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RÉSUMÉ

L’échantillonnage pour le minage de large ensemble de données est important pour au moins deux raisons. Le traitement de

grande quantité de données a pour résultat une augmentation de la complexité informatique. Le coût de cette complexité

additionnelle pourrait être non justifiable. D’autre part, l’utilisation de petits échantillons a pour résultat des calculs

rapides et efficaces pour les algorithmes de minage de données. Les méthodes de statistique pour obtenir des échantillons

d’ensemble de donnés satisfaisants pour les problèmes de classification sont discutées dans ce papier. Des résultats sont

présentés pour une étude empirique basée sur l’utilisation d’échantillonnage aléatoire séquentiel et l’évaluation d’échantillon

utilisant le test d’hypothèse univariée et une mesure theoretique de l’information. Des comparaisons sont faites entre des

estimations théoriques et empiriques.

MOTS-CLÉS: échantillonnage d’ensemble de données, analyse de données, apprentissage de machine, classifica-
tion, information measures

ABSTRACT

Sampling of large datasets for data mining is important for at least two reasons. The processing of large amounts of data

results in increased computational complexity. The cost of this additional complexity may not be justifiable. On the other

hand, the use of small samples results in fast and efficient computation for data mining algorithms. Statistical methods

for obtaining sufficient samples from datasets for classification problems are discussed in this paper. Results are presented

for an empirical study based on the use of sequential random sampling and sample evaluation using univariate hypothesis

testing and an information theoretic measure. Comparisons are made between theoretical and empirical estimates.

KEYWORDS: dataset sampling, data analysis, machine learning, classification, information measures

1 INTRODUCTION

Data mining activities based on machine learning al-
gorithms such as artificial neural-networks [2], deci-
sion trees [20] and K-nearest neighbor [5], amongst
others, require lengthy computation times due to the
sophisticated functions used by these algorithms. For
very large datasets, the amount of time required for
the computations can quickly become infeasible.

There is plenty of evidence to suggest that it is
not desirable to present very large datasets to induc-
tive machine learning algorithms. Catlett [4], Kohavi
[13] and Provost et al [19] have demonstrated that the
learning curve for a very large dataset will normally
flatten before the whole dataset has been used. Elo-
maa and Kaariainen [7] have however cautioned that
not all domains have the typical well-behaved learn-
ing curve which rises steeply and then gradually flat-
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tens. For artificial neural networks, Engelbrecht [8]
has demonstrated that even for small datasets, it is
not necessary to present all the data to a learning al-
gorithm in order to achieve a high level of accuracy.
He also states that for any given dataset, there is a
critical training set size, beyond which higher gener-
alisation accuracy is not possible. Dietterich [6] has
argued that overfitting does occur for large datasets,
and so, training on all the data in a large dataset
should be avoided.

For non-inductive learning, such as association
rule mining there is also evidence to support the claims
that a small subset of database records can produce
results with an acceptable level of accuracy. This has
been demonstrated by Zaki et al [27] and Toivonen
[22].

Given the above observations, it is highly desirable
to reduce the amount of data presented to data min-
ing algorithms. This reduction should not be done
on an ad hoc basis, but should be made to ensure
that the probability distribution and information con-
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tent of the sample is the same as (or close to) that
of the original dataset. Sampling is one way to re-
duce the amount of data presented to an algorithm.
John and Langley [11] report two main approaches to
sample selection that are in common use. These are
static sampling and dynamic sampling. With static
sampling, a random sample is drawn from the large
dataset, and hypothesis testing is used to establish
whether it is sufficiently similar to the parent dataset.
With dynamic sampling, a decision is made after each
sampled element whether to continue sampling or not.
If the current sample is considered sufficient for the
required level of accuracy, the sampling stops. Dy-
namic sampling is especially suited to incremental al-
gorithms, such as artificial neural networks, but it is
not well suited to non-incremental algorithms, such as
decision trees. Static sampling, on the other hand, is
applicable to any type of algorithm.

The research reported in this paper answers three
questions. The first question is: Do available statis-
tical tests provide good guidelines for empirical esti-
mation of sample sizes? The second question is: If
the tests provide good guidelines, how precisely should
they be used for sample size estimation? The third
question is: How do these methods perform, compared
to the theoretical guidelines for sample size estima-
tion? John and Langley [11] have answered the first
question in part, by studying the usage of the mean
test and the chi-square goodness-of-fit test. The re-
search reported in this paper extends the investiga-
tion to the mean and variance tests and the trimmed
mean test, as well as the use of information theoretic
measures. To this end, experiments have been con-
ducted to study the usage of five statistical tests in
estimating sufficient sample sizes for several datasets.
In order to answer the third question, a comparison
has been made between the classification performance
of samples evaluated empirically, and the theoretical
estimates of sample complexity, based on the proba-
bly approximately correct (PAC) model of inductive
learning [23]. The C5.0 classifier, which is the com-
mercial version of the C4.5 classifier [20] has been used
to establish classifier accuracy for the samples.

The main findings of this research are that first
of all, testing a single sample for statistical validity,
based on the mean, variance or chi-square goodness-
of-fit test does not provide sufficient information about
the sufficiency of the sample for classification pur-
poses. This confirms John and Langley’s [11] find-
ings. The second finding is that testing many sam-
ples using these tests, does provide useful information
about what sample sizes are very likely to be suffi-
cient for classification in particular and data mining
in general. The third finding is that in order to obtain
conclusive evidence of sample sufficiency for classifica-
tion purposes, information theoretic measures need to
be made on the samples. The recommendation aris-
ing from this research is that hypothesis testing using
the trimmed mean should be used in conjunction with
an information theoretic measure in order to establish
the sufficiency of samples for classification purposes.

It is also shown that the recommended method results
in estimates that are of more practical use, than those
estimates based on the theoretical methods of PAC
learning.

The rest of the paper is organised as follows. In
section 2 previous work on empirical estimation of
sample size as well as the theoretical estimation using
PAC are discussed. Various issues related to the em-
pirical evaluation of dataset samples are discussed in
section 3. The experimental results for empirical sam-
ple evaluation and the classification results obtained
from samples are presented in sections 4 and 5. Sec-
tion 6 concludes the paper.

2 PREVIOUS WORK ON STATIC SAMPLING
FOR INDUCTIVE ALGORITHMS

Previous work on sample size estimation for induc-
tive algorithms is discussed in this section. The scope
of the discussion is limited to those methods that
statically estimate the sufficient sample size. Even
though dynamic sampling has been reported to pro-
vide better estimates than static sampling, it is im-
portant to investigate static sampling methods, since
dynamic sampling is not always the optimal choice for
some classification algorithms. For empirical estima-
tion, univariate hypothesis testing with the mean and
chi-square goodness-of-fit tests have been reported in
the literature. For theoretical estimation, the most
common approach is to use PAC estimates. More re-
cently, the Rademacher penalty [7] has been reported
as a more viable alternative to the usage of PAC and
the VC dimension [24]. The empirical method of uni-
variate hypothesis testing and the PAC methods are
briefly reviewed in this section. Elomaa’s method [7],
which is based on the Radmacher penalty is not dis-
cussed here, since it is based on dynamic sampling.

2.1 Empirical estimation of sample complexity

A random sample obtained from a large dataset, us-
ing static random sampling, should be evaluated to es-
tablish whether it is sufficiently representative of the
dataset. The methods reported in the literature re-
volve around hypothesis testing to establish that the
sample and the large dataset have the same probabil-
ity distribution. John and Langley [11] discuss uni-
variate hypothesis testing on the mean and chi-square
goodness-of-fit test. For each continuous-valued at-
tribute, hypothesis testing is done to establish whether
the sample and large dataset have the same mean. For
each categorical attribute, the chi-square goodness-of-
fit test is used to establish whether the sample and
large dataset have the same distribution.

Hypothesis testing on the mean is based on the
assumption that the attribute values have a normal
distribution. It is however generally known that real-
life data is not always normally distributed. Skewed
distributions and the presence of outliers is the norm
rather than the exception. Wilcox [25] has advised
that, when normality is assumed, deviations from nor-
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mality result in misleading conclusions for the hypoth-
esis testing, even for large datasets. It has also been
observed in the experiments conducted for this re-
search, that when a single random sample is drawn
and found to be statistically valid, this can lead to
the erroneous conclusion that all random samples of
that size are statistically valid. This problem should
be avoided by establishing the probability of draw-
ing a statistically valid sample of size, say, S. If this
probability is high, for example 0.95, then a claim can
be made that random samples of size S are generally
valid samples. Such a claim does not imply sample
sufficiency. However, as the experimental results in
this paper will show, sample sizes that are generally
valid can be efficiently used as a starting point for
identifying sufficient samples.

2.2 Theoretical estimation based on PAC and
the VC dimension

The probably approximately correct (PAC) model of
learning proposed by Valiant [23] and discussed by
Mitchell [14], considers algorithms that learn target
concepts from some concept class C, using training ex-
amples drawn at random according to some unknown,
but fixed, probability distribution. PAC is concerned
with the identification of classes of hypotheses that
can and cannot be learned from a polynomial number
of examples. PAC also defines measures of complexity
of hypothesis spaces that makes it possible to define
bounds for the number of training examples required
for inductive learning.

PAC requires that the learner probably (with a
probability of at least 1−δ ) learn a hypothesis that is
approximately correct (with predictive error ε), given
computational effort and training examples that grow
only polynomially with 1/ε, 1/varepsilon, the number
of the instances,i m , and the size of the hypothesis
space |H |. For the agnostic (robust) learning model
(within PAC) the learner outputs the hypothesis from
H that has the least error over the training data. Un-
der this model, the learner is assured with probability
(1 − δ ) to output a hypothesis within error ε of the
hypothesis h in H , after observing m randomly drawn
training examples, provided [14]

m ≥ 1

22
ε
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1

δ
+ ln |H |

)
(1)

Equation (1) is applicable to hypotheses for which
the size of the hypothesis space, |H |, is finite. For in-
finite hypothesis spaces, a useful measure of the com-
plexity of H is its Vapnik-Chervonenkis dimension,
V C(H) [24]. V C(H) is the size of the largest subset
of instances that can be shattered (split in all possible
ways) by H . An alternative upperbound for m under
the PAC model may be restated as [14]:
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One problem with using the V C dimension is that
it is not always easy to estimate the V C dimension for

a given classification algorithm. Additionally, the V C
dimension might be infinite, as is the case for a fully
grown decision tree. Auer et al [1], have derived an
expression for the V C dimension of a decision tree of
bounded depth. Guestrin [9] has given a bound on the
size of the hypothesis space for decision trees of depth
k. He has shown that for a classification problem with
d attributes:

log2Hk =
(
2k − 1

)
(1 + log2 d) + 1 (3)

where Hk is the number of decision trees of depth k.
Based on equations (1) and (3), the sample complexity
for a decision tree learner of depth k, for an instance
space with d attributes is:

m ≥ ln 2
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The PAC model provides a worst-case estimate
as it requires that the number of training examples
needed, should be bounded by a single fixed-size poly-
nomial for all target concepts and all distributions in
the instance space. Haussler [10] has observed that
one criticism that is often leveled at the PAC model
is that the worst-case emphasis results in the estima-
tion of the worst-case number of examples needed, and
therefore makes the model unusable in practice. This
is demonstrated in sections 3 and 5. Another criticism
of the model is that the assumptions of well defined
target concepts and noise-free data are unrealistic in
practice.

3 EMPIRICAL EVALUATION OF DATASET
SAMPLES

In this section, the datasets, the sampling method
used and the statistical tests applied to the samples,
are discussed. A distinction is made between statis-
tical validity and sample sufficiency. This distinction
is important, since it was found in the experimental
results that statistical validity does not imply sample
sufficiency.

3.1 The datasets used for the experiments

For the experiments, the datasets, iris, pima-diabetes,
abalone, mushroom, housing16H, and adult income
from the UCI machine learning repository [3] were
used. For abalone, the three-class version of the
dataset was used. For housing16H the attribute price
was discretised into 11 intervals for classification pur-
poses. The datasets were chosen in an effort to vary
the complexity of the learning problems. The num-
ber of attributes was varied from 4 for iris to 16 for
housing16H. The size of the dataset was varied as 150
for iris, 768 for pima-diabetes, 4177 for abalone, 8142
for mushroom, 22784 for housing16h and 48842 for
adult income. The number of classes was varied as 2
for pima-diabetes, mushroom and adult income, 3 for
abalone, 4 for iris and 11 for housing16H. Although
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some of these datasets cannot be classified as large,
they are sufficient in showing that smaller samples of
the sets can be sufficiently representative of the whole
set, for classification purposes [8]. A summary of the
characteristics of the datasets is given in Table 1.

3.2 Sequential random sampling

In order to obtain random samples from the datasets,
the method of sequential random sampling proposed
by Jones [12] and later used by Olken and Rottem
[16,17] were used. For this sampling method, the prob-
ability of each dataset record being included in the
sample is uniform, and is achieved as follows. An in-
dependent uniform random variate (from the unit in-
terval [0,1] ) is generated for each record in the dataset
to determine whether the record should be included in
the sample or not. Suppose that a dataset of size N is
to be sampled to obtain n records. If m records have
already been chosen from among the first t records in
the dataset, the (t+ 1)st record is chosen with proba-
bility (n −m)/(N − t), where (n−m) is the number
of records that still need to be chosen for the sample,
and (N − t) is the number of records in the dataset,
still to be processed.

3.3 Sufficient samples and statistical validity

A sample is considered to be statistically valid if each
of its attributes has the same probability distribution
as the corresponding attribute in the parent dataset.
A sample is considered to be sufficient if the perfor-
mance of classifiers that are constructed from it is
close to that for classifiers constructed from the par-
ent dataset. It is necessary to make this distinction,
since a sample that is statistically valid is not necessar-
ily sufficiently representative. It is argued in section
5.2 that both statistical validity and high information
content are necessary for sample sufficiency.

3.4 Univariate hypothesis testing

Experiments have been conducted to compare the per-
formance of four different statistical tests in the eval-
uation of samples using hypothesis testing. The four
statistical tests used are based on the mean, the mean
and variance, the trimmed mean and the chi-square
goodness-of-fit test. For the parametric tests the null
hypothesis is that the value of the parameter (mean,
variance) for a sample lies within the confidence inter-
val for the parameter in the parent dataset. The chi-
square goodness-of-fit test has been applied to both
categorical and continuous-valued attributes. Each
continuous-valued attribute was first discretised into
D intervals before applying the test. The null hy-
potheses tested are that the relative frequencies in the
sample are the same as in the parent dataset. A sam-
ple passes the test if, for all the attributes, the null
hypotheses cannot be rejected.

Hypothesis testing with the mean, variance and
chi-square goodness-of-fit test are well documented
in the statistics literature. Some good references are

Montgomery et al [15] and Steyn et al [21]. Hypothe-
sis testing on the trimmed mean as proposed by Yuen
[26] and discussed in detail by Wilcox [25], is not that
common, and needs some explanation. g% trimming,
means that g% of the lowest values and g% of the high-
est values are ignored for purposes of hypothesis test-
ing. The reasoning behind using the trimmed mean
is to remove all possible outliers by trimming off the
tails of the probability distribution, and then working
with the middle part of the distribution, which is as-
sumed to be normal. The effect of this is to reduce the
variance and increase the power for hypothesis testing
for non-normal distributions.

The datasets used for the experiments have
continuous-valued attributes with different distribu-
tions ranging from extremely skewed, bimodal, and
with the presence of extreme outliers for some at-
tributes. The mean and variance tests are based on
assumptions of normality, which are clearly violated
when these datasets are used. The trimmed mean
test is based on the assumption that a distribution
is unimodal, so that trimming will result in hypoth-
esis testing with the middle part of the distribution
which is normal. The attributes which have bimodal
distributions clearly violate this assumption.

3.5 Information theoretic measure

The entropy function, has been used as a measure of
information content for the samples. The weighted
average class entropy (ACE) for an attribute is com-
puted as [20]:

ACEr =

k∑

j−1

|Sj |
|S| H(Sj) (5)

where:

H(Sj) =

m∑

i−1

P (ci, Sj) log2 P (ci, Sj) (6)

|S| is the sample size, |Sj | is the size of the bin
which has value j for attribute r, and, P (ci, Sj) is the
number of training examples in Sj which have class
label ci.

For the computation of H(Sj), categorical at-
tributes have a natural partitioning of the attributes
values. For continuous-valued attributes, binning is
used at levels of 16, 32 and 64 bins for the experi-
ments.

Given a sample S and the parent dataset D, for
each sample, the total entropy for all attributes is com-
puted as:

SampleEntropy(S) =

R∑

r=1

ACEr (7)

In the absence of a statistic that can be used for
hypothesis testing, a criterion called sufficiently close
is used. If SampleEntropy(S) is sufficiently close to
SampleEntropy(D) for the parent, that is:
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Dataset Description Number of
attributes

Iris 4 continuous-valued attributes, 3 classes, 150 examples 4
Abalone 1 categorical attribute, 7 continuous-valued attributes, 8

3 classes, 4177 examples
Pima-Diabetes 8 continuous-valued attributes, 2 classes, 768 examples 8
Mushroom 22 categorical attributes, 2 classes, 8124 examples 22
Housing 16H 16 continuous-valued attributes, 11 classes, 22784 examples 16
Adult 6 continuous-valued attributes, 14
Income 8 categorical attributes, 2 classes, 48842 examples

Table 1: Summary of characteristics for the datasets used

SampleEntropy(D)− SampleEntropy(S) < δ (8)

then the information content of the sample S is
sufficiently close to that of the parent dataset, and the
sample is considered to be sufficient for classification
purposes.

4 COMPARISON OF THE SAMPLE EVALU-
ATION METHODS

The performance measures and experimental results
for the statistical tests are discussed in this section
and in section 5. The first research question that was
posed in section 1 is as follows: Do available statistical
tests provide good guidelines for the empirical estima-
tion of sample sizes ? For experimental purposes, this
question was broken down as follows:

1. Can parametric tests on the mean and variance
provide informative results even when the as-
sumptions of normality are violated ?

2. Can the parametric test on the trimmed mean
provide informative results even when the as-
sumptions of unimodality are violated ?

3. Does the goodness-of-fit test provide informative
results for both categorical and continuous-valued
attributes?

4. Do all the four tests above perform equally well?

5. Do information theoretic measures provide infor-
mative results for sufficient sample size estima-
tion ?

6. If a sample is declared statistically valid, is it a
sufficient sample for classification purposes ?

This section provides answers to the first five ques-
tions. The fifth question is addressed in section 5.

4.1 Measuring the performance of the
statistical tests

For the mean, variance and chi-square goodness-of-fit
tests, performance was measured in terms of informa-
tiveness, as follows.

1. If a test declares both small samples and large
samples as being valid with a high probability,
then that test is not very informative.

2. If a test declares both small samples and large
samples as being valid with a low probability, then
that test is not very informative.

3. If the probability of a sample being declared valid,
monotonically increases with the sample size,
then the test is said to be informative.

In order to estimate the probability of samples of size S
being declared valid, 200 samples were tested for each
value of S. For each dataset, the sample size is var-
ied at six levels : 5%, 10%, 20%, 40%, 60% and 80%.
This is done in order to study the informativeness of
the tests. When multiple tests are conducted using
univariate hypothesis testing, it is normally necessary
to make adjustments to the α values for the individual
tests. One such adjustment is the Bonferroni correc-
tion. For the experimental results that are reported
here, no corrections were performed and the α values
that appear in tables 2, 3, and 4 are for each individual
test.

4.2 Mean and variance tests

The experiments reported in this section are used to
answer the question: Can parametric tests on the
mean and variance provide informative results even
when the assumptions of normality are violated ? It
was stated in section 3.4, that all the datasets used
have attributes that are not normally distributed.

For the means test, the hypotheses being tested
are stated as follows:

H0: The mean value of the sample lies within the
confidence interval of the mean for the parent dataset.

H1: The mean value of the sample does not lie
within the confidence interval of the mean for the par-
ent dataset.

For the variance test, the hypothesis being tested
are stated as follows:

H0: The variance value of the sample lies within
the confidence interval of the variance for the parent
dataset.

H1: The variance value of the sample does not lie
within the confidence interval of the variance for the
parent dataset.

For the mean-only test, a sample passes the test,
if, for all attributes the null hypothesis, H0, for the
mean is not rejected. For the mean-and-variance test,
a sample passes the test for all attributes if the null
hypotheses, H0, for both the mean and the variance
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are not rejected. Table 2 summarises the results of
the hypothesis testing for the datasets.

The iris dataset has two attributes with bi-
modal distributions. The abalone dataset has one
attribute with very extreme outliers. For the pima-
diabetes dataset, all the continuous-valued attributes
have skewed (nearly-normal) distributions. The hous-
ing16H dataset has 8 attributes that are extremely
skewed. The adult income dataset has two attributes
(capital loss and capital gain) that are excessively
skewed.

These attributes were ignored for hypothesis test-
ing. It should be expected that, if the basic assump-
tions on which hypothesis testing is based are violated,
then the results will be misleading. This is the case,
for the iris and abalone datasets. One can see, from
table 2, that the performance of both tests is low for
both datasets, since very small samples (5%) as well
as large samples are being declared valid with very
high probability.

For the abalone dataset, the experiment was re-
peated with the two most extreme outliers removed
from the height attribute. The figures in parentheses
show the results (probability) of sample validity. One
can conclude that the performance for the mean and
variance test is improved by the removal of outliers.
The informativeness of the tests is still low, even when
outliers are removed.

The results for the tests on the pima-diabetes
dataset indicate that, while the means-only test is very
misleading, the mean-and-variance test is far more in-
formative, than for the other two datasets. The re-
sults for the housing16H and adult income datasets
indicate that the presence of extremely skewed distri-
butions will make the mean-and-variance test totally
meaningless.

The answer to the question that is posed in this
section is that, while the mean-only test can be very
misleading, the mean-and-variance test does provide
useful information, provided that the distribution of
all attributes is unimodal and there are no extreme
outliers in the data, as is the case for pima-diabetes.

4.3 Trimmed mean tests

The experiments reported in this section are used to
answer the question : Can parametric tests on the
trimmed mean provide informative results even when
the assumptions of unimodality are violated ? For the
trimmed means tests, the hypotheses being tested are
stated as follows:

H0: The trimmed mean value of the sample lies
within the confidence interval of the trimmed mean
for the parent dataset.

H1: The trimmed mean value of the sample does
not lie within the confidence interval of the trimmed
mean for the parent dataset.

The trimmed mean, as explained in section 3.4,
ignores outliers, so that the estimate of the confidence
interval of the mean is more reliable. Three levels
of trimming have been used for the experiments. 5%
trimming is considered to be the most conservative

level. 10% trimming is a medium level, while 20%
trimming is considered to be high. Wilcox [25] recom-
mends that 20% trimming should be used to provide
robustness in the presence of outliers and other devi-
ations from normality.

For the datasets, iris, abalone, pima-diabetes and
housing16H, all levels of trimming seem to provide
good performance, in the presence or absence of out-
liers and in the presence of attributes with bi-modal
distributions. Very small samples (5%) are declared
valid with very low probability and the probability of
a sample being declared valid, monotonically increases
with the sample size. One can also see that the per-
formance of the trimmed means tests is better than
that for the mean and variance tests, as the trimmed
means tests perform well for all the datasets. How-
ever, for the adult income dataset, the estimated 95%
confidence intervals for the trimmed means of five of
the continuous-valued attributes is so narrow that it
causes problems for the hypothesis testing. In the ex-
periments, the 95% confidence interval of the mean is
estimated as: X ± 1.96σ/

√
n, where n is the size of

the parent dataset. As the size of the parent dataset
gets larger, the confidence interval estimate becomes
narrower. Alternative methods of estimating the con-
fidence interval need to be devised in order to avoid
this problem.

4.4 Chi-square test for goodness-of-fit

The experiments reported in this section are used
to answer the question: Can the goodness-of-fit test
provide informative results for both categorical and
continuous-valued attributes? It was stated in section
3.4, that all the datasets used have attributes that
are not normally distributed. Since the chi-sqaure
goodness-of-fit test is a non-parametric test, it does
not make any assumptions about the distribution of
the data. For this test, the hypotheses being tested
are stated as follows:

H0: The frequency distribution of the attribute in
the sample is the same as that in the parent dataset.

H1: The frequency distribution of the attribute
in the sample is not the same as that in the parent
dataset.

The test statistic used is:

χ2
0 =

k∑

i−1

(Oi −Ei)2

E2
(9)

where Oi is the observed relative frequency in the sam-
ple for a given attribute value, Ei is the expected rel-
ative frequency as established in the parent dataset,
for the same attribute value, and k is the number of
distinct values for the attribute.

This test is applied to categorical as well as
continuous-valued attributes by binning (discretisa-
tion) and then establishing the frequencies for each
bin. Discretisation of the continuous-valued attributes
into D intervals was done at three levels of D = 16,
D = 32, and D = 64 . The reason is to establish
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Dataset Sample size as Actual Percentage that passed the test
percentage of dataset sample size at the significance level of 0.05

Mean only Mean &
variance

Iris 5% 8 91 88
10% 15 90 83
20% 30 94 87
40% 60 97 95
60% 90 98 99
80% 120 100 100

Abalone 5% 209 90 (91 ) 44 (76 )
10% 418 91 (91 ) 26 ( 77)
20% 835 91 (93 ) 12 ( 74)
40% 1671 99 (96 ) 2 ( 92)
60% 2506 100 (100) 4 ( 97)
80% 3342 100 (100) 75 (100)

Pima-Diabetes 5% 38 77 17
10% 77 80 18
20% 154 86 22
40% 308 94 40
60% 462 98 65
80% 616 100 95

Housing16H 5% 1139 52 0
10% 2278 67 0
20% 4556 68 0
40% 9112 87 0
60% 13668 94 0
80% 18224 100 0

AdultIncome 5% 2442 76 47
10% 4884 88 52
20% 9768 96 52
40% 19535 96 68
60% 29305 100 72
80% 39072 100 75

Table 2: Hypothesis testing results for the mean and variance
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Dataset Sample size as Actual Percentage that passed the test
percentage of dataset sample size at the significance level of 0.05

5% 10% 20%
trimming trimming trimming

Iris 10% 15 7 4 0
20% 30 12 7 2
40% 60 39 28 15
60% 90 84 75 58
80% 120 100 99 97

Abalone 5% 209 4 3 1
10% 418 14 16 7
20% 835 50 32 14
40% 1671 70 61 50
60% 2506 93 93 75
80% 3342 100 100 98

Pima-Diabetes 5% 38 0 0 0
10% 77 0 1 0
20% 154 3 1 0
40% 308 29 19 3
60% 462 78 67 30
80% 616 100 100 89

Housing16H 5% 1139 18 17 8
10% 2278 39 25 18
20% 4556 58 38 34
40% 9112 83 84 63
60% 13668 97 96 81
80% 18224 100 100 99

AdultIncome 5% 2442 12
10% 4884 36 very narrow confidence
20% 9768 92 intervals make it difficult to
40% 19536 100 obtain meaningful results
60% 29305 100
80% 39072 100

Table 3: Hypothesis testing results for the trimmed means tests
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whether the level of discretisation affects the outcome
of the hypothesis testing.

Table 4 gives the results of the hypothesis testing
experiments. The level of discretisation seems to have
an insignificant effect on the outcome of the hypoth-
esis tests. This test provides good performance for
the iris dataset (150 examples). Very small samples
(5%) are declared valid with a very low probability,
and the probability of validity increases monotonically
with the sample size.

For the pima-diabetes dataset (768 examples) the
results for sample sizes less than 20% are informative.
However, for samples sizes above 20%, the test is less
informative. For abalone dataset (4177 examples) the
test has a very low performance level as both very
small samples (5%) and large samples (80%) are de-
clared valid with equally high probability. For mush-
room, housing16H and adult income, the test does not
provide very useful information for one to be able to
distinguish between small and large samples.

It appears, from the experimental results, that
this test is not powerful enough to provide useful in-
formation about samples that are larger than 200 in
size. In answering the question that is posed in this
section, for both categorical and continuous-valued at-
tributes, this test does not provide informative results
except for very small samples that are less than 200 in
size.

4.5 Comparison of the four tests

The fourth question that was posed is: Do all four
tests perform equally well? From the discussion of
the experimental results it should be concluded that
the tests do not perform equally well. The mean-only
test is not informative, and should be avoided. The
mean-and-variance test will perform well if outliers are
removed and all the attributes have unimodal distribu-
tions. The chi-square test for goodness-of-fit will only
provide meaningful results if samples are very small:
less than 200 in size. The trimmed mean test per-
forms well in most situations investigated. It is there-
fore found to be the most informative test. It should
however be noted that the test does not perform well
in the presence of extremely skewed distributions. It
should also be noted that the usage of the trimmed
mean test requires attribute values to be sorted for the
identification of the tails of the distribution for each
attribute. This is a computational overhead which the
other tests do not require.

4.6 Information theoretic measures

The fifth sub-question that was posed in section 4.1
is as follows. Do information theoretic measures pro-
vide informative results for sufficient sample size esti-
mation? The information measure of equation 7 was
used for measuring the information content of samples
from the datasets. The abalone, mushroom and pima-
diabetes datasets are used for illustration. Tables 5,
6 and 7 show the details of the measures. The infor-
mation content is measured relative to the predicted

Figure 1: Sample entropy for pima-diabetes for discretisa-

tion at 64 intervals. Error bars show the 95.0% confidence

interval of the mean. Dots/lines show means.

attribute. Thirty measures were taken for each sample
size. Continuous-valued attributes were discretised at
three levels.

The symbols s and D represent the sample en-
tropy for the sample and parent datasets respectively.
Delta% is the percentage of the difference between
the two values, and is a measure of how close the two
values are. As can be seen from the tables the level
of discretisation affects the value of the sample en-
tropy. The higher the discretisation level, the higher
the sample entropy values become.

The plots of sample entropy are shown in figures
1 and 2. As can be observed from these plots, as the
sample size is increased, the information content rises
steeply and then gradually flattens. This behaviour
was observed for all levels of discretisation, and for
the other datasets. This behaviour of the information
measure can be used to provide guidelines on how suf-
ficient sample sizes can be selected. When the plot of
information content flattens, this means that increas-
ing the sample size does not result in any significant
increase in information for classification.

The sub-question that was posed in this section is
whether information theoretic measures can provide
useful guidelines for the estimation of sufficient sample
sizes. The answer to this question is yes. Suppose we
choose the discretisation level to be 64 intervals. If we
set the selection criteria at say: SampleEntropy(D)−
SampleEntropy(s) <= 5%, then we can choose sam-
ple sizes for which the values in the last column of
tables 5,6 and 7 are closest to 5%.
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Dataset Sample size as Actual Percentage that passed the test
percentage sample at the significance level of 0.05
of dataset size D discretisation intervals used

D = 16 D = 32 D = 64
intervals intervals intervals

Iris 5% 8 0 0 0
10% 15 0 0 0
20% 30 0 0 1
40% 60 85 94 90
60% 90 99 100 99
80% 120 100 100 100

Abalone 5% 209 100 99 99
10% 418 100 100 100
20% 835 100 100 100
40% 1671 100 100 100
60% 2506 100 100 100
80% 3342 100 100 100

Pima-Diabetes 5% 38 0 0 0
10% 77 38 58 79
20% 154 99 98 99
40% 308 100 100 100
60% 462 100 100 100
80% 616 100 100 100

Mushroom 5% 406 Discretisation levels not applicable. 100
80% 6499 All values are categorical 100

Housing16H 5% 1139 100 100 100
80% 18224 100 100 100

AdultIncome 5% 2442 100 100 100
80% 39072 100 100 100

Table 4: Hypothesis testing results for the chi-square goodness-of-fit tests

Discretisation level
Sample 16 intervals 32 intervals 64 intervals
size Mean Delta% Mean Delta% Mean Delta%

entropy =100* (D-s)/D entropy =100* (D-s)/D entropy =100* (D-s)/D

38 s = 19.3 35.2 20.5 54.6 19.1 73.1
77 s = 21.9 26.5 29.5 34.7 35 50.6
154 s = 24.9 16.4 35.5 21.5 50.1 29.3
308 s = 27.9 6.4 40 11.5 61.7 13
462 s = 28.3 5.0 42.8 5.3 66 7.1
616 s = 29.1 2.3 44.4 1.8 69 2.7
768 D = 29.8 45.2 70.9

Table 5: Sample entropy measurements for pima-diabetes

Discretisation level
Sample 16 intervals 32 intervals 64 intervals
size Mean Delta% Mean Delta% Mean Delta%

entropy =100* (D-s)/D entropy =100* (D-s)/D entropy =100* (D-s)/D

209 s = 35.6 3.8 65.631 14.2 108.266 25
418 s = 35.9 3.0 71.127 6.6 126.947 12
835 s = 36.6 1.1 74.062 2.6 136.343 5.6
1671 s = 36.7 0.8 75.492 0.8 141.054 2.3
2506 s = 36.9 0.3 75.598 0.7 142.994 1
3342 s = 37.1 0 75.844 0.4 143.602 0.6
4177 D = 37.0 76.134 144.387

Table 6: Sample entropy measurements for Abalone3C
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Sample size Mean Entropy Delta% =100* (D-s)/D

421 s = 23.5 4.9
842 s = 24.1 2.4
1684 s = 24.5 0.8
3368 s = 24.6 0.4
5052 s = 24.7 0
6736 s = 24.7 0
8416 D = 24.7

Table 7: Sample entropy measurements for mushroom

Figure 2: Sample entropy for abalone3 for discretisation at

64 intervals. Error bars show the 95.0% confidence interval

of the mean. Dots/lines show means.

Figure 3: Sample entropy for the mushroom dataset. Er-

ror bars show the 95.0% confidence interval of the mean.

Dots/lines show means.

5 RESULTS FOR DECISION TREE CLASSI-
FICATION

The first question that was posed for this research
is as follows. Do available statistical tests provide
good guidelines for the empirical estimation of sam-
ple sizes? This question was broken down into six
sub-questions, five of which were answered in section
4. The sixth sub-question is: If a sample is declared
statistically valid, is it a sufficient sample for classi-
fication purposes ? This sub-question is answered in
this section.

The second question is: How precisely should these
methods be used for sample size estimation? In this
section, guidelines are given on how these methods
could be used to estimate sufficient sample sizes.

The third question that was posed is: How do
empirical methods perform compared to the theoret-
ical guidelines for sample size estimation ? In the
context of this question, performance is measured as
follows. For a given level of accuracy, suppose that
method A estimates that the sufficient sample size is
SA, and method B estimates that the sufficient sam-
ple size is SB . If SA < SB then the conclusion is that
method A has a higher performance than method B.
In this section the theoretical estimates using PAC
are compared with empirical estimates obtained with
hypothesis testing using the four statistical tests.

5.1 Measuring classification performance

The C5.0 decision tree algorithm was used to con-
struct classifiers that were used to evaluate the pre-
dictive performance for different sample sizes. This
was done to establish whether sample validity implies
sample sufficiency. For each sample size, S from 5% to
80% of the dataset, thirty (30) samples were selected
at random, classifiers were constructed and the pre-
dictive accuracy of each classifier was measured using
10-fold cross-validation. The mean accuracy for the
thirty classifiers, and the confidence interval of the
mean were then plotted for each sample size.

In the context of comparing two samples for clas-
sification performance, the sample which provides a
classifier with the higher predictive accuracy, is con-
sidered to provide the better perormance. Further-
more, a sample which provides a level of predictive
accuracy that is not statistically significantly different
from that provided by the parent dataset, is consid-
ered to be a sufficient sample.
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Figure 4: Predictive accuracy for the Iris dataset. Er-

ror bars show the 95.0% confidence interval of the mean.

Dots/lines show means.

5.2 Results for C5.0 classification

Six sets of classifiers were constructed: one set for
each of the datasets. Figures 4, 5, 6, 7 and 8 show the
plots of predictive accuracy for the classifiers. Fig-
ure 4 illustrates that the predictive accuracy for the
iris samples begins to flatten from sample sizes of 20%.
Figure 5 illustrates that for the pima-diabetes dataset,
the flattening begins at 40%. Figure 6 illustrates that
for the three-class abalone dataset, the predictive ac-
curacy begins to flatten at sample sizes of 80%. For
the housing16H dataset, the curve begins to flatten for
sample sizes of 60%. For adult income the curve be-
gins to flatten for sample sizes of 40%. The accuracy
of mushroom was found to be 93% for 0.5% samples
(42) examples, 99% for 1% samples (84 examples) and
100% for 5% samples (421 examples) and was there-
fore not plotted. When a learning curve is flat (or
nearly flat) then increasing the sample size does not
significantly affect the classification accuracy.

It is useful to establish whether the results of the
experiments on hypothesis testing for sample validity
could provide practical guidelines as to what sample
sizes provide classifier accuracy in the region where
the learning curve begins to flatten, or is actually flat.
Looking at the results of section 4, for the mean-and-
variance test and the trimmed mean test, this hap-
pens for sample sizes where almost any random sam-
ple (95% chance) that is drawn from the dataset, is
found to be statistically valid.

In section 3.3, a distinction was made between
sample sufficiency and statistical validity. A sample
size is considered to be sufficient, if the classifiers con-
structed using that sample size have a predictive ac-
curacy that is not statistically significantly different
from those constructed with the parent dataset. In
order to establish whether a sample size is sufficient,
hypothesis testing was done to establish, whether this
is the case, for different sample sizes. The sample sizes

Figure 5: Predictive accuracy for the Pima-diabetes

dataset. Error bars show the 95.0% confidence interval

of the mean. Dots/lines show means.

Figure 6: Predictive accuracy for the Abalone3C dataset.

Error bars show the 95.0% confidence interval of the mean.

Dots/lines show means.

chosen were those for which the hypothesis testing re-
sults indicated at least a 95% chance of obtaining a
valid sample. The rational behind this decision is that,
probabilistically, a small chance of not being able to
obtain a valid sample, should be allowed. Addition-
ally, this high probability is observed for samples sizes
that are large relative to the whole dataset. The in-
formation content for these samples should therefore
be close to that of the whole dataset.

The Student’s t-test was used to test the following
hypothesis for each sample size.

H0: The mean accuracy for the sample size is
equal to the mean accuracy for the parent dataset.

H1: The mean accuracy for the sample size is not
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Figure 7: Predictive accuracy for the Housing16H dataset.

Error bars show the 95.0% confidence interval of the mean.

Dots/lines show means.

Figure 8: Predictive accuracy for adult income dataset.

Error bars show the 95.0% confidence interval of the mean.

Dots/lines show means.

equal to the mean accuracy for the parent dataset.
Tables 7, 8, 9, 10, 11 and 12 show the results of

the hypothesis testing. The first column shows the
sample size as a percentage of the dataset size, and the
actual sample size in parenthesis. The abbreviations
in the second column should be interpreted as: M-
O (mean only test), M-V (mean and variance test),
M-T (trimmed means tests) and G-O-F (chi-square
goodness-of-fit-test). The last column in each table
indicates whether the difference between the means is
considered to be zero (equal means) or not. When the
confidence interval (CI) of the difference of the means
includes zero, the means are considered to be equal.

One of the sub-questions posed in section 4.1 is : If
a sample is declared statistically valid, is it a sufficient
sample for classification purposes ? The answer to
this question is, no, for the following reasons . For
all the datasets, sample sizes of 40% or less provide
accuracy which is significantly less than for the whole
dataset, at the significance level of α = 0.05. This
leads to the conclusion that statistical validity does
not imply sample sufficiency. The results of tables 2,

3 and 4 of section 4 illustrate that for all four tests,
small samples of up to 40% in size are being declared
statistically valid. The evidence of tables 8,9,10,11
and 12 illustrates that for the datasets used, samples
of size 40% or less are not sufficient for classification
purposes.

The results of table 8 illustrate that for the Iris
dataset samples sizes of 80% (120 examples) provide
accuracy which is the same as that for the whole
dataset. For the abalone dataset, the results of table
9 illustrate that sample sizes of 80% (3342 examples)
provide the same accuracy as the whole dataset. For
the Pima-diabetes dataset, the results of table 10 il-
lustrate that 60% of samples (462) provide the same
accuracy as the whole dataset. For the housing16H
dataset, the results of table 11 illustrate that 60%
of samples (13668) provide the same accuracy as the
whole dataset.These results indicate that statistical
validity should be augmented with others measures in
order to obtain useful results for sample estimation.
The measure that one can identify from these experi-
ments is information content.

5.3 Guideline for determining a sufficient
sample size

In section 4.5, it was argued that the trimmed means
test and the mean and variance test (in the absence
of outliers) are useful in establishing a sample size
where any random sample that is drawn from a par-
ent dataset is generally statistically valid. In section
4.6, it was demonstrated that information theoretic
measures do provide a method of establishing suffi-
cient sample sizes. Table 13 is used to summarize the
results.

When selecting a sufficient sample size, it is recom-
mended that both types of tests should be used. The
less computationally intensive hypothesis tests should
be used first to establish a sample size where the prob-
ability of selecting a valid sample is high. For example,
a probability of 0.7 (70%) could be used. The sample
entropy (or other information measures) should then
be used, starting with samples of this size to estab-
lish a sample size for which the information content is
close to that of the parent dataset.

5.4 Comparison of theoretical and empirical
estimates

The second question that was posed in section 1 is:
How do the empirical methods discussed perform, com-
pared to the theoretical guidelines for sample size es-
timation? A comparison is made between the PAC
theoretical estimates for sample complexity, and the
empirical estimates. This is done only for the Pima-
diabetes dataset since it is a concept learning problem
(only two classes), for the concept ‘diabetes ’. Table
14 gives the sample complexity as estimated by the
proposed empirical method suggested in section 5.3
and the PAC theoretical estimates. For the PAC esti-
mates, equation 4 is used. This is done to give some
idea of the type of estimates that PAC provides. The
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Sample size Declared Mean Mean Student’s T test for equality of
Percent sufficient accuracy accuracy means (equal vars not assumed)
(actual) by test for for 95% CI of

sample dataset difference of Means are
(standard (standard means equal
deviation deviation

40% M-O 0.924 0.945 Lower: -0.0358 no
(60) (0.039) (0.009) Upper: -0.0062

M-O
60% M-V 0.933 0.945 Lower: -0.0229 no
(90) G-O-F (0.027) (0.009) Upper: -0.0017

M-O,
80% M-V, 0.941 0.945 Lower: -0.0121 yes
(120) T-M, (0.020) (0.009) Upper: 0.0041

G-O-F

Table 8: C5.0 classifier accuracy for the Iris dataset

Sample size Declared Mean Mean Student’s T test for equality of
Percent sufficient accuracy accuracy means (equal vars not assumed)
(actual) by test for for 95% CI of

sample dataset difference of Means are
(standard (standard means equal
deviation deviation

40% M-O 0.602 0.619 Lower: -0.0219 no
(1671) G-O-F (0.118) (0.005) Upper: -0.0123

M-O
60% M-V 0.608 0.619 Lower: -0.0149 no
(2506) G-O-F (0.108) (0.005) Upper: -0.0060

G-O-F
M-O,

80% M-V, 0.617 0.619 Lower: -0.005 yes
(3342) T-M, (0.006) (0.005) Upper: 0.007

G-O-F

Table 9: C5.0 classifier accuracy for the Abalone3C dataset

Sample size Declared Mean Mean Student’s T test for equality of
Percent sufficient accuracy accuracy means (equal vars not assumed)
(actual) by test for for 95% CI of

sample dataset difference of Means are
(standard (standard means equal
deviation deviation

20% G-O-F 0.700 0.742 Lower: -0.0577 no
(154) (0.004) (0.013) Upper: -0.0268
40% M-O 0.725 0.742 Lower: -0.0293 no
(308) G-O-F (0.030) (0.013) Upper: -0.0049

M-O
60% M-O 0.735 0.742 Lower: -0.0172 yes
(462) G-O-F (0.0228) (0.013) Upper: -0.0021

G-O-F
M-O,

80% M-V, 0.737 0.742 Lower: -0.0134 yes
(616) T-M, (0.018) (0.013) Upper: 0.0029

G-O-F

Table 10: C5.0 classifier accuracy for the Pima-diabetes dataset
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Sample size Declared Mean Mean Student’s T test for equality of
Percent sufficient accuracy accuracy means (equal vars not assumed)
(actual) by test for for 95% CI of

sample dataset difference of Means are
(standard (standard means equal
deviation deviation

40% GOF 0.751 0.763 Lower: -0.016 no
(60) (0.006) Upper: -0.015

GOF
60% M-O 0.758 0.763 Lower: -0.007 no
(90) T-M (0.004) Upper: -0.006

M-O,
80% GOF 0.761 0.763 Lower: -0.0004 yes
(120) M-O (0.002) Upper: 0.0008

T-M

Table 11: C5.0 classifier accuracy for the housing16H dataset

Sample size Declared Mean Mean Student’s T test for equality of
Percent sufficient accuracy accuracy means (equal vars not assumed)
(actual) by test for for 95% CI of

sample dataset difference of Means are
(standard (standard means equal
deviation deviation

40% 0.862 0.868 Lower: -0.006 no
(19536) (0.001) (0.001) Upper: -0.004
60% 0.866 0.868 Lower: -0.003 yes
(29304) (0.002) (0.001) Upper: -0.001
80% 0.867 0.868 Lower: -0.001 yes
(39037) (0.001) (0.001) Upper: 0

Table 12: C5.0 classifier accuracy for the adult income dataset

Dataset Sample percentage for which Probability of obtaining
Delta% ¡= 5% (for 64 levels a valid sample with the T-M
of discretisation) test for 5% trimming

Iris 60% 84%
Pima-diabetes 80% 78%
Abalone 40% 70%

Table 13: Comparison of hypothesis testing and sample entropy results
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value of k, the tree depth, is set to 10, and the num-
ber of attributes d is 8. One can see that in general,
the PAC estimates are much higher than those ob-
tained with the suggested empirical method. Since
the dataset for pima-diabetes is 768 in size, it is not
possible to provide an empirical estimate for an ac-
curacy of 95%, using the empirical method presented.
Linear regression and extrapolation could however be
used to obtain this estimate.

6 CONCLUSIONS AND SUGGESTIONS FOR
FUTURE WORK

The first question that was posed is: Do available sta-
tistical tests provide good guidelines for the empirical
estimation of sample sizes ? A number of conclu-
sions can be drawn from the discussion of sections 4
and 5. First of all, testing a single sample for sta-
tistical validity, based on the mean, variance or chi-
square goodness-of-fit test does not provide sufficient
information about the sufficiency of the sample for
classification purposes. The second conclusion is that
the chi-square goodness-of-fit test does not provide
useful information when sample sizes are large. The
third conclusion is that, testing many samples using
the mean-and-variance or trimmed-means test, does
provide useful information about what sample sizes
are very likely to be sufficient for classification. Care
should be taken not to use the mean-and-variance
tests in the presence of outliers and extremely skewed
distributions.

The second question that was posed is: If the tests
provide good guidelines, how precisely should they be
used for sample size estimation ? The fourth conclu-
sion that can be drawn from the experimental results
is that in order to obtain conclusive evidence of sam-
ple sufficiency for classification purposes, information
theoretic measures need to be made on the samples.
The recommendation arising from this research is that
hypothesis testing should be used in conjunction with
an information theoretic measure in order to establish
the sufficiency of samples for classification purposes.

The third question that was posed is: How do
these methods perform, compared to the theoretical
guidelines for sample size estimation? It can also be
concluded that the recommended method results in
estimates that are of more practical use, than those
estimates based on the theoretical methods of PAC
learning theory.

In future research the following issues will be ad-
dressed. The methods used to estimate confidence in-
tervals for hypothesis testing become problematic as
dataset sizes increase. Other methods for this pur-
pose will be investigated. For categorical attributes,
a better test needs to be used for hypothesis testing
on large datasets. Continuous-valued attributes with
skewed distributions can cause problems for the tests
that were investigated. Appropriate methods for deal-
ing with these types of data need to be further inves-
tigated. The datasets used in the experiments are
not very large. The experiments will be conducted on

much larger datasets. Finally, one information theo-
retic measure was tested. Investigation of other in-
formation theoretic measures is the subject of current
research.
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