

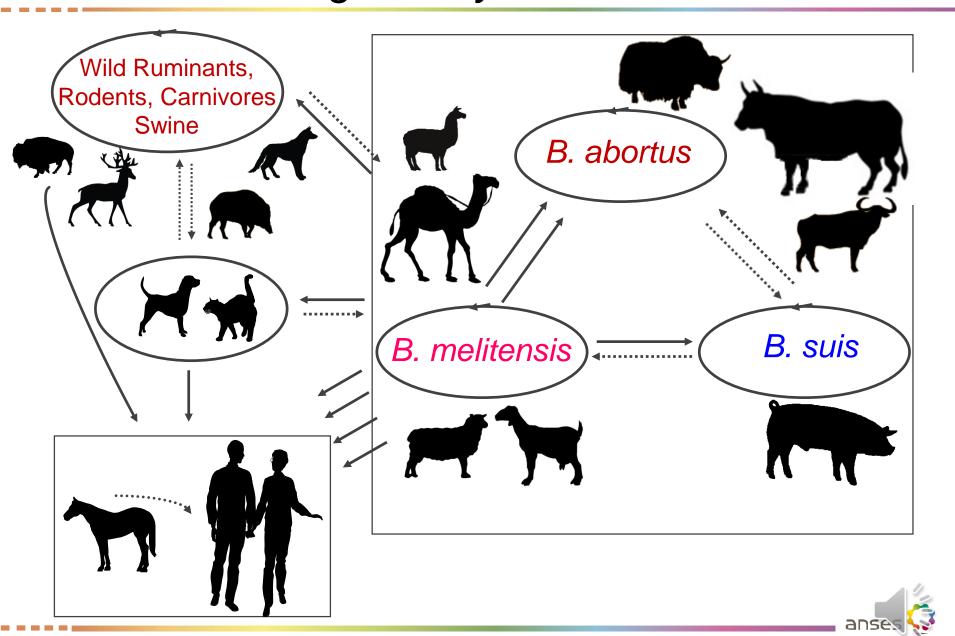
The Diagnosis of Brucellosis in cattle, sheep, goats & pigs What is needed?

B. Garin-Bastuji

EU / OIE & FAO Brucellosis Expert ANSES, Maisons-Alfort, France

Brucellosis Workshop Onderstepoort, South Africa, 13th-15th May, 2015

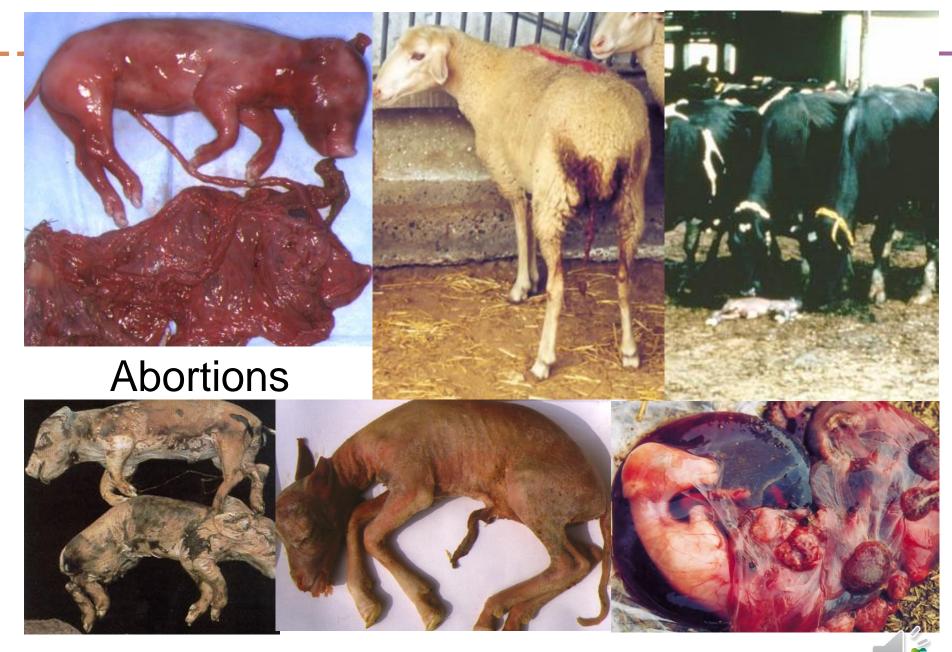
Brucellosis


- Due to Brucella abortus, melitensis or suis
 - Gram negative bacteria (α-proteobacteriaceae)
 - Mammals facultative intracellular pathogens
- Geographical distribution
 - Mediterranean countries, near- and middle east
 - Distributed world wide
- Clinical signs (non pathognomonic)
 - abortions, sterility, unthrifty offspring
 - orchitis & epididymitis (+hygromas)
 - joints may be affected, causing lameness and sometimes paralysis (pigs)

Brucella: species & biovars

Species Biovars		Preferred natural host	Main geographical area	Pathogenicity for man
B. melitensi	s 1, 2, 3	Sheep, Goats, Wild ongulates	Mediterranean countries Middle & Near East	High
B.abortus	1, 2, 3, 4, 5, 6,(7),	•	Europe, Americas, Africa, Asia	Moderate
B. suis	1 2	Suids Suids, Hares	Americas, Asia, Oceania Central & Western Europe	High Unknown
	3	Suids	USA, China	High
	4	Reindeer	USA, Canada, Russia	Moderate
	5	Wild rodents	Russia	High
B. neotoma	е	Desert wood rat Neotoma lepida	USA	Unknown
B. ovis		Sheep (males)	Mediterranean countries	No
B.canis		Dogs	USA, South America Central Europe	Low
B. ceti		Cetaceans	-	High / Unknown
B. pinniped	ialis	Pinnipeds	-	High / Unknown
B. microti		Common vole	Central Europe	Unknown

Brucellosis - the global cycle


Epidemiology of Brucellosis....

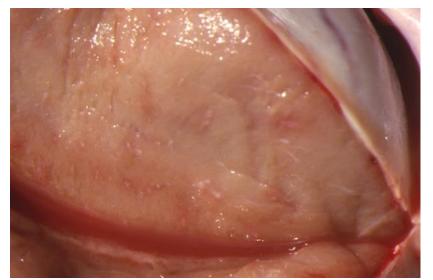
Brucellosis is a "multi-species" infectious and contagious disease...

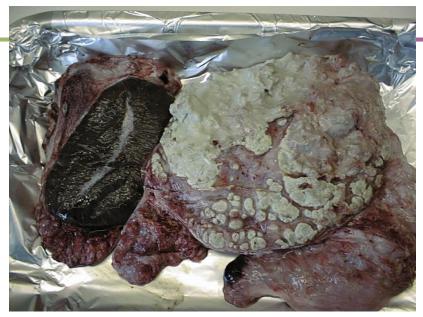
- different animal species
- different Brucella species

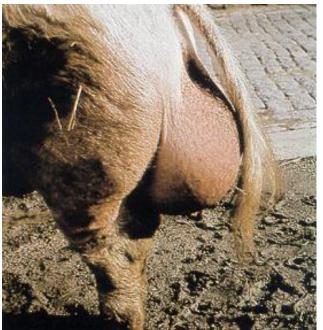
.....to be considered



Endometritis






Orchitis in rams

Orchitis in pigs

Wild ruminants – e.g. in the EU

Alpine ibex (Capra ibex)

anses

Epidemiology of Brucellosis

- Abortion is the main sign of brucellosis...
- But, most infected females give birth normally...
- In both cases, huge and durable excretion of Brucella

Diagnostic tools

Direct:

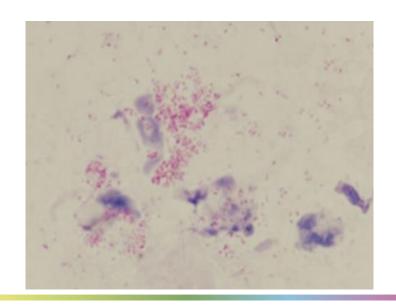
Detection of the *Brucella* and/or their specific components (Ag, Genes)

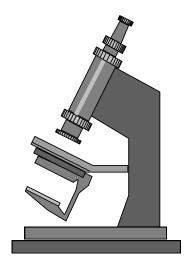
Indirect

Measure of the immune response

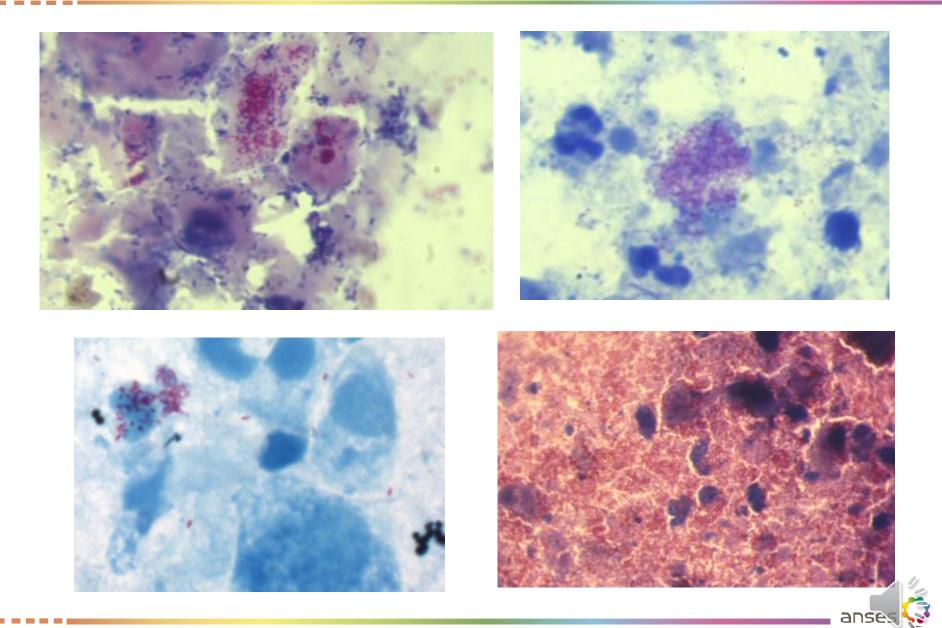
Diagnosis of Brucellosis....

- No single test able to...
 - identify all infected animals, or
 - certify all free animals
- > Tests repetitions needed
- > Tests associations (parallel/series) needed
- BUT a test means...a <u>standardised</u> test which also means a <u>validated</u> test and biologicals <u>regularly checked</u> against standards (see OIE update)


Direct Diagnosis


- Bacterioscopy
- Isolation & identification of Brucella
- Antigens: Immuno-enzymology fluorescence
 - Not practicable, no standardisation
 - Low specificity, low sensitivity
- PCR

Bacterioscopy (Stamp)


- Samples to be ground
- Several smears needed
 - □ Advantages: quick and simple
 - □ Disadvantage: presumptive value
 - False negative
 - False positive (B. ovis, Chlamydia, Coxiella,..)

Stamp staining (modified Ziehl-Neelsen)

Direct Diagnosis

Bacterioscopy

- Isolation & identification of Brucella
- Antigens: Immuno-enzymology fluorescence
 - Not practicable, no standardisation
 - Low specificity, low sensitivity
- · PCR

Isolation & identification of Brucella

- The only unequivocal method
- Identification = definitive diagnosis

- High epidemiological value: biotyping
- Relatively expensive, long lasting
- Bio-hazard: needs expertise, procedures and equipment
- Lack of sensitivity
- Sample sometimes unavailable (milk, foeto-maternal materials, genital secretions, lymph nodes,...)

Specimens for *Brucella* isolation

	Live animal	Slaughtered animal
Female	Vaginal discharges Milk*	Lymph nodes** Spleen**
		Udder**
		Uterus**
Male	Semen	Lymph nodes **
		Spleen **
		Epididymes**
		Sexual accessory glands **

^{*} Cream + pellet

^{**} Ground (stomacher)

Distribution of *Brucella* infection (cattle)

Australia (Hornitsky, 1986)

```
    ➤ Mam.
    ➤ Mam. + Sc.
    ➤ Mam. + Sc. + RP
    ➤ Mam. + Sc. + RP + Mand.
    ➤ Mam. + Sc. + RP + Mand. + Ili
    100.0%
```

- Northern-Ireland (1999-2001) 2 dishes/organ (n=342)
 - ➤ L.N. Par RP SM RM

(# culture + = 86% CFT + animals)

- ➤ Pos. 60% 81% 66% 82%
- ➤ Pos. alone 1.7% 6.2% 0.7% 8.9%

Distribution of *Brucella* infection (sheep & goats)

	172 Sheep & goats Blasco et al. 2002	142 Sheep Marín <i>et al</i> . 1996	40 Goats Marín <i>et al</i> . 1996
Cranial L.N.	37.4 %	33.8 %	80.0 %
Scapular L.N.	26.4 %	33.8 %	50.0 %
Prefemoral L.N.	-	36.6 %	47.5 %
Iliac L.N.	46.1 %	51.4 %	65.0 %
Mammary L.N.	69.2 %	81.7 %	82.5 %
Spleen	28.0 %	36.0 %	25.0 %
Uterus	17.6 %	19.7 %	25.0 %
Milk	60.9 %	62.5 %	74.3 %

Brucella on Blood Agar

Selective media almost always needed

Selective media

Farrell

Modified Thayer-Martin

(Brown et al. - Marín et al. modification)

Base:

SDA, BAB or BMB + 5 % serum

Nalidixic acid 5 mg

Bacitracin 25 000 UI

Natamycin 50 mg

Polymyxin B (sulf.) 5 000 UI

Nystatin 100 000 UI

Vancomycin 20 mg

(Oxoid SR209A)

Base: GC medium Haemoglobin sol. 10 %

Vancomycin 3 mg (20 mg)*

Colistin 7.5 mg

Nystatin 100 000 UI

Nitrofurantoin 10 mg

Amphotericin B 2.5 mg (4 mg)*

*CITA medium

Comparison of Farrell and m. Thayer-Martin

Brucella species	Medium	mean CFU
23 B. abortus	Farrell	53.86
23 B. abortus	m T-M	63.16
31 B. melitensis	Farrell	74.48
31 B. melitensis	m T-M	99.50

- 182 infected animals
 - 172 Farrell +

(Marín *et al* 1996)

- 180 m T-M +
- 182 Farrell + or m T-M +
- Simultaneous use of Farrell + mT-M media increase the sensitivity of bacteriological diagnosis

Presumptive identification

- Clinical & Epidemiological context
- Growth on Farrell / mT-M (slow > 3-4 days)
- Morphology of colonies (smooth, homogenous, glossy, etc.)
- Gram negative coccobacilli
- Agglutination of anti-Brucella serum
- Catalase +, Oxidase +, Urease +
- No use of sugars

Typing: expert laboratories

Direct Diagnosis

- Bacterioscopy
- Isolation & identification of Brucella
- · Antigens: Immuno-enzymology fluorescence
 - Not practicable, no standardisation
 - Low specificity, low sensitivity
- PCR

Direct diagnosis by PCR

- bscp 31 Kd
- 16S rRNA
- IS 711/6501
 - Specificity: genus Brucella
 - Sensitivity ??

- > No great/long experience in field conditions
- Real-time PCR under validation

PCR IS711: vaginal swabs

Bacteriology					
PCR	+	-			
+	5	21	26		
-	0	8	8		
	5	29	34		

PCR IS711 : organs

Spleen	Bacte	Total	
PCR	+	-	
+	13	5	18
-	4	10	14
	17	15	32

L.N.	Bacte	Total	
PCR	+	-	
+	11	18	29
-	0	1	1
	11	19	30

> PCR is a good complementary test but could not replace bacteriology up to now in all situations....

Added value of Real time PCR

Brucella		Conv	Conventional single PCR *		PCR RT*		
	IS711 Nb copies	IS 711	bcsp 31	per	IS711	bcsp 31	per
B. abortus 544	6 to 8	100	1000	1000	2	2	2
B. melitensis 16M	7 to 10	1000	1000	1000	2	2	2
<i>B. ovis</i> 63/290	> 20	100	1000	1000	0.2	2	2

^{*}Lower limit of detection in fg

Bounaadja et al. (2009)

- > Sensitivity 7
- > Limits contaminations

Direct diagnosis (conclusion)

Isolation (or PCR) & Typing of Brucella

- Advantage: unequivocal diagnosis
- Disadvantage: long and expensive, limited to equipped and experienced labs.
- Not applicable at all stages of an eradication program (too many outbreaks)
- Essential in the last stages:
 - Diagnosis confirmation
 - Trace-back and forward tracing

Diagnostic tools

- Direct:
 - Detection of the *Brucella* and/or their specific components
- Indirect
 - Measure of the immune response
- > Essential in surveillance, control and eradication programmes.

Immune response of the infected host

Brucella =

Facultative intracellular pathogens

↓

Cell response (DTH)

&

Humoral response (antibodies)

Indirect diagnosis

Serological tests

- Early, sensitive but low specificity (RBT/FPA))
- Sensitive but lower specificity (iELISA pool possible)
- Late, more specific but less sensitive (CFT)
- Specific ≥ but the <u>lowest</u> sensitivity (cELISA)
- Highly sensitive/specific (Milk iELISA > Milk ring test)
- Cell tests: Brucellin Skin Test (BST)
 highly specific, but not usable in vaccinated animals
 - Frequent discrepancies between tests
 - Associations usually needed

Immune response of the infected host - Antibodies

Foetus

> congenital infection - no Ab before 1st gestation

Young

> low and transitory response

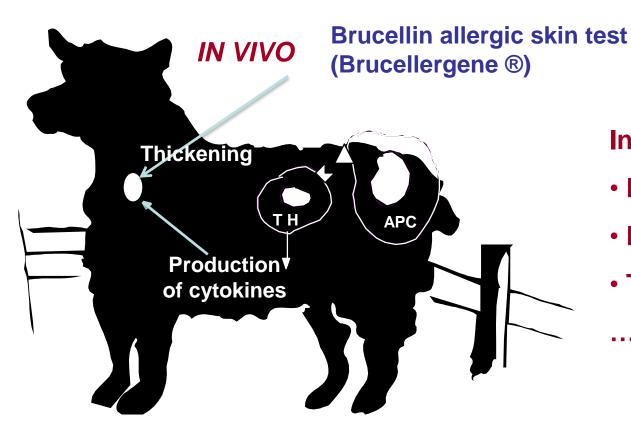
Adults

- > Response in 1-2 months, sometimes no or low
- > Persistence 6 months or more
- Fluctuant (calving/abortions) milk
- Latent infection abortion, lambing
- Great individual variations
- Tests repetition Discordance vaccination

Immune response of the infected host

Brucella =

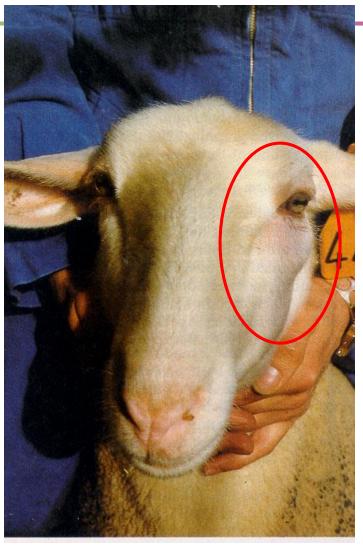
Facultative intracellular pathogens


Cell response (DTH)

Humoral response (antibodies)

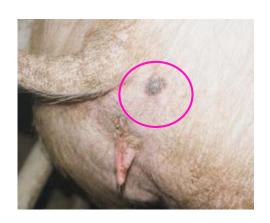
The cell response

In adults:


- Rapid
- Persistent
- To any Brucella
-including vaccines

Intradermic Measure of skin thickening Reading at J+72h

Brucellin AST


Intradermic/subcutaneous Reading at J+48h

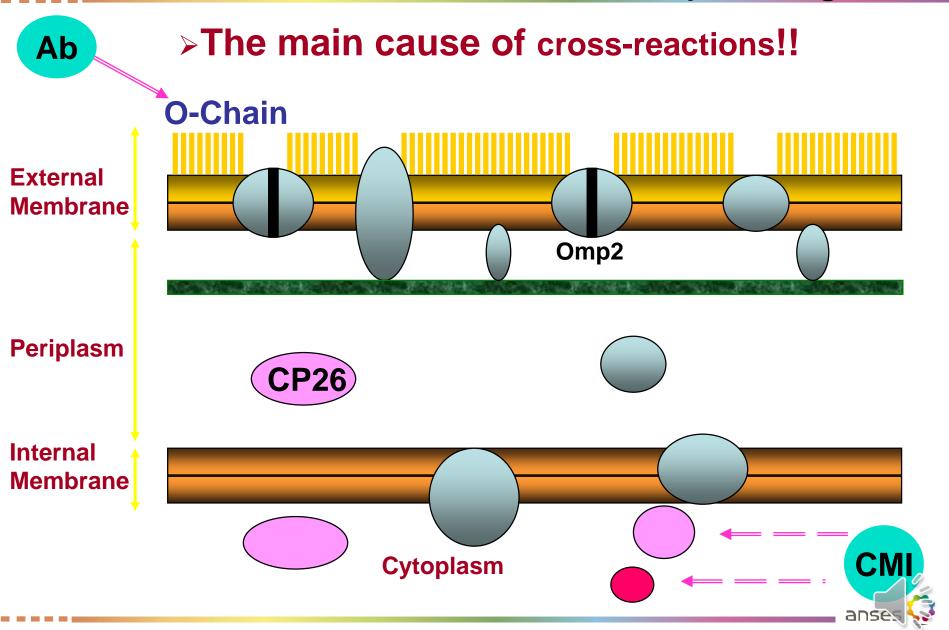
Brucellin AST

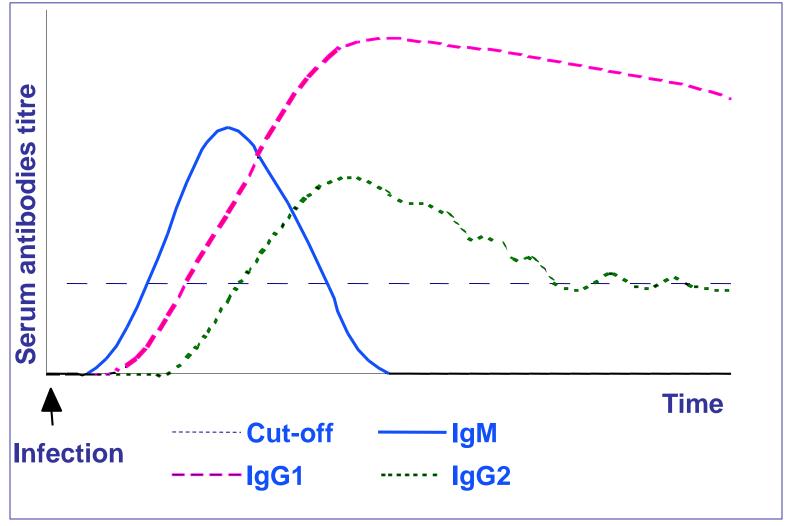
Brucellin AST

Immune response of the infected host

Brucella =

Facultative intracellular pathogens


Cell response (DTH)


Humoral response (antibodies)

The S-LPS of Brucella - The Major antigen

Serological tests – old tools

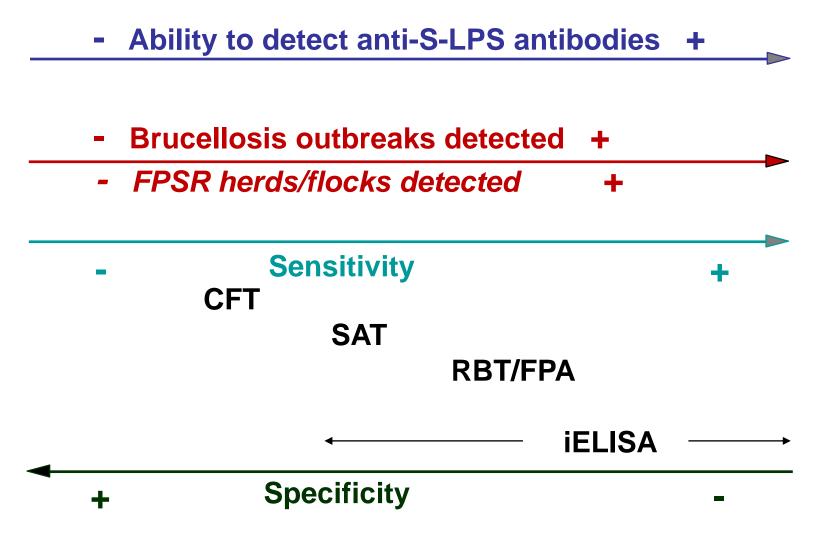
Anti-Brucella post-infection antibodies Schematic evolution curve

Immune response effectors in brucellosis

Immune mechanisms

Immunoglobulins

Tests	IgG1	lgG2	IgM	IgA	Sensitised T-cells						
SAT	_	+	+	_	_						
RBT	+	-	+	-	-						
CFT	+	-	+/-	-	-						
iELISA	+	+	+/-	+/-	-						
MRT	+/-	+/-	++	++	-						
CMI	-	-	-	-	+						


Immune response: great individual variability

Possible situations (Plommet, 1984)

Test	1	2	3	4	5	6	7	8
Serology	+	-	_	+	+	+	-	-
Brucellin	+	-	-	-	+	-	+	+
Ring-Test	+	-	+	-	-	+	-	+
Culture (milk)	+	-	+	-	-	+	-	+
Culture (L.N.)		+			+	+		
Interpretatio	n +	+	+	?	+	+	+	+

Sensitivity & specificity

Serological tests – "old" tools

- SAT (cattle)
- Rose Bengal (RBT)
- iELISA (serum & bovine milk)
- Milk ring-Test (bovine milk)
 - Generally used as "screening" tests
- Complement fixation (CFT)
 - Generally used as a "confirmatory" test
- RB, CF & iELISA = the only OIE official tests in S&G

Serological tests – "old" tools (bovine milk)

MRT

- Sensitivity & specificity if repeated (cattle only))
 - false negative: udder infection needed, large tank bulk samples, non-milking animals
 - false positive: colostrum, mastitis, dried-off cows
- Milk iELISA
 - Good sensitivity & specificity

Serological tests – old tools (serum)

All tests

 Sensitive to antibodies induced by all S-Brucella species and biovars (abortus, melitensis and suis)

RBT

- Early detection
- Lacks sensitivity (in sheep particularly)
- Lacks specificity (in low prevalence or free areas)
- Sensitive to vaccine-induced antibodies

CFT

- Later but prolonged detection
- Lacks sensitivity (in recently infected animals)
- Lacks specificity (but less than RBT)
- Sensitive (less) to vaccine-induced antibodies

Serological old tools - How to minimise failings?

- Modification of RBT (75/25 vs. 25/25)
 the sensitivity
- Use of complementary tools
 - > NH-GDT, less sensitive but more specific of the infection (sub-cutaneously vaccinated flocks)
 - > AST, in unvaccinated flocks
 - Culture/PCR in vaccinated flocks in low prevalence or free areas
- Use of epidemiology-based strategy of:
 - > performing tests: frequency
 - > interpreting tests results (in parallel vs. in series)

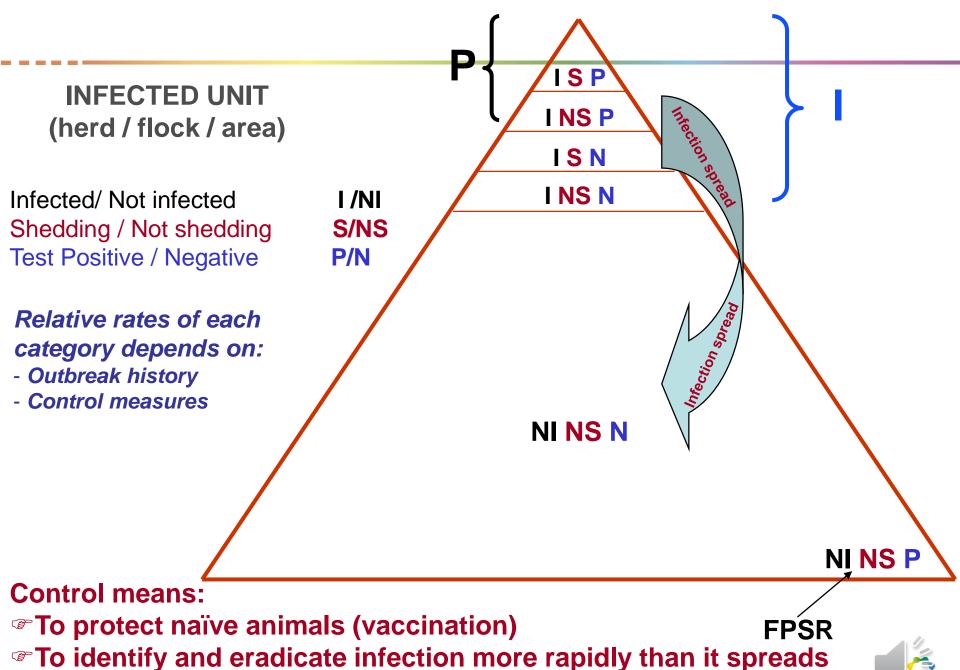
Serological old tools - Despite these failings?

In infected flocks/areas

- The predictive value of positive results in either test is close to 100%
- > RBT has a very high flock sensitivity
- The use of both tests in parallel 77 greatly the individual sensitivity
- Antibodies due to vaccination avoided by the use of the conjunctival route in replacement animals

In low prevalence or free areas

FPSR (Y. ent. O:9) could be identified by:


- > The very low proportion of positive results per flock/herd
- > The low levels and duration of antibodies
- > The use of the brucellin skin test
- Eradication in cattle reached in many countries
- Eradication in S. & G. reached in France (2003), Cyprus and Northern Italy & Spain

Serological tests – « new » tools

- Protein-iELISA: very low sensitivity and specificity
- S-LPS iELISA: sens.> RBT & CFT, but spe. < RBT/CFT
 - Standardised in cattle and in S&G
 - > And highly sensitive to vaccine induced antibodies
 - Could be used in pools of 10 sera in cattle
 - > No validation at large scale in field conditions in S&G
 - > Approved in cattle in bulk serum or milk samples
 - Promising as replacing RB
- C-ELISA:
 - low sensitivity and specificity in cattle
 - In sheep & goats? First results disappointing
- Fluorescence polarisation Assay:
 - > OIE & EU official test in cattle (very sensitive but expensive)
 - In sheep and goats?
- Pigs ????? Associations of tests needed for increasing sensitivity and/or specificity

Conclusion

Control, surveillance & Eradication of animal Brucellosis...

Diagnosis is a critical key...

- Appropriate standardised and controlled biologicals (OIE)
- Appropriate performance (SOPs, ISO 17025)
- Tests associations (series or parallel)
 - to increase the result predictive values
- Test result interpretation...always in relation with:
 - risk-factors
 - status of the herd, the area, the country

Conclusion

New tools needed but....
....epidemiology-based strategy essential for sound testing regime design & result interpretation.

« In some cases, it would be more profitable to make better use of existing procedures than to continue to develop new ones."

R.J. Chappel, Surveillance, 1989, 16, 3.

Merci de votre attention

Thank you

Dankie vir jou aandag

