (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B)) [] (B -> (Bq -> ChanQ_B [] ChanQ_B))

aCRB = {| Br, B |}

ChanR_B = (Br -> (B -> ChanR_B [] ChanR_B)) [] (B -> (Br -> ChanR_B [] ChanR_B))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C)) [] (C -> (Cr -> ChanR_C [] ChanR_C))

aCSC = {| Cs, C |}

ChanS_C = (Cs -> (C -> ChanS_C [] ChanS_C)) [] (C -> (Cs -> ChanS_C [] ChanS_C))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS) [| {Ap, Aq, Bq, Br, Cr, Cs} |] ←↩

(((((ChanP_A [{|Ap,A|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,Aq|} || {|Bq,B|}] ←↩

ChanQ_B) [{|Ap,A,Aq,Bq,B|} || {|Br,B|}] ChanR_B) [{|Ap,A,Aq,Bq,B,Br|} || {|Cr←↩

,C|}] ChanR_C) [{|Ap,A,Aq,Bq,B,Br,Cr,C|} || {|Cs,C|}] ChanS_C)

MAIN = SYSTEM

Listing B.17: Generated CSPM model of Listing 6.17.

B.3.3.3 Unidirectional - Simplex

-- Auto generated CSPM model by OpTrace

-- Simplex

-- Input:

-- (P,Q)

-- (Q,R)

-- (R,S)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

202

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

channel Ap,A,Aq,Bq,B,Br,Cr,C,Cs

aP = {| Ap |}

NodeP = (Ap -> NodeP)

aQ = {| Bq,Aq |}

NodeQ = (Aq -> NodeQ) [](Bq -> NodeQ)

aR = {| Cr,Br |}

NodeR = (Br -> NodeR) [](Cr -> NodeR)

aS = {| Cs |}

NodeS = (Cs -> NodeS)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

aCRB = {| Br, B |}

ChanR_B = (B -> (Br -> ChanR_B [] ChanR_B))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C))

aCSC = {| Cs, C |}

ChanS_C = (C -> (Cs -> ChanS_C [] ChanS_C))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS) [| {Ap, Aq, Bq, Br, Cr, Cs} |] ←↩

(((((ChanP_A [{|Ap,A|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,Aq|} || {|Bq,B|}] ←↩

ChanQ_B) [{|Ap,A,Aq,Bq,B|} || {|Br,B|}] ChanR_B) [{|Ap,A,Aq,Bq,B,Br|} || {|Cr←↩

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

203

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

,C|}] ChanR_C) [{|Ap,A,Aq,Bq,B,Br,Cr,C|} || {|Cs,C|}] ChanS_C)

MAIN = SYSTEM

Listing B.18: Generated CSPM model of Listing 6.18.

B.4 TREE TOPOLOGY

B.4.1 7-Node Tree

B.4.1.1 Broadcasting

-- Auto generated CSPM model by OpTrace

-- Broadcasting

-- Input:

-- (P,Q,R)

-- (Q,S,T)

-- (R,U,V)

channel Ap,A,Aq,Bq,B,Ar,Cr,C,Bs,Bt,Cu,Cv

aP = {| Ap |}

NodeP = (Ap -> NodeP)

aQ = {| Bq,Aq |}

NodeQ = (Aq -> NodeQ) [](Bq -> NodeQ)

aR = {| Cr,Ar |}

NodeR = (Ar -> NodeR) [](Cr -> NodeR)

aS = {| Bs |}

NodeS = (Bs -> NodeS)

aT = {| Bt |}

NodeT = (Bt -> NodeT)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

204

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aU = {| Cu |}

NodeU = (Cu -> NodeU)

aV = {| Cv |}

NodeV = (Cv -> NodeV)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A))

aCQA = {| Aq, A |}

ChanQ_A = (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQB = {| Bq, B |}

ChanQ_B = (Bq -> (B -> ChanQ_B [] ChanQ_B))

aCRA = {| Ar, A |}

ChanR_A = (A -> (Ar -> ChanR_A [] ChanR_A))

aCRC = {| Cr, C |}

ChanR_C = (Cr -> (C -> ChanR_C [] ChanR_C))

aCSB = {| Bs, B |}

ChanS_B = (B -> (Bs -> ChanS_B [] ChanS_B))

aCTB = {| Bt, B |}

ChanT_B = (B -> (Bt -> ChanT_B [] ChanT_B))

aCUC = {| Cu, C |}

ChanU_C = (C -> (Cu -> ChanU_C [] ChanU_C))

aCVC = {| Cv, C |}

ChanV_C = (C -> (Cv -> ChanV_C [] ChanV_C))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS ||| NodeT ||| NodeU ||| NodeV) [| {←↩

Ap, Aq, Bq, Ar, Cr, Bs, Bt, Cu, Cv} |] ((((((((ChanP_A [{|Ap,A|} || {|Aq,A|}] ←↩

ChanQ_A) [{|Ap,A,Aq|} || {|Bq,B|}] ChanQ_B) [{|Ap,A,Aq,Bq,B|} || {|Ar,A|}] ←↩

ChanR_A) [{|Ap,A,Aq,Bq,B,Ar|} || {|Cr,C|}] ChanR_C) [{|Ap,A,Aq,Bq,B,Ar,Cr,C|}←↩

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

205

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

|| {|Bs,B|}] ChanS_B) [{|Ap,A,Aq,Bq,B,Ar,Cr,C,Bs|} || {|Bt,B|}] ChanT_B) [←↩

{|Ap,A,Aq,Bq,B,Ar,Cr,C,Bs,Bt|} || {|Cu,C|}] ChanU_C) [{|Ap,A,Aq,Bq,B,Ar,Cr,C,←↩

Bs,Bt,Cu|} || {|Cv,C|}] ChanV_C)

MAIN = SYSTEM

Listing B.19: Generated CSPM model of Listing 6.19.

B.4.1.2 Bidirectional - Half-duplex

-- Auto generated CSPM model by OpTrace

-- HalfDuplex

-- Input:

-- {P,Q}

-- {P,R}

-- {Q,S}

-- {Q,T}

-- {R,U}

-- {R,V}

channel Ap,A,Bp,B,Aq,Cq,C,Dq,D,Br,Er,E,Fr,F,Cs,Dt,Eu,Fv

aP = {| Ap,Bp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP)

aQ = {| Aq,Cq,Dq |}

NodeQ = (Aq -> NodeQ) [](Cq -> NodeQ) [](Dq -> NodeQ)

aR = {| Br,Er,Fr |}

NodeR = (Br -> NodeR) [](Er -> NodeR) [](Fr -> NodeR)

aS = {| Cs |}

NodeS = (Cs -> NodeS)

aT = {| Dt |}

NodeT = (Dt -> NodeT)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

206

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aU = {| Eu |}

NodeU = (Eu -> NodeU)

aV = {| Fv |}

NodeV = (Fv -> NodeV)

aCPA = {| Ap, A |}

ChanP_A = (Ap -> (A -> ChanP_A [] ChanP_A)) [] (A -> (Ap -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (Bp -> (B -> ChanP_B [] ChanP_B)) [] (B -> (Bp -> ChanP_B [] ChanP_B))

aCQA = {| Aq, A |}

ChanQ_A = (Aq -> (A -> ChanQ_A [] ChanQ_A)) [] (A -> (Aq -> ChanQ_A [] ChanQ_A))

aCQC = {| Cq, C |}

ChanQ_C = (Cq -> (C -> ChanQ_C [] ChanQ_C)) [] (C -> (Cq -> ChanQ_C [] ChanQ_C))

aCQD = {| Dq, D |}

ChanQ_D = (Dq -> (D -> ChanQ_D [] ChanQ_D)) [] (D -> (Dq -> ChanQ_D [] ChanQ_D))

aCRB = {| Br, B |}

ChanR_B = (Br -> (B -> ChanR_B [] ChanR_B)) [] (B -> (Br -> ChanR_B [] ChanR_B))

aCRE = {| Er, E |}

ChanR_E = (Er -> (E -> ChanR_E [] ChanR_E)) [] (E -> (Er -> ChanR_E [] ChanR_E))

aCRF = {| Fr, F |}

ChanR_F = (Fr -> (F -> ChanR_F [] ChanR_F)) [] (F -> (Fr -> ChanR_F [] ChanR_F))

aCSC = {| Cs, C |}

ChanS_C = (Cs -> (C -> ChanS_C [] ChanS_C)) [] (C -> (Cs -> ChanS_C [] ChanS_C))

aCTD = {| Dt, D |}

ChanT_D = (Dt -> (D -> ChanT_D [] ChanT_D)) [] (D -> (Dt -> ChanT_D [] ChanT_D))

aCUE = {| Eu, E |}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

207

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

ChanU_E = (Eu -> (E -> ChanU_E [] ChanU_E)) [] (E -> (Eu -> ChanU_E [] ChanU_E))

aCVF = {| Fv, F |}

ChanV_F = (Fv -> (F -> ChanV_F [] ChanV_F)) [] (F -> (Fv -> ChanV_F [] ChanV_F))

SYSTEM = (NodeP ||| NodeQ ||| NodeR ||| NodeS ||| NodeT ||| NodeU ||| NodeV) [| {←↩

Ap, Bp, Aq, Cq, Dq, Br, Er, Fr, Cs, Dt, Eu, Fv} |] (((((((((((ChanP_A [{|Ap,A|}←↩

|| {|Bp,B|}] ChanP_B) [{|Ap,A,Bp,B|} || {|Aq,A|}] ChanQ_A) [{|Ap,A,Bp,B,Aq←↩

|} || {|Cq,C|}] ChanQ_C) [{|Ap,A,Bp,B,Aq,Cq,C|} || {|Dq,D|}] ChanQ_D) [{|Ap,←↩

A,Bp,B,Aq,Cq,C,Dq,D|} || {|Br,B|}] ChanR_B) [{|Ap,A,Bp,B,Aq,Cq,C,Dq,D,Br|} || ←↩

{|Er,E|}] ChanR_E) [{|Ap,A,Bp,B,Aq,Cq,C,Dq,D,Br,Er,E|} || {|Fr,F|}] ChanR_F) ←↩

[{|Ap,A,Bp,B,Aq,Cq,C,Dq,D,Br,Er,E,Fr,F|} || {|Cs,C|}] ChanS_C) [{|Ap,A,Bp,B,←↩

Aq,Cq,C,Dq,D,Br,Er,E,Fr,F,Cs|} || {|Dt,D|}] ChanT_D) [{|Ap,A,Bp,B,Aq,Cq,C,Dq,D←↩

,Br,Er,E,Fr,F,Cs,Dt|} || {|Eu,E|}] ChanU_E) [{|Ap,A,Bp,B,Aq,Cq,C,Dq,D,Br,Er,E,←↩

Fr,F,Cs,Dt,Eu|} || {|Fv,F|}] ChanV_F)

MAIN = SYSTEM

Listing B.20: Generated CSPM model of Listing 6.20.

B.4.1.3 Unidirectional - Simplex

-- Auto generated CSPM model by OpTrace

-- Simplex

-- Input:

-- (Q,P)

-- (R,P)

-- (S,Q)

-- (T,Q)

-- (U,R)

-- (V,R)

channel Aq,A,Cq,C,Dq,D,Ap,Bp,B,Br,Er,E,Fr,F,Cs,Dt,Eu,Fv

aQ = {| Aq,Cq,Dq |}

NodeQ = (Aq -> NodeQ) [](Cq -> NodeQ) [](Dq -> NodeQ)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

208

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

aP = {| Ap,Bp |}

NodeP = (Ap -> NodeP) [](Bp -> NodeP)

aR = {| Br,Er,Fr |}

NodeR = (Br -> NodeR) [](Er -> NodeR) [](Fr -> NodeR)

aS = {| Cs |}

NodeS = (Cs -> NodeS)

aT = {| Dt |}

NodeT = (Dt -> NodeT)

aU = {| Eu |}

NodeU = (Eu -> NodeU)

aV = {| Fv |}

NodeV = (Fv -> NodeV)

aCQA = {| Aq, A |}

ChanQ_A = (Aq -> (A -> ChanQ_A [] ChanQ_A))

aCQC = {| Cq, C |}

ChanQ_C = (C -> (Cq -> ChanQ_C [] ChanQ_C))

aCQD = {| Dq, D |}

ChanQ_D = (D -> (Dq -> ChanQ_D [] ChanQ_D))

aCPA = {| Ap, A |}

ChanP_A = (A -> (Ap -> ChanP_A [] ChanP_A))

aCPB = {| Bp, B |}

ChanP_B = (B -> (Bp -> ChanP_B [] ChanP_B))

aCRB = {| Br, B |}

ChanR_B = (Br -> (B -> ChanR_B [] ChanR_B))

aCRE = {| Er, E |}

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

209

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Topology Scenario Models

ChanR_E = (E -> (Er -> ChanR_E [] ChanR_E))

aCRF = {| Fr, F |}

ChanR_F = (F -> (Fr -> ChanR_F [] ChanR_F))

aCSC = {| Cs, C |}

ChanS_C = (Cs -> (C -> ChanS_C [] ChanS_C))

aCTD = {| Dt, D |}

ChanT_D = (Dt -> (D -> ChanT_D [] ChanT_D))

aCUE = {| Eu, E |}

ChanU_E = (Eu -> (E -> ChanU_E [] ChanU_E))

aCVF = {| Fv, F |}

ChanV_F = (Fv -> (F -> ChanV_F [] ChanV_F))

SYSTEM = (NodeQ ||| NodeP ||| NodeR ||| NodeS ||| NodeT ||| NodeU ||| NodeV) [| {←↩

Aq, Cq, Dq, Ap, Bp, Br, Er, Fr, Cs, Dt, Eu, Fv} |] (((((((((((ChanQ_A [{|Aq,A|}←↩

|| {|Cq,C|}] ChanQ_C) [{|Aq,A,Cq,C|} || {|Dq,D|}] ChanQ_D) [{|Aq,A,Cq,C,Dq,←↩

D|} || {|Ap,A|}] ChanP_A) [{|Aq,A,Cq,C,Dq,D,Ap|} || {|Bp,B|}] ChanP_B) [{|Aq←↩

,A,Cq,C,Dq,D,Ap,Bp,B|} || {|Br,B|}] ChanR_B) [{|Aq,A,Cq,C,Dq,D,Ap,Bp,B,Br|} ||←↩

{|Er,E|}] ChanR_E) [{|Aq,A,Cq,C,Dq,D,Ap,Bp,B,Br,Er,E|} || {|Fr,F|}] ChanR_F)←↩

[{|Aq,A,Cq,C,Dq,D,Ap,Bp,B,Br,Er,E,Fr,F|} || {|Cs,C|}] ChanS_C) [{|Aq,A,Cq,C,←↩

Dq,D,Ap,Bp,B,Br,Er,E,Fr,F,Cs|} || {|Dt,D|}] ChanT_D) [{|Aq,A,Cq,C,Dq,D,Ap,Bp,B←↩

,Br,Er,E,Fr,F,Cs,Dt|} || {|Eu,E|}] ChanU_E) [{|Aq,A,Cq,C,Dq,D,Ap,Bp,B,Br,Er,E,←↩

Fr,F,Cs,Dt,Eu|} || {|Fv,F|}] ChanV_F)

MAIN = SYSTEM

Listing B.21: Generated CSPM model of Listing 6.21.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

210

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Introduction
	Problem statement
	Context of the problem
	Research gap

	Research objective and questions
	Hypothesis and approach
	Research goals
	Research contribution
	Submitted paper
	Previous publications
	Overview of study

	Related work
	Wireless Sensor Networks
	Overview
	Application areas
	Evaluation metrics
	WSN challenges

	Communicating Sequential Processes
	Process algebra
	History
	Application areas of CSP
	Semantics
	Extensions of CSP
	Tools

	Formal approaches to WSN modelling
	WSN modelling using CSP
	Other WSN modelling approaches

	Chapter summary

	CSP theory
	Traces in CSP
	Calculating the traces of a process

	Operators
	Synchronous parallel
	Alphabetised parallel
	Interleaving
	Generalised parallel
	Optional parallel

	Chapter summary

	Definition of a new optional parallel operator
	Problem identification
	Optional parallelism
	Defining optional parallelism using classical CSP operators
	Preparing system definitions for optional parallelism analysis
	Generalisation of optional parallelism with classical CSP operators

	Directional synchronisation for optional parallelism using channel artefacts
	Directional notation
	Broadcasting
	Simplex
	Half-duplex
	Full-duplex
	Notation and synchronisation summary

	Other approaches considered
	Using synchronisation event artefacts
	Using stochastic CSP

	Software tools
	Optional parallel to CSP definition generator
	Requirements
	System overview
	Implementation
	Test and validation

	Automated trace verification
	Requirements
	System overview
	Adjacency list notation
	Theoretical trace generation
	Simulated trace generation

	Chapter summary

	Optional parallel test scenario description
	Topology scenarios
	Flat topology
	Cluster
	Chain
	Tree

	Chapter summary

	Testing optional parallelism in the traces domain
	Test definition
	Deadlock freedom
	Trace refinement
	Pass criteria

	Limitations
	Problems encountered
	Solutions
	Ignored metrics

	Results
	Discussion of results
	Traces
	Deadlock
	Trace refinement

	Conclusion and outlook
	Trace results
	Topology Scenario Models
	Flat Topology
	Point-to-point
	Fully Connected Mesh

	Cluster Topology
	Star

	Chain Topology
	3-Node Ring
	4-Node Ring
	4-Node Linear

	Tree Topology
	7-Node Tree

