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Abstract

The statistical distribution of financial returns plays a key role in evaluat-

ing Value-at-Risk using parametric methods. Traditionally, when evaluating

parametric Value-at-Risk, the statistical distribution of the financial returns

is assumed to be normally distributed. However, though simple to imple-

ment, the Normal distribution underestimates the kurtosis and skewness of

the observed financial returns. This dissertation focuses on the evaluation of

the South African equity markets in a Value-at-Risk framework. Value-at-

Risk is estimated on five equity stocks listed on the Johannesburg Stock Ex-

change, including the FTSE/JSE TOP40 index and the S&P 500 index. The

statistical distribution of the financial returns is modelled using the Normal

Inverse Gaussian and is compared to the financial returns modelled using the

Normal, Skew t-distribution and Student t-distribution. We then estimate

Value-at-Risk under the assumption that financial returns follow the Nor-

mal Inverse Gaussian, Normal, Skew t-distribution, Student t-distribution

and Extreme Value Theory and backtesting was performed under each dis-

tribution assumption. The results of these distributions are compared and

discussed.
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Glossary

Value-at-Risk (VaR) is defined as the maximum expected loss over a pre-

defined horizon period and at a given confidence level.

Expected Shortfall (ES) is the expected value of losses greater than VaR.

Market risk is the risk of losses in investments positions arising from move-

ments in market prices (market prices include stock prices, interest

rates, commodities, bonds and currencies).

Market risk model is a technique using statistics to determine the po-

tential losses in investment positions due to market risk. These tech-

niques include for example volatility, Greeks, Value-at-Risk and Ex-

pected Shortfall.

Backtesting is a tool used to validate the VaR model, by periodically com-

paring the estimated VaR value to the observed profit and loss of an

investment.

Logarithmic returns is the logarithmic ratio of the opening price to the

closing price on an investment. In this dissertation the logarithmic re-

turns are referred to as financial returns.

Statistical distribution is a function that assigns a probability to the ran-

dom variables (financial return).

Normal distribution is a statistical distribution that depends on two pa-

rameters - the mean and the standard deviation. The mean determines

ix
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the location of the center of the graph of the distribution and the stan-

dard deviation determines the height of the graph.

Normal Inverse Gaussian (NIG) distribution is a statistical distribu-

tion with four parameters - α determines the heaviness of the tails, β

determines the skewness of the distribution and the mean and standard

deviation are the same as in the Normal distribution.

Kurtosis measures the “peakedness”, and as a result of heaviness of the tails

of the probability distribution of random variables. The Normal distri-

bution has kurtosis equal to three, therefore excess kurtosis equals

to kurtosis minus three.

Skewness denotes to whether a probability distribution of a random vari-

able is symmetrical. An asymmetrical probability distribution is re-

ferred to as skewed distribution and will either be positively (financial

returns more likely to be negative) or negatively skewed (financial re-

turns more likely to be positive).

Leptokurtic refers to a statistical distribution with heavier or fatter tails

than the Normal distribution or distribution with positive excess kur-

tosis.

x
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Chapter 1

Introduction

1.1 Overview

Value-at-Risk (VaR)1 is defined as the worst expected loss over a given pe-

riod at a specified confidence level [Ris96]. Jorion [Jor01] describe VaR as

the quantile2 of the projected distribution of losses and gains of an invest-

ment over a target horizon. VaR answers the question, “How much can I lose

with q% probability over a certain holding period?” [Ris96]. The risk metric

VaR, has become a widely used risk measure by financial institutions and

regulatory authorities3, as it attempts to provide a single number that sum-

marizes the overall market risk in individual stocks and for portfolios [Hul10].

VaR is a tool used to measure market risk, where market risk is the po-

tential for change in the value of an investment due to change in market risk

factors [Ris96]. Market risk factors are interest rates, commodity prices, for-

eign exchange rates and stock and bond prices [Ris96]. Historically, market

risk was measured by the standard deviation of unexpected outcomes or by

simple indicators of the notional-amount of the individual stock [MEF05].

1A formal definition of Value-at-Risk is given in Chapter 4 of the dissertation.
2Also referred to as percentile.
3The Basel Committee imposing minimum capital requirements for market risk in the

“1996 Amendment” [oBS96a].

1
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McNeil et al., in [MEF05] provides the pros and cons of each traditional

measures of market risk.

When evaluating VaR for financial assets the distribution of the returns of

the underlying asset play an important role. Methodology of estimating VaR

can be classified into two groups, i.e. the parametric VaR and non-parametric

VaR. The classification of VaR methodology is based on how the financial

return distribution is modelled. Parametric VaR assumes that financial re-

turns are modelled using a statistical distribution (e.g. Normal and Student

t distribution). Whereas non-parametric VaR assumes that financial returns

are modelled using the empirical distribution. The statistical distribution

that is commonly assumed in parametric VaR is the Normal distribution,

which is easy to implement as it depends on two parameters, i.e. the mean

and standard deviation of historical returns.

However, a number of studies have shown that daily financial returns are

non-normal, they display a leptokurtic and skewed distribution as noted by

Mandelbrot [Man63] and Fama [Fam65]. A leptokurtic distribution has a

higher peak and heavier tails than the Normal distribution [Ale08]. In other

words, the frequency of financial returns near the mean will be higher and

extreme movements are more likely than the Normal distribution would pre-

dict. For example, if we consider South African FTSE/JSE TOP40 Index4

the largest decrease was roughly 14%, which occurred in 1997. The 14% de-

crease deviates by ten standard deviations from the mean and by modelling

financial returns with the Normal distribution this decrease is practically im-

possible.

The quality of VaR is dependent on how well the statistical distribution

4FTSE/JSE TOP40 Index constitutes of the largest 40 companies (listed on the Johan-

nesburg Stock Exchange (JSE)) ranked by full market value in the FTSE/JSE All-Share

Index.

2
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captures the leptokurtic behaviour of the financial returns [Ryd00]. Short-

coming of statistical distribution can result in incorrect estimation of risk

and lead to serious mismanagement of risk, for example insufficient capital

invested to limit the probability of extreme losses. Hence, finding a statistical

distribution that represents the leptokurtic behaviour of financial returns in

VaR estimation remains an important research topic.

The introduction of VaR as the market risk measure has seen a number of

empirical studies being done to find alternative distributions to the Normal

distribution. These studies include application of the Student t-distribution

in VaR estimation for returns on US equities and bonds by Huisman, Koedijk,

and Pownall [HKP98]. Application of the t-distribution in VaR estimation

within the South African equity market was done by Milwidsky and Mare

[MM10]. The t-distribution is also used by McNeil and Frey in [MF00] and

Platen and Rendek [PR08]. Although the t-distribution addresses the issue

of heavy tails, it fails to address the skewness present in financial returns

because it is symmetrical about zero.

The lack of skewness in the t-distribution was first addressed by Hansen

in [Han94], when he first proposed a skew extension to the t-distribution

for modelling financial returns. Since then, several authors have studied

the application of the Skew Student t-distribution (Skew t) to modelling fi-

nancial returns, see for example, Azzalini and Capitanio [AC03], Aas and

Haff [AH06], Jones and Faddy [JF03]. The other proposed distribution is

the Extreme Value Theory, which only models the behaviour of losses and

not the entire returns distribution. For application of the Extreme Value

Theory refer to: Longin [Lon05], Danielsson and De Vries [DdV00], McNeil

and Frey [MF00], Embrechts, Klüppelberg and Mikosch [EKM97], Gençay,

Selçuk, and Ulugülyağci[GSU03] and Wentzel and Mare [WM07]. Other

methods used include, modelling the returns and volatility process by the

ARMA (1,1)-GARCH (1,1) time series and then fitting the residuals with

3
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the selected distribution, which this article will not be pursing, see for ex-

ample Bhattachariya and Madhav [BM12], Schaumburg [Sch12] and Kuester

et al [KMP06]. An outline of some of the statistical distributions fitted to

financial returns in literature are also discussed in Chapter 5.

The focal point of this dissertation is to model financial returns of listed

equity stocks using the Normal Inverse Gaussian (NIG) distribution and fur-

ther estimate Value-at-Risk with the fitted NIG distribution. The NIG dis-

tribution is able to capture the skewness and kurtosis present in the financial

returns. The tails of the NIG distribution are described as “semi-heavy”.

Dependent on four parameters that affect the shape of the density function,

with the NIG distribution one is able to create different shapes of the den-

sity function by adjusting the parameters, making the NIG distribution very

flexible. Most of the authors have report an excellent fit to the financial

returns. The application and reviews of the NIG distribution is given by

Lillestøl [Lil00], Rydberg [Ryd00], Prause [Pra99], Barndorff-Nielsen [BN95],

Venter, and de Jongh [VdJ01] and Bølviken and Benth [BB00]. The NIG

distribution has an important property of being closed under convolution i.e.

the sum of independent NIG random variables is also NIG distributed. This

property is useful when working with a portfolio of shares and for time scal-

ing of VaR.

1.2 Objectives

In this dissertation, we apply the Normal Inverse Gaussian distribution to

the evaluation of the South African equity markets in a Value-at-Risk frame-

work. This study is based on the work of Bølviken and Benth 2000 [BB00],

who investigated the NIG distribution as a tool to evaluate the uncertainty

in future prices of the shares listed on the Norwegian Stock Exchange in Oslo.

4
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The initial objective of the dissertation is to demonstrate to the reader

that the financial returns of selected shares are not normally distributed and

present the concept of Value-at-Risk and NIG distribution. The final goal

of the dissertation is to implement the Normal Inverse Gaussian distribu-

tion and compare the Value-at-Risk numbers to those under the Normal,

t-distribution, Skew t and the Extreme Value Theory.

This study is restricted to market risk associated with price changes of

individual equity stocks listed on the Johannesburg Stock Exchange in South

Africa over 1-day time horizon. Therefore, VaR is estimated in linear posi-

tions in the underlying equity stocks.

The dissertation address the following:

(i) Analyse a defined list of shares and justify the selection criteria.

(ii) Demonstrate that the daily returns of the chosen shares are not nor-

mally distributed.

(iii) Discuss methods of estimating and validating Value-at-Risk.

(iv) Review the NIG distribution and alternative distributions.

(v) Examine how the distribution of financial returns fits the NIG distri-

bution when compared to the Skew t, Normal and t-distribution.

(vi) Compare the daily VaR estimates across the daily returns for the Skew

t, Normal, t-distribution, NIG distributed and EVT.

We expect the NIG and Skew t to adequately fit the financial returns both

in the tails and in the center than the Normal and the Student’s t distribu-

tions. The limitation of the Normal distribution when applied to financial

data is the skewness and the kurtosis present in financial data, while the t-

distribution captures the kurtosis of the financial returns it does not capture

5
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the skewness since it is symmetrical. The NIG captures both the skewness

and the kurtosis of the financial returns. The tail of the NIG is described as

“semi-heavy”, therefore, we expect that the NIG to model skewness well in

the case of not too heavy tail distribution. While the Skew t has heavy tails,

we expect to fit data with heavy tail well and not handle extensive skewness

[AH06].

1.3 Structure of the dissertation

In Chapter 2, we give a summary of the listed companies and indices that

we will be using to evaluate Value-at-Risk and examine on the daily share

data of these chosen companies. This will involve investigating the plots of

the closing share prices and the log returns. We further demonstrate that

the daily log returns are not normally distributed using the Q-Q plot, which

compares the sample data to data that follows the Normal distribution. To

validate the Q-Q plot findings we will use formal statistical tests such as the

Shapiro-Wilk test, Jarque-Bera test and the Anderson-Darling test.

In Chapter 3, we define the concept of Value-at-Risk as a model to eval-

uate market risk. The advantages and disadvantages of Value-at-Risk are

discussed and we further look at the three approaches for evaluating Value-

at-Risk. Lastly, we give an overview of Expected Shortfall and the method

of backtesting.

Chapter 4 considers the NIG distribution as the alternative distribution

to modelling log returns as it possess features of both skewness and heavy

tails. We start by defining the NIG process according to the theory of Lévy

processes. We highlight how the different parameters of the NIG distribution

contribute to the shape of the graph of the density function. This is done by

plotting a graph of the density function for different values for each param-
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eter of the distribution. We examine the properties of the NIG distribution,

which can be useful for modelling of financial returns. If individual returns

are NIG distributed then the sum of the returns will be NIG distributed. Fi-

nally we look at how to fit the NIG distribution by evaluating the maximum

likelihood function.

Chapter 5 provides an overview of alternative distributions that have

been studied in literature to model financial returns. These include the Sta-

ble Paretian, Skew t, t-distribution and Hyperbolic distribution. All these

alternative distributions model the financial returns better than the Normal

distribution. However, one of the shortfalls of the Stable Paretian distribu-

tion is that it does not have an explicit density function making it difficult

to estimate parameters. The t-distribution does not address the skewness

present in many financial returns and the Hyperbolic distribution does not

possess the property of being closed under convolution. We also focus on

the tails of the distribution, more importantly the tails of the losses through

the study of Extreme Value Theory. This will be implemented using the

Peak-over-Threshold method, which is discussed.

In Chapter 6, we fit the NIG, Skew t, t-distribution and Normal distri-

bution to the chosen shares and indices and apply the Peak-over-Threshold

method to the tails of the losses. We conclude the chapter by evaluating

Value-at-Risk for the chosen shares and indices assuming that the underly-

ing distribution is NIG, Skew t, Normal, t-distribution and Extreme value.

Finally, in Chapter 7, we discuss our findings and draw some conclusions.

7
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Chapter 2

Empirical Study

In this chapter, we consider the listed equity data and investigate the nor-

mality assumption. This is done using the Q-Q plot and formal framework of

hypothesis testing such as Shapiro-Wilk test, Jarque-Bera test and Anderson-

Darling test. We first give a brief insight into the data using plots of the daily

closing prices and daily log returns.

2.1 Description of shares

The empirical study is done using five South African stocks, FTSE/JSE

TOP40 (J200) index and the S&P 500 index. The five shares (Standard Bank

(SBK), African Bank (ABL), Merafe Resource (MRF), Grindrod (GND) and

Anglo American (AGL)) are listed on Johannesburg Stock Exchange. Max-

imum available daily closing prices for each share were obtained resulting in

varying periods ending 31 July 2014 1. The S&P 500 data is from 2 January

1991 to 31 July 2014 totalling 5831 daily returns.

These shares were randomly selected and they reflect different sub-sectors

of the JSE main board.

1All the closing prices were obtained from I-Net Bridge.
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(i) Merafe Resources is listed on the JSE under the General Mining sector.

Merafe mines chrome, which they use to produce ferrochrome.

(ii) Standard Bank is listed under the Banking sector. The company pro-

vides services in personal, corporate, merchant and commercial bank-

ing, mutual fund and property fund management among other services.

(iii) Grindrod is listed under Marine Transportation. Grindrod offers freight-

ing, trading, shipping and financial services.

(iv) African Bank is listed under Consumer Finance. The bank provides

unsecured credit, retail and financial services.

(v) Anglo American is listed under the General Mining sector and they

mine platinum, diamonds, iron ore and thermal coal.

We included the FTSE/JSE TOP40 index, which consists of the 40 largest

companies listed on the JSE in terms of market capitalisation 2. The In-

dex gives reasonable reflection of the entire South African stock market as

these 40 top companies represent over 80% of the total market capitalisation

of all the companies listed on the JSE [Cap14]. Standard Bank and Anglo

American have large market capitalisation and we expect them to mimic the

FTSE/JSE TOP40, while Merafe and African Bank are small and therefore

would have an element of jump risk.

The daily log returns defined by rt = ln(St/St−1) were obtained totalling

a series of N − 1 observations for South African listed shares, where N is

the total number of closing prices observed for each share and (St)t≥0 is the

closing price/index level at day t. We assume the share prices and indices

level to follow a random walk and exclude dividends. We start off with a

statistical summary of the data for each share. Figure 2.1 to Figure 2.7

displays the daily closing price levels (a) and daily log returns (b) for each

share and the indices over varying periods ending 31 July 2014. Table 2.1

shows the statistical summary of the data for each share, computed using

9
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Figure 2.1: Standard Bank closing prices (a) and log returns (b) for the

period 1 September 1997 to 31 July 2014.
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Figure 2.2: African Bank closing prices (a) and log returns (b) for the period

29 September 1997 to 31 July 2014.

the daily log returns. In Appendix A, the sample period is divided into three

sub-samples and the analysis is performed using the entire sample period and

the three sub-samples which are:

(i) Pre-crisis (from January 1991 - December 2007),

(ii) Crisis period (from January 2008 - December 2009),

(iii) Post-crisis (from January 2010 - July 2014).
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Figure 2.3: Anglo American closing price (a) and log returns (b) for the

period 1 September 1999 to 31 July 2014.

0

50

100

150

200

250

300

350

400

450

C
lo

si
n

g
 P

ri
ce

s

Dates

(a)

 -0.30

 -0.25

 -0.20

 -0.15

 -0.10

 -0.05

 -

 0.05

 0.10

 0.15

 0.20

R
et

u
rn

s

Dates

(b)

Figure 2.4: Merafe Resources closing price (a) and log returns (b) for the

period 17 December 1999 to 1 July 2013.
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Figure 2.5: Grindrod Limited closing prices (a) and log returns (b) for the

period 1 September 1997 to 31 July 2014.
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Figure 2.6: FTSE/JSE Top40 Index closing levels (a) and log returns (b) for

the period 30 June 1995 to 31 July 2014.
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Figure 2.7: S&P 500 closing prices (a) and log returns (b) for the period 2

January 1991 to 31 July 2014.

Statistical data of the empirical distribution

Mean Variance Skewness Excess Kurtosis No. OBS3

Standard Bank 0.00048 0.00047 −0.20369 4.86980 4090

African Bank −0.00003 0.00082 −0.78087 10.8220 3944

Anglo American 0.00038 0.00064 −0.07927 3.93211 4162

FTSE/JSE TOP40 0.00048 0.00019 −0.40611 6.27868 4770

S&P 500 0.00029 0.00014 −0.73247 15.95379 6170

Merafe Resource 0.00054 0.00135 0.06429 2.52105 2806

Grindrod 0.00125 0.00118 0.69133 16.20972 3038

Table 2.1: Statistical data for each stock and the indices.

Based on the statistical results4 of the empirical data in Table 2.1 the

mean of African Bank, Anglo American and Merafe Resources is relatively

small compared to the variance it is almost insignificant. The excess kurtosis

for each stock and the indices is greater than zero. This indicates a higher

peak and heavier tails meaning extreme loss and profit are more likely to

occur than what the Normal distributed would predict.

The Indices, Standard Bank, African Bank and Anglo American have
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Percentile data

1st Percentile 5th Percentile

Standard Bank −5.81% −3.34%

African Bank −7.35% −4.32%

Merafe Resource −9.02% −5.41%

Grindrod −9.53% −4.65%

Anglo American −6.60% −3.87%

FTSE/JSE TOP40 −3.79% −2.08%

S&P 500 −3.15% −1.76%

Standard Normal -2.33% -1.65%

Table 2.2: Percentile data for each stock and the indices.

negative skewness that is the left tail is longer, indicating that losses occur

more frequently than profits over the entire sample period. While Merafe

has positive skewness implying more profits than losses were realised over

the period. In general each stock and the indices display fatter tails and

skewness in comparison to the Normal distribution as noted in literature

[Fam65].

Further evidence from the Table 2.2 comes to support the claim of the

heaviness of the tails of each stock and the indices, where the 1st and 5th

percentile of each stock are compared to those of the Standard Normal dis-

tribution. These types of distributions with fatter tail behaviour are known

as leptokurtic.

2Market capitalisation of a company is the number of outstanding shares multiplied by
the current share price.

4The statistical data was computed using Microsoft Excel.
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2.2 Normality test

As already highlighted by the statistical data in Table 2.1, the process of

the log returns deviates from the Normal distribution since the values of the

skewness and kurtosis are not close to zero and three respectively. In this

section, we further demonstrate how the process of the daily log returns of

each stock and the indices deviate from the Normal distribution using the

Q-Q plot and formal framework of hypothesis testing such as Shapiro-Wilk

test, Jarque-Bera test and Anderson-Darling test.

Q-Q plot

The Q-Q plot or quantile-quantile plot is a simple graphical method of testing

the goodness of fit of observed returns to the Normal distribution. In Figure

2.8 the Q-Q plot demonstrates how the indices and each stock deviate from

the straight line 5 at the tails of the distribution. Although Q-Q plots are

easy to implement and can help reveal departure from normality, they are

less formal and exclusive reliance on them can lead to erroneous conclusion

[DS86]. Hence the use of formal numerical techniques is essential in order to

avoid such errors. The formal numerical techniques quantify the information

and evidence in the data or graphs and act as a verification of inferences

suggested from these.

In the formal framework of hypothesis testing the null hypothesis H0 is

that the log returns follow the Normal distribution, while the alternative

hypothesis H1 is that the log returns are not normally distributed. There are

a number of formal techniques applied to test the H0 available in literature

and statistical software, in this dissertation we will use the Shapiro-Wilk

(SW) test, Jarque-Bera (JB) test and Anderson-Darling (A2) test.

5The Q-Q plot we sketched using the R Statistical Program, which fits the theoretical

line passing through the first and the third quartile of the empirical data.
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(b) African Bank
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(c) Anglo American
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(d) Merafe Resources
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Figure 2.8: Q-Q plot of the daily log returns for each stock and the indices.
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Shapiro-Wilk test

The Shapiro-Wilk test was introduced by Shapiro and Wilk in 1965 [SW65].

The Shapiro-Wilk test is considered a regression test. A test statistic is called

a regression test if the ordered statistics x1 < x2 < · · · < xn, are plotted

against the Standard Normal distribution and a straight line is then fitted to

the points, the test is based on the statistics associated with the fitted line

[DS86]. The null hypothesis is that the ordered sample, x1 < x2 < · · · < xn,

is from a normally distributed population. The Shapiro-Wilk test statistic is

defined as:

W =
(
∑n

i=1 aixi)
2∑n

i=1(xi − x)2
, (2.1)

where xi is the i
th order statistic from the empirical sample, x is the sample

mean,

ai = (a1, . . . , an) =
mTV −1

(mTV −1V −1m)1/2

and m = (m1, . . . ,mn)
T are the expected values of the standard normal

ordered statistic and V is the covariance matrix. The values of ai are ap-

propriate constants for which Shapiro and Wilk [SW65] gave estimates for

sample size less than equal to 50. In 1982 Royston [Roy82] presented an

algorithm to broaden the sample size to 2000 and a method for obtaining

the p-value of the test. However, Royston observed that Shapiro and Wilk

approximation of the constant values of ai were inadequate for sample size

≥ 50. Later, Royston [Roy95] gave an improvement to the estimates of ai to

extend to sample size of 3 ≤ n ≤ 5000.

The Shapiro Wilk test statistic can be interpreted as an approximate

measure of straightness of the Q-Q plot [Roy95]. That is, if a set of obser-

vations xi come from the Normal distribution N(µ, σ2), then under the null

hypothesis the observations can be expressed as:

xi = µ+ σzi. i = 1, . . . , n

The slope of the regression line is an unbiased estimate to the standard de-
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viation σ. Therefore, if the random observations xi are not coming from a

standard normally distributed sample, then the slope of the regression line

will not be an estimate of σ. The numerator of W in Equation (2.1) is the

estimate of σ which is the slope of the regression line and the denominator

is the unbiased estimate of the standard deviation of the sample of random

observations xi given by (n − 1)s2. Hence if the xi’s are from the Normal

distribution sample the value of W should be equal to one.

Jarque-Bera Test

The Jarque-Bera test is based on the third and fourth sample moments.

The test matches the sample skewness and kurtosis to that of the Normal

distribution. The test is defined as:

JB =
n

6

(
S2 +

1

4
(K − 3)2

)
, (2.2)

where S and K are sample skewness and kurtosis. If our data is from a

normally distributed population then value of JB increases and the null hy-

pothesis will be rejected. A sample from a Normal distribution has skewness

of zero and kurtosis of three. Therefore by Equation (2.2) sample from a

normally distributed data will have JB test close to zero. Furthermore, JB

test asymptotically has chi-squared distribution with two degrees of free-

dom, therefore the null hypothesis is rejected if the calculated JB statistic is

greater than the value of the critical value from the chi-square distribution

with two degrees of freedom.

Anderson-Darling test

The Anderson-Darling test is regarded as the empirical distribution function

(EDF) statistic. The EDF statistics are measures of the discrepancy between

the EDF and a hypothesis cumulative distribution function. The test belongs

to the quadratic class of EDF statistics [DS86], it is a refinement of the
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Kolmogorov-Smirnov test and it gives more weight to the tails than the

Kolmogorov-Smirnov test. The Anderson-Darling test is defined as:

A2 = n

∫ ∞

−∞

(Fn(x)− F (x))2

F (x) (1− F (x))
dF (x), (2.3)

where the given a random sample of size n is x1, x2, . . . , xn and x(1) < x(2) <

· · · < x(n), are the ordered statistics and F (x) is the hypothesized cumulative

distribution of x. The empirical distribution function denoted by Fn(x) is a

step function, defined as:

Fn(x) =
number of observations ≤ x

n
.

A suitable computing formula for the test is given as [DS86]:

A2 = −n− 1

n

n∑
i=1

(2i− 1) [lnF (xi) + ln(1− F (xn+1−i))] . (2.4)

The test statistics A2 is then compared to the critical value of the Normal

distribution. If the value of A2 is greater than the given critical value from

the Normal distribution then the null hypothesis will be rejected, and this

leads to the conclusion that log returns do not follow the Normal distribution.

The Kolmogorov-Smirnov test statistics is given by:

Dn = sup
x

|Fn(x)− F (x)| (2.5)

where sup is the supremum [RW11]. The null hypothesis is rejected if Dn is

greater than the critical value.

Results of the Normality test

For each test the null hypothesis is that the log returns are normally dis-

tributed. The test is considered to be statistically significant if the significant

level of a given hypothesis test is less than the p-value. In general, a 0.05 or

lower p-value is considered to be statistically significant, hence we choose a
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significant level to be 0.05 for our hypothesis test. The significant level value

corresponds to the probability for which one chooses to reject or accept the

null hypothesis. Therefore, if the p-value obtained is less than the significant

level of 0.05, the null hypothesis will be rejected.

The results obtained for the three tests applied on the daily log returns

are summarized in Table (2.3). These results were obtained using the sta-

tistical programme R package ‘nortest’ and ‘tseries’. The p-value for the

shares are less than 0.05 significant level in all the three tests, hence the H0

is rejected and therefore we conclude that the log returns do not follow the

Normal distribution.

The three test statistics uses different methods to test for normality, the

Shapiro-Wilk tests the correlation in the Q-Q plot, Jarque-Bera test uses the

third and fourth moments while the Anderson-Darling compares the empir-

ical distribution to that of the Normal distribution. These three normality

tests have indicated that the log returns of the selected equity data over vary-

ing periods as plotted in Figure 2.1 to 2.7 do not follow a Normal distribution.

Shapiro Wilk test Anderson-Darling test Jarque-Bera test

W test p-value A2 test p-value JB test p-value 6

Standard Bank 0.9567 < 2.2e−16 29.0742 < 2.2e−16 4057 < 2.2e−16

African Bank 0.9252 < 2.2e−16 37.7541 < 2.2e−16 19750 < 2.2e−16

Merafe Resource 0.9725 < 2.2e−16 15.4049 < 2.2e−16 844 < 2.2e−16

Grindrod 0.8468 < 2.2e−16 78.1954 < 2.2e−16 33754 < 2.2e−16

Anglo American 0.9638 < 2.2e−16 22.2202 < 2.2e−16 2677 < 2.2e−16

FTSE/JSE Top 40 0.9454 < 2.2e−16 41.0257 < 2.2e−16 7946 < 2.2e−16

S&P 5007 - - 99.3793 < 2.2e−16 65871 < 2.2e−16

Table 2.3: Results of Normality tests from the Shapiro-Wilk, Anderson-

Darling and the Jarque-Bera test statistics.
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2.3 Chapter Summary

In this chapter, we introduced our empirical data and calculated the sta-

tistical data, which indicates that the empirical data exhibits skewness and

heavier tails than that of the Normal distribution as commonly expected.

We shall further examine the skewness and heavier tails of the empirical dis-

tribution by using the NIG distribution as it exhibits skewness and heavy

tails.

We will also focus on modelling the tails of the empirical distribution.

In this chapter we demonstrated using the Q-Q plot and formal numerical

techniques that the empirical data is not normally distributed. The Q-Q plot

shows that the data deviated at the tails, we will examine the tails in detail

using the Extreme Value Theory.
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Chapter 3

Value at Risk

In this chapter, the concepts of Value-at-Risk as a model to evaluate market

risk is discussed. Value-at-Risk came about when several financial institu-

tions started reporting internally their risk measurement and aggregate risk

in the firm. It is generally reported that the J.P. Morgan CEO Dennis Weath-

erstone requested for a one-day summary report of the bank’s overall market

risk to be delivered ever afternoon at 4:15PM. Hence, VaR was introduced

by J. P. Morgan in the first version of its RiskMetrics system and it became

recognised by risk managers and regulators as an industry-wide standard

[Ale08]. VaR has become the most used market risk measure.

Before defining Value-at-Risk we first start by defining market risk. The

advantages and disadvantages of VaR as a market risk measure are also dis-

cussed in this chapter. We consider the different methods of evaluating VaR.

Lastly, we make a comparison of VaR to Expected Shortfall.

3.1 Market risk

According to Jorion [Jor01], market risk is the risk due to movements in the

level of market prices. Moreover, market risk can take two forms [Jor01]:
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(i) absolute risk losses measured in rand terms or in the relevant cur-

rency.

(ii) relative risk losses measured relative to the benchmark index, which

is also referred to as tracking error.

Jorion [Jor01] further classifies market risk into directional risk and non-

directional risk.

(i) Directional risk involves exposure to the direction of movements in

risk factors, such as equity and bond prices, interest rates, exchange

rates and commodity prices.

(ii) Non-directional risk involves the remaining risk, consisting of ex-

posures to hedged positions or to volatility and basis risk. Basis risk

is created from unexpected movements in relative prices of assets in

hedged position. For example, in a forward contract basis risk is the

difference between the forward price and the spot price.

Crouhy et al. [CGM01] define market risk as the risk that changes in

financial market prices and rates will reduce the value of a security or a

portfolio. Furthermore, Crouhy, Galai and Mark in [CGM01] classify market

risk into four major market risks:

(i) Interest rate risk,

(ii) Equity price risk,

(iii) Foreign exchange risk and

(iv) Commodity price risk.

The focus of this dissertation is on equity price risk, wherein Crouhy et

al. [CGM01] divided it further into two components namely General mar-

ket risk and Specific risk. General market risk refers to the sensitivity of an

instrument or portfolio value to a change in the level of general stock mar-

ket indices. Specific or idiosyncratic risk refers to firm specific risk, such as
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the quality of the firm’s management, line of business or a breakdown in the

firm’s production process. Market risk is also referred to as systematic risk

or non-diversifiable risk, it is the risk that is attributed to market wide

risk sources [BKM09]. Although market risk can be hedged, it cannot be

eliminated completely through diversification. Hence, market risk is there-

fore assumed by all investors.

Models for measuring market risk have evolved over the years, from the

time where risk was measured using the face value or “notional” amount of

the security, through to complex measures of price sensitivity for example

duration and convexity for a bond and Greek measures for a derivative, to

the latest model, Value-at-Risk [CGM01]. Many publications give a com-

prehensive presentation on traditional market risk measures e.g., Crouhy et

al. [CGM01], Hull [Hul10], Dowd [Dow02] and Bessis [Bes10]. According to

Crouhy, Galai and Mark [CGM01], VaR has proven to be a more powerful

measure of the overall market risk of trading position over a short time hori-

zon, such as 1-day or 10-day period and under “normal” market conditions.

VaR strives to provide a single number that summarizes the overall market

risk in individual stocks and for portfolios.

3.2 Definition of Value-at-Risk

The concept of VaR is defined here intuitively according to Crouhy, Galai

and Mark [CGM01] as the worst loss that might be expected from holding

a security or portfolio over a given period of time (say a single day, or 10

days for the purpose of regulatory capital reporting), given a specified level of

probability (known as the “confidence level”).

Crouhy et al. [CGM01] further explains that VaR does not provide the

answer to the question: “How much can I lose on my portfolio over a given
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period of time?”. The answer to this question is everything or almost the

entire portfolio, should the entire market collapse all at once, in theory, the

value of the portfolio may fall near to zero. Instead, what VaR offers is the

answer to the question: “What is the maximum loss over a given time period

such that there is a low probability, say 1% probability, that the actual loss

over the given period will be larger?”. Therefore, VaR offers a probability

statement about the potential losses over a predetermined period of time.

McNeil et al in [MEF05] gives a mathematical definition of VaR as follows:

Definition 3.2.1. Given some confidence level q ∈ (0, 1). The VaR of the

portfolio at the confidence level q is given by the smallest number l such

that the probability that the loss L exceeds l is at most (1 − q). This can be

formulated as,

VaRq = inf{l ∈ R : P (L > l) ≤ 1− q} = inf{l ∈ R : FL(l) ≥ q}, (3.1)

where FL(l) is the distribution function of losses and L is the loss of a port-

folio.

The main basic parameters used in evaluating VaR are:

(i) The confidence level (q);

(ii) The period of time over which VaR is measured also known as the risk

or time horizon, denoted by h, and this is usually measured in trading

days rather than calendar days.

The significance level is often set by the regulator body, for example in

the banking industry they use the 1% significant level or 99% confidence level

to assess their market capital requirement as encouraged by Basel II agree-

ments [Ale08]. Basel II [oBS11] minimum requirement, is that VaR will be

calculated at 99% percentile, one-tailed confidence level. Otherwise the sig-

nificance or confidence level for VaR can be dependent on the risk appetite of

an investor in the absence of a regulatory body. The higher the risk appetite
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of the investor the lower the confidence level and the lower the risk appetite

the higher the confidence level [Ale08].

The risk horizon is the period over which the potential loss is measured.

Under the Basel banking regulations [oBS11] VaR is assessed over a mini-

mum of ten trading days. However, Banks may use VaR numbers calculated

according to shorter risk horizon scaled up to ten days by the square root of

time. Banks using this approach must periodically justify the reasonableness

of its approach to the satisfaction of its supervisors [oBS11].

According to the Basel Committee [oBS11] each bank must meet on a

daily bases a capital requirement expressed as the sum of:

• The maximum of the previous day’s VaR estimate (V aRt−1) and the

average of daily VaR estimates of the previous sixty business days

(V aRavg), multiplied by a scaling factor mc.

• The maximum of the latest available stressed VaR estimate (sV aRt−1)

and an average of the stressed VaR estimates on each of the previous

sixty business days (sV aRavg), multiplied by a scaling factor ms.

Therefore, the capital requirement (c) is given by:

=̧max{V aRt−1 : mc × V aRavg}+max{sV aRt−1 : ms × sV aRavg}, (3.2)

where the scaling factors mc and ms are based on the backtesting results and

are subject to an absolute minimum of three.

Basically, VaR is a (1−q) quantile of the distribution of the asset returns

[MEF05]. McNeil [MEF05] further highlights that VaR is the maximum loss

which is not exceeded with a given confidence level. In market risk manage-

ment the values used for q are q = 0.95 or q = 0.99 with the time horizon

usually being 1 or 10 days [MEF05]. VaR can be interpreted graphically as

in Figure 6.8 under “normal” market conditions.
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Figure 3.1: Value-at-Risk of a hypothetical return distribution (where µ is

the mean of the returns and σ is the standard deviation of the returns when

the returns are distributed according to a Normal distribution).

3.3 Standard Methods for evaluation of VaR

The first step of evaluating VaR is to determine the distribution of the port-

folio future returns, at the chosen time horizon. The distribution of future

returns is determined either by assuming the future returns have the same

distribution as the historical returns or by assuming the future returns have

some known distribution e.g. Normal, Student’s t-distribution or NIG dis-

tribution (in the case of this dissertation). The second step is choosing the

significant or confidence level. The three main methods to evaluating VaR

are:

(i) Variance-Covariance Method.

(ii) Historical Simulation.
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(iii) Monte Carlo Simulation.

The difference between the three methods is the way the distribution

of future returns is constructed. However, the variance-covariance method

is limited to linear securities in a portfolio, while the historical simulation

method applies to portfolios that include options. The Monte Carlo method

is the most flexible amongst the three. It may be used with a variety of return

distributions and it is also applicable to portfolios with non-linear securities.

3.3.1 Variance-Covariance Method

The variance-covariance method has also been given many different names

in publications for example model-building approach, delta-normal, analytic

VaR, and parametric VaR. Under the variance-covariance method the re-

turns of the assets are assumed to be normally distributed and their joint

distribution is multivariate normal, and therefore the covariance matric of

the asset returns is all that is required to capture the dependency between

asset returns [Ale08]. Under these conditions, VaR is estimated by the fol-

lowing analytical formula:

VaRq = µ + σΦ−1(q),

where

(i) Φ−1(q) is the inverse Normal distribution,

(ii) µ and σ are the estimated mean and standard deviation of the historical

asset returns respectively.

The derivation of the analytical VaR formula can be found in Carol

Alexander [Ale08] and also Simon Hubbert [Hub12]. The variance-covariance

method is mostly suitable for portfolios with linear assets and not for port-

folios that include non-linear assets such as derivatives. According to Hull

29

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



[Hul10], the variance-covariance method is mostly used for investment port-

folios and not for trading portfolios of financial institutions because it does

not work well when deltas are low. The other limitation of the variance-

covariance method is that we assume the returns of the assets are normally

distributed and therefore the method is not flexible on the distribution of the

returns.

3.3.2 Historical Simulation

The historical simulation is the most popular method for estimating VaR

amongst risk managers. The idea behind historical simulation is straight-

forward, the method assumes that historical returns will be observed again

in the future. The first step is to identify the risk factors (in this case the

equity prices) affecting the portfolio and collect data of the risk factors mea-

sured over a particular frequency (e.g. daily) over a given period of time.

The portfolio under consideration is then re-evaluated under each historical

simulated return. Secondly, evaluate the portfolio future returns for each

simulated portfolio value. Lastly, given a confidence level (1− q) VaR is es-

timated by sorting the financial returns and determining the (1− q)-quantile

of the returns distribution.

The strength of the historical simulation is that it is easy to implement

and it requires no parameter estimations because VaR is simply estimated by

means of ordered observed profits and losses. The main disadvantage of the

historical simulation method is it does not incorporate volatility-updating

[HW98]. If the historical data is too large then irrelevant values from the

distance past will have a misleading influence on the VaR estimate since all

the data have equal weights. This issue is addressed in Hull and White’s

paper [HW98] where they incorporated volatility updates to the historical

returns.
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3.3.3 Monte Carlo Simulation

Monte Carlo simulation is based on simulating the future returns using an ex-

plicit parametric model. The basic algorithm of the Monte Carlo simulation

is given according to Simon Hubbert in [Hub12] as follow:

(i) Choose an appropriate model for the daily returns.

(ii) Use the model to simulate potential future daily returns.

(iii) Repeat step 2 many times and use the simulated values to create an

approximate distribution.

(iv) For a given confidence level evaluate VaR using the same approach as

with the historical simulation method.

Monte Carlo accommodates other distributions as alternatives to the

Normal distribution to allow for heavy tail distributions, where extreme

events are expected to occur more commonly than the Normal distribution

[CGM01]. The main disadvantage of the Monte Carlo method is that it is

very slow because of the number of calculations required.

3.4 Advantages and Limitations of VaR

Although VaR is considered to be a simple concept to understand since it

aggregates all the portfolio risk under one single number, it also has limita-

tions. In this subsection, we discuss the positive points as well as some of

VaR’s limitations.

3.4.1 Advantages of VaR

Dowd [Dow02] describes the attraction of VaR as a risk measure under two

characteristics:
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(i) VaR provides a measure that is common and consistent for different

portfolio positions and risk factors. For example, comparing the risk

associated with fixed income position to risk associated with an equity

position. VaR also provides institutions with an overall risk measure.

(ii) VaR takes into account the correlation of different risk factors in a

portfolio. If the risk factors in a portfolio are negatively correlated the

estimated VaR figure will be lower and if the risk factors were positively

correlated the estimated VaR figure will be higher.

3.4.2 Limitations of VaR

The limitations of VaR according to Jorion [Jor01] are:

(i) The obvious limitation VaR has is it only provides us with the losses

under “normal” market conditions with some confidence level i.e. VaR

tells us the worst we can lose 95% of the time. VaR does not provide

an estimate of the absolute possible losses under extreme conditions.

(ii) VaR is not a coherent risk measure since it is not sub-additive. A risk

measure that is not sub-additive implies that portfolio diversification

is a bad thing because the risk of the portfolio will be greater than the

risk of the sum of individual assets.

(iii) VaR assumes the portfolio positions stays unchanged over the holding

period. Hence, the adjustment of 1-day VaR to a multiple-day VaR

using the square root of time does not accommodate for change in the

portfolio positions. This ignores the possibility that trading position

may change over time in response to change in market conditions.

(iv) VaR models rely on historical data and therefore assumes that the re-

cent past is a good projection of the future randomness.
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3.5 Properties of a Coherent Risk Measure

Suppose X and Y are random cash flows or future values such that X < Y ,

then a risk measure ρ(.) is coherent if it satisfying the following condition in

[Hul10] introduced by Artzner et. al. [ADEH99]. For b > 0 and c > 0 real

numbers, the axioms are as follow:

Monotonicity: ρ(Y ) < ρ(X), X < Y This condition states that if one

portfolio produces better returns than the other, its risk must be less than

the portfolio with worst returns.

Translation invariance: ρ(X + b) = ρ(X) − b The condition says if a

positive amount b is added into a portfolio then the portfolio risk is reduced

by the added amount b.

Homogeneity: ρ(cX) = cρ(X) The third condition states that if we

double our position then the risk will also double.

Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) The last condition states that

the portfolio risk should be less or equal to the sum of the individual risk

factors.

VaR satisfy the first three conditions and the last conditions is not always

satisfied. VaR of a portfolio is not always less than VaR of individual assets

in the portfolio. This implies that having a diversified portfolio has no ben-

efits since the portfolio risk can be greater than the individual risk factors.

In contrast to VaR, the expected shortfall measure is coherent [Hul10].
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3.6 Expected Shortfall

One of VaR’s disadvantages is that despite the fact that it tells us of the size

of the worst loss we can expect to suffer 100Xq% of the time, it does not

tell us the size of the expected worst loss for the remaining (100− q)%. Ex-

pected shortfall (ES) is the risk measure that provides us with the magnitude

of the expected loss (100 − q)% of the time. While VaR gives information

on the magnitude of the worst loss under “normal” market condition, ES

gives information on the size of worst expected loss under extreme market

conditions. Like VaR, ES is a function of two parameters: over time horizon

h and the confidence level q.

Dowd [Dow02] give the following definition of expected shortfall:

Definition 3.6.1. The Expected Shortfall (ES) is the expected value of our

losses, L, if we get a loss in excess of VaR:

ESq = E[L|L > V aRq]. (3.3)

Expected shortfall seem to be a better risk measure than VaR, because

it is a coherent measure and therefore always satisfy the subadditivity prop-

erty and hence encourages diversification. Expected shortfall also goes by

the name Conditional VaR (CVaR), Expected Tail Loss (ETL), and

Average Value-at-Risk (AVaR).

Dowd [Dow02] recommend the use of ES rather than VaR, unless it is

more difficult to estimate ES. VaR is simpler to understand and VaR esti-

mates can easily be back-tested unlike ES. Despite VaR limitations it is the

most popular risk measure among both regulators and risk managers [Hul10].
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3.7 Backtesting VaR

The aim of backtesting1 is to validate the VaR model. It is a process of pe-

riodically comparing the daily projected losses (i.e. the VaR estimate) with

the observed daily profits and losses [oBS96b]. This is to check how often

the daily losses exceed the daily VaR estimate. The number of daily losses

exceeding VaR estimate are referred to as exceptions. In this respect, the

accurate VaR model should not have a number of exceptions that exceed a

certain fraction of the daily profits and losses, where the fraction is deter-

mined by the confidence level of the VaR model [oBS96b]. If the number

of exceptions exceeds a certain fraction of the returns, then the VaR model

is considered not to measure risk accurately. Therefore, verifying the VaR

model in this case is simply based on counting the number of exceptions over

a given period and comparing it to the number of the given confidence level.

The verification of the model’s accuracy is fundamental to the Basel Com-

mittee so as to prevent financial institutions understating their risk. The

framework of backtesting is set out in [oBS96b]. Furthermore, the amount of

capital required to be held by financial institutions depends on the outcome

of the backtesting procedure[oBS96b]. The regulatory backtesting procedure

is performed over the last 250 trading days with the 99% one-day VaR com-

pared to the observed daily profits and losses over the period. For example,

over 250 trading days, a 99% daily VaR model should have on average 2.5

exceptions out of 250.

The Basel Committee have classified the backtesting results into three

zones which are green, yellow and red zones, these zones are linked to the

capital requirement scaling factor. The zones are chosen in order to balance

two types of statistical error, Type 1 and Type 2 errors. Type 1 error is

the probability of rejecting an accurate risk model, while Type 2 error is the

1Backtesting in this dissertation is based on the Basel Committee framework [oBS96b].
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probability of accepting an inaccurate risk model [oBS96b]. The description

of the zones are [oBS96b]:

(i) The green zone consists of zero to four exceptions, indicating that the

backtesting results do not suggest a problem with the quality or accu-

racy of the VaR model.

(ii) The yellow zone consists of exceptions from five to nine. The back-

testing results in this zone could be generated by both accurate and

inaccurate risk models. The number of exceptions in the yellow zone

guide the size of the potential increase in the capital requirement scal-

ing factor, as described in Table 3.1. However, the increase is not

automatic since the results in the yellow zone do not always imply the

risk model is inaccurate. If the financial institution is able to pro-

vide a reason for the number of exceptions, the supervisor will decide

on applying an increase in the capital requirement factor. The Basel

Committee [oBS96b] classifies the reason of the number of exceptions

in to the following categories:

(a) Basic integrity of the model : The risks of positions are not cor-

rectly captured or the model is not calculating volatility or corre-

lation correctly.

(b) Model’s accuracy could be improved : The model does not measure

the risk of some instruments with enough precision.

(c) Bad luck or markets moved in fashion not anticipated by the model :

Market volatility and correlation were significantly different than

what the model predicted.

(d) Intra-day trading : Large positions change during the day.

(iii) If the number of exception is ten or more, the backtesting results falls

into the red zone. The red zone generally indicates a problem with

the risk model and increase in the capital requirement scaling factor is
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automatic.

Number of Scaling

Zone Exceptions Factor

Green 0 to 4 3

Yellow 5 3.4

6 3.5

7 3.7

8 3.8

9 3.9

Red 10 or more 4

Table 3.1: The Basel Committee [oBS96b] classification of backtesting out-

comes with corresponding number of exceptions and their scaling factor.

3.8 Chapter Summary

Value-at-Risk is the core concept in this dissertation. The purpose of this

chapter was to introduce the notation of Value-at-Risk as well as provide the

reader with insight into the concepts. We discussed Value-at-Risk as a mar-

ket risk measure and the three standard methods for calculating it, which

are variance-covariance, historical simulation and Monte Carlo simulation.

We discussed the limitation and advantages of VaR and stated the prop-

erties of a coherent risk measure, where VaR satisfy only three conditions

out of four. Hence we discuss the Expected Shortfall which is a coherent risk

measure. Unlike Expected Shortfall, VaR is simpler to understand and easy

to back-test.
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Chapter 4

Normal Inverse Gaussian

Distribution

In this chapter, we define the NIG distribution introduced by Barndorff-

Nielsen [BN95] in 1995. Firstly, we give a brief overview of Lévy Processes.

Secondly, we describe the decompositions of the Normal Inverse Gaussian

process according to the theory of Lévy processes. Lastly, we discuss the

parameters and properties of the NIG distribution.

4.1 Lévy Processes

In financial literature, uncertainty of the economy is represented by a filtered

probability space (Ω,F , {Ft}t≥0,P), where Ft is the information generated

by history of assets up to time t, P is the real probability measure and Ω is

a space of all asset paths.

Definition 4.1.1. [Kyp05] A process X = {Xt : t ≥ 0} defined on a proba-

bility space (Ω,F ,P) is said to be a Lévy process if it possesses the following

properties:

(i) The paths of X are P-almost surely right continuous with left limits.
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(ii) P(X0 = 0) = 1.

(iii) For 0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s.

(iv) For 0 ≤ s ≤ t, Xt −Xs is independent of {Xu : u ≤ s}.

The first property implies that a Lévy process starts at position zero. The

increments of the Lévy process are the differences Xt−Xs between its values

at different times s < t. The second property states that the increments

Xt − Xs of the process are stationary, that is increment with equal time

length have identical distribution, hence increments are dependent only on

the time length t− s. Independent increments implies no time intervals are

overlapping each other, that is Xt −Xs is independent of Xu for u ≤ s. The

continuous time viewpoint forces the distribution of the increments Xt −Xs

to belong to the infinitely divisible one [BB00].

Lévy process is a time-continuous stochastic process with independent

and stationary increments. The most known example of Lévy process is the

Brownian motion and Poisson process. A comprehensive summary of some

examples of Lévy processes can be found in [Ben04], [Kyp05] and [Pap05].

The distribution of Xt is one of the things we will be modelling in this dis-

sertation.

The other important results of a Lévy process is that for any t > 0, Xt is

a random variable belonging to the class of infinitely divisible distributions

[Kyp]. That is for any n = 1, 2, . . . , we have

Xt = Xt/n + (X2t/n −Xt/n) + (X3t/n −X2t/n) + · · ·+ (Xt −X(n−1)t/n).

Therefore Xt can be written as the sum of n independent identically dis-

tributed random variables [Gem02].

39

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



The first statistical distribution that we model Xt with is the NIG. The

NIG process is a Lévy process with stationary independent increments, where

the increments follow a NIG distribution [Hen10]. The distribution of a Lévy

process can be uniquely determined by a characteristic triplet (σ2, ν, γ). This

leads to the following Lévy-Khinchine theorem.

Definition 4.1.2. [Hen10] Let (Xt)t≥0 be a Lévy process on R with charac-

teristic triplet (σ2 , ν , γ). Then

E[eizXt ] = etψ(z), z ∈ R (4.1)

with

ψ(z) = −1

2
z σ2 z + i γ z +

∫
|x|<1

(eizx− 1− izx)ν(dx)+

∫
|x|≥1

(eizx− 1)ν(dx),

(4.2)

where γ ∈ R is the drift constant, σ ≥ 0 is the diffusion constant and ν is

the Lévy measure of the process Xt on R \ {0} satisfying the conditions∫
|x|≤1

|x2|ν(dx) <∞,

∫
|x|>1

ν(dx) <∞.

By the theory of Lévy processes, a Lévy process Xt can be decomposi-

tioned into a drift term, Brownian motion term and jump terms [Hen10].

That is:

Xt = γt+ σBt +

∫
|x|<1

(eizx − 1− izx)ν(dx) +

∫
|x|≥1

(eizx − 1)ν(dx), (4.3)

where
∫
|x|≥1

(eizx − 1)ν(dx) is the compensated Poisson random measure of

Xt, ν(dx) is the rate of intensity of the process with jumps of size x and Bt

is the Brownian motion [Gem02].
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In the case of the NIG Lévy process, the Lévy- Khinchine formula for ψ

is given by

ψ(z) = γt+

∫
|x|<1

(eizx − 1− izx)ν(dx) +

∫
|x|≥1

(eizx − 1)ν(dx),

for

γ =
2δα

π

∫ 1

0

sinh(βx)K1(αx)dx, ν(dx) =
δα

π|x|
exp(βx)K1(α|x|)dx,

where x ∈ R, δ > 0, β ≤ |α| and K1(x) is the modified Bessel function of the

third kind with index 1 [BN95]. The derivation of this representation can be

found in [BN95]. From this it is immediately clear that the NIG Lévy pro-

cess is described by the characteristic triplet (0, ν, γ). The first term of the

characteristic triplet is zero indicating that the NIG process has no diffusion

component. This makes the NIG a pure jump process. From Equation (4.3)

the NIG processXt can be represented in terms of Poisson process in the form

Xt = γt+

∫
|x|<1

(eizx − 1− izx)ν(dx) +

∫
|x|≥1

(eizx − 1)ν(dx).

The Brownian motion is a popular model in finance, its Lévy process is

given by

Xt = γt+ σBt, (4.4)

and the corresponding characteristic function is given by

E[eizXt ] = et(−
1
2
σ2z2+iγz).

The Lévy process of the Brownian motion has no jump terms and there-

fore has stationary independent increments with continuous paths. Putting

Equation (4.4) into the stock price model, we have St = S0e
(γt+σBt).
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4.2 NIG Definition

The NIG distribution is a special case of the generalised hyperbolic distri-

butions introduced by Barndorff-Nielsen in 1977 [BN95]. It is a continuous

distribution defined on the entire real line.

Definition 4.2.1. [BN97] The random variable X : Ω → R follows a NIG

distribution with parameters α, β, µ and δ, if its probability density function,

defined for all real x ∈ R, is given by

fX(x;α, β, µ, δ) =
δα

π
exp
(
δ
√
α2 − β2 + β(x− µ)

)K1

(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

(4.5)

where the function K1(x) =
1
2

∫∞
0

exp(−1
2
x(τ + τ−1))dτ is a modified Bessel

function of third order and index 1. In addition the parameters must satisfy

0 ≤| β |≤ α, µ ∈ R, 0 < α and 0 < δ. If a random variable x follows a NIG

distribution it can be denoted in short as x ∼ NIG(α, β, µ, δ) [BN97].

Barndorff-Nielsen [BN95] describe the NIG distribution and the Hyper-

bolic distributions as normal variance-mean mixtures. Here, the NIG distri-

bution occurs as the marginal distribution of x for a pair of random variables

(x, z), i.e. the conditional distribution of x given z is normally distributed

with mean µ+ βz and variance z. In symbols:

x|z ∼ N(µ+ βz, z). (4.6)

Provided that the random variable z follows the Inverse Gaussian distribution

with parameters δ and
√
α2 − β2 and its density distribution function is given

by:

g(z; δ,
√
α2 − β2) =

δ√
2π

z−3/2 exp
(
δ
√
α2 − β2 − δ2 z−1 + (α2 − β2) z

2

)
.
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Proposition 4.2.1. [BN95] The moment generating function of NIG distri-

bution is given by:

Mx(t) = exp
[
tµ+ δ

(√
α2 − β2 −

√
α2 − (β + t)2

)]
. (4.7)

Furthermore, the mean, variance, skewness and the kurtosis of random

variable x can be obtained by successively differentiating the moment gener-

ating function.

Proposition 4.2.2. [Lil00] The mean, variance and the kurtosis of the ran-

dom variable x distributed according to (4.5) are given by the following ex-

pressions:

E[x] = µ+
δ β√
α2 − β2

(4.8)

Var[x] =
δ α2

(α2 − β2)3/2
(4.9)

Skew[x] = 3α−1/4 β/α

(1− (β/α)2)1/2
(4.10)

Kurt[x] = 3
1 + 4(β2/α2)

δ
√
α2 − β2)

. (4.11)

Proof. The mean of x is obtained by finding the first derivative using the

Chain Rule of the moment generating function as follow:

M′
x(t) = exp

[
tµ+ δ

(√
α2 − β2 −

√
α2 − (β + t)2

)][
µ+δ

(−1

2
(α2−(β+t)2)−1/2(−2(β+t))

)]
simplifying and taking t = 0 yields

M′
x(0) = µ+

δ β√
α2 − β2

.

Thus the mean is given by

E[x] = M′
x(0) = µ+

δ β√
α2 − β2

.
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Similarly, the variance is obtained by first finding the second derivative

using both the Chain Rule and Product Rule of the moment generating func-

tion, which is a more complicated function:

M′′
x(t) = exp

[
tµ+ δ

(√
α2 − β2 −

√
α2 − (β + t)2

)]
[
µ+ δ

(−1

2
(α2 − (β + t)2)−1/2(−2(β + t))

)]2
+ exp

[
tµ+ δ

(√
α2 − β2 −

√
α2 − (β + t)2

)]
[
δ
(−1

2
(α2 − (β + t)2)−3/2(−2(β + t)2)

)
+ δ(α2 − (β + t)2)−1/2

]
.

Simplifying and taking t = 0 yields

M′′
x(0) =

(
µ+

δ β√
α2 − β2

)2
+

δ β2

(α2 − β2)3/2
+

δ√
α2 − β2

and so

E[x2] = M′′
x(0) =

(
µ+

δ β√
α2 − β2

)2
+

δ β2

(α2 − β2)3/2
+

δ√
α2 − β2

.

The variance of x is thus given by

Var[x] = E[x2]− (E[x])2 =
δ β2

(α2 − β2)3/2
+

δ√
α2 − β2

.

Rationalizing the denominator of the second term as follow:

=
δ β2

(α2 − β2)3/2
+

δ√
α2 − β2

(α2 − β2)

(α2 − β2)

=
δ β2

(α2 − β2)3/2
+

δ(α2 − β2)

(α2 − β2)2/3
,

implies

Var[x] =
δ α2

(α2 − β2)3/2
.

Similar computation can be used to find the expressions of the kurtosis

and the skewness for the random variable x.
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4.3 NIG Parameters Description

The NIG distribution is characterized by four parameters α, β, µ and δ, each

describing the overall shape of the density distribution [Lil98]. These param-

eters are usually categorized in one of the two groups. The first group of

parameters affecting the scaling and location of the distribution are µ and δ.

The second group of parameters affecting the shape of the distribution are α

and β.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 NIG(1,0,0,1)

NIG(0.5,0,0,1)

Figure 4.1: The NIG distribution with different α

.

The parameter α measures the tail heaviness of the distribution. The

larger α the thinner the tails and the smaller α the fatter the tails, (see Fig-

ure 4.1). The skewness of NIG distribution is measured by β. When β = 0,

the distribution is symmetric around µ. If β > 0, then the distribution is

skewed to the right, whereas negative β gives skewness to the left [BB00] as

demonstrated in Figure 4.2.

The parameter µ and δ have the same interpretation as the mean and
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Figure 4.2: The NIG distribution with different β.

standard deviation on the Normal distribution. The parameter µ describes

the location of the peak of the distribution or were the distribution is cen-

tered on the real number line [BB00]. The right-hand side of Figure 4.3

shows the different values of µ, the distribution of the blue graph is centered

at x = 2 while the distribution of the orange graph is centered at x = −2.

The scale parameter is δ, it describes the spread of the returns. The higher

the value of δ the wider the distribution and the lower the value the narrower

the distribution. The left hand side of Figure 4.3 demonstrates the different

values of δ where the orange graph is when δ has a higher value and the blue

graph is when δ is small.
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Figure 4.3: The NIG distribution with different δ and µ values.

4.4 NIG Distribution Properties

4.4.1 Convolution Property

One of the important property of the NIG distribution is that it is closed

under convolution. This means, the sum of independent and identical random

variables which are NIG distributed is also NIG distributed.

Proposition 4.4.1.1. [Ben04] If X and Y are independent NIG random

variables with common parameters α and β but having different location-

scale parameters that is X ∼ NIG(α, β, µX, δX) and Y ∼ NIG(α, β, µY, δY),

then X + Y is NIG distributed with parameters (α, β, µX + µY , δX + δY ).

This property is proved using the moment generating function properties

which are:[Ros03]

(i) The moment generating function uniquely determines the distribution.
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(ii) The moment generating function of the sum of independent random

variables is just the product of the individual moment generating func-

tions.

Proof. The moment generating function of X + Y is given by

MX+Y(t) = MX(t)×MY(t)

= exp
(
tµX + δX

(√
α2 + β2 −

√
α2 − (β + t)2

))
× exp

(
tµY + δY

(√
α2 + β2 −

√
α2 − (β + t)2

))
= exp

(
tµX + δX

(√
α2 + β2 −

√
α2 − (β + t)2

)
+ tµY + δY

(√
α2 + β2 −

√
α2 − (β + t)2

))
= exp

(
t(µX + µY) + (δX + δY)

(√
α2 + β2 −

√
α2 − (β + t)2

))
,

which is the moment generating function of a NIG distributed with parame-

ters (α, β, µX+µY , δX+δY ). HenceX+Y is NIG distributed with parameters

(α, β, µX + µY , δX + δY ), since the moment generating function uniquely de-

termines the distribution.

4.4.2 Tail Behaviour

The NIG distribution has semi-heavy tail. In particular by using the following

asymptotic formula of the Bessel function

K1(s) ∼
√
π/2 s−1/2 e−s, as s→ ∞

Barndorff-Nielsen [BN95] found that the tail of the NIG behaves as:

f(x;α, β, µ, δ) ∼ A(α, β, µ, δ)q

(
x− µ

δ

)−3/2

exp
[
−α
√
δ2 + (x− µ)2 + β(x− µ)

]
for |x| → ∞, where q(x) =

√
1 + x2 and the constant A is given by

A(α, β, µ, δ) = (2π)−1/2(α/δ)1/2 exp
(
δ
√
α2 − β2

)
.
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This means the tails of the NIG distribution are always heavier than those

of the Normal distribution. In addition, a proficient selection of parameters

can create a wide range of density shapes, making the NIG distribution a

very flexible tool to use for modelling financial returns.

4.4.3 Fitting the NIG model

Bølviken and Benth in [BB00] describe two methods for finding the parameter

estimators. The first method they describe is the method of moments, since

the expression of the mean, variance, skewness and kurtosis are described by

the four parameters of the NIG distribution. To estimate the parameters the

mean, variance, skewness and kurtosis are simply replaced by their sample

version and the four equations are then solved for α, β, µ and σ.

The method of moments is straightforward since the Bessel function does

not have to be evaluated [BB00]. However, Bølviken and Benth [BB00] argue

that the method is based on higher moments and there is no guarantee that

the sample moment satisfy the restrictions laid down by the NIG family, such

that the moment equation has an actual solution. Bølviken and Benth [BB00]

recommend the second method, which is the maximum likelihood estimation.

The maximum likelihood method requires the evaluation of the maximum

likelihood function and it is obtained by maximizing the log-likelihood func-

tion and this will also require the evaluation of the Bessel function and its

derivative as described in [BB00]. We prefer the maximum likelihood func-

tion since the density function of the NIG distribution is readily available to

derive the maximum likelihood function. By maximizing the likelihood func-

tion we increase the chances of obtaining the best estimates. The statistical

program R has a predefined function for the maximum likelihood estimation

(MLE) of the NIG distribution. The log-likelihood function is obtained by
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taking the log of the density function of the NIG in Equation (4.5):

L(xi, θ) = ln
( n∏
i=1

f(xi;α, β, µ, δ)
)

(4.12)

= ln
( n∏
i=1

δα

π
exp
(
δ
√
α2 − β2 + β(xi − µ)

)K1

(
α
√
δ2 + (xi − µ)2

)
√
δ2 + (xi − µ)2

)
,

simplifying the expression we get

=
n∑
i=1

ln
(δα
π

)
+ ln

( n∏
i=1

exp
(
δ
√
α2 − β2 + β(xi − µ)

))
+ ln

( n∏
i=1

K1

(
α
√
δ2 + (xi − µ)2

))
− 1

2
ln
( n∏
i=1

(δ2 + (xi − µ)2)
)

= nln(δα)− nln(π) + n
(
δ
√
α2 − β2 − βµ

)
+ β

n∑
i=1

xi

+
n∑
i=1

ln
(
K1

(
α
√
δ2 + (xi − µ)2

))
− 1

2

n∑
i=1

ln
(
δ2 + (xi − µ)2

)
.

(4.13)

To obtain the maximum likelihood parameter estimates we differentiate

the log-likelihood function L in Equation (4.12) with respect to each param-

eter. For example the derivative of log-likelihood function with respect to β

is:

∂

∂β
L = nδ

(
1

2
√
α2 − β2

)
(−2β)− nµ+

n∑
i=1

xi

=
−nδβ√
α2 − β2

− nµ+
n∑
i=1

xi.

Setting ∂
∂β
L = 0 and solving for β we obtain the following likelihood estimate

of β:

β̂ =
α(nµ−

∑n
i=1 xi)√

n2δ2 + (nµ−
∑n

i=1 xi)
2
. (4.14)

The derivative of the likelihood function (4.12) with respect to β is easy to

obtain as it is not dependent on the Bessel function. We apply the properties
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of derivatives for the modified Bessel function states in Appendix A to obtain

the derivative of the log-likelihood function with respect to the remaining

parameters for example µ is:

∂

∂µ
L = −nβ +

n∑
i=1

xi − µ√
δ2 + (xi − µ)2

x
[ 2√

δ2 + (xi − u)2

+
αK0(α

√
δ2 + (xi − u)2)

K1(α
√
δ2 + (xi − u)2)

]
.

Setting ∂
∂µ
L = 0 and solving µ we obtain the likelihood estimates for µ

to be [Pra99]:

µ̂ = − δβ√
α2 − β2

+
1

n

n∑
i=1

xi. (4.15)

The derivatives of the likelihood function (4.12) with respect to δ and α

are given by [Pra99]:

∂

∂δ
L =

n

δ
+n
√
α2 − β2−2

n∑
i=1

δ

δ2 + (xi − µ)2
−

n∑
i=1

αδ√
δ2 + (xi − µ)2

(4.16)

and

∂

∂α
L =

nδα√
α2 − β2

−
n∑
i=1

√
δ2 + (xi − µ)2

K0(α
√
δ2 + (xi − u)2)

K0(α
√
δ2 + (xi − u)2)

. (4.17)

According to Prause in [Pra99], it is preferable to maximize the ln(α) and

ln(δ) to maintain the positivity condition of α and δ.

4.5 Chapter Summary

This chapter served as an introduction to the NIG distribution and its prop-

erties. It is intended to provide the background understanding required to

implement the NIG distribution. The flexibility of the NIG distribution in

terms of the skewness and kurtosis was explained by adjusting various pa-

rameters. The Lévy process was also presented where we discussed the NIG

Lévy process and represented it in terms of the drift and the jump terms.
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Chapter 5

Other distributions

In this chapter we provide an overview of alternative distributions that have

been developed in literature to model financial returns. This is to familiarise

the reader with some of the distributions that have been used in literature.

We discuss the Stable Paretian distribution (Stable distribution), Skew t

and t-distribution amongst the alternatives. The other goal of this disserta-

tion is to fit some of these alternative distributions to our data and make a

comparison to the NIG distribution.

5.1 The Stable Paretian distribution

Mandelbrot in [Man63] proposed that the financial returns can be charac-

terized by the Stable distribution. The Stable distribution is described by

four parameters: location parameter, scale parameter, skewness parameter

and the characteristic exponent. The scale parameter is always greater than

zero, while the skewness parameter is taken in the interval [−1; 1]. The lo-

cation parameter is the mean or expected value of the distribution when the

characteristic exponent is equal to one [Fam65]. The characteristic exponent

measures the height of the extreme tails of the distribution and is taken in

the interval (0; 2] [Fam65]. The Stable distribution exhibit heavier tails than

those of the Normal distribution when the characteristic exponent is taken in
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the interval (0; 2], and the height of the extreme tails increases as the charac-

teristic exponent 1 moves away from 2 and towards 0 [Fam63]. Mandelbrot’s

Stable distribution for financial returns is specified for the characteristic ex-

ponent in the interval (1; 2], such that the distribution has a finite expected

value but the variance is infinite 2[Fam63].

The infinite variance of the Stable Paretian distribution has “extreme

consequence” from a statistical point of view, if the population variance of

the distribution is infinite the sample variance will be a meaningless measure

of dispersion Fama [Fam65]. Fama in [Fam63] argues that if the variance is

infinite, other statistical tools for example, the least square regression, which

is based on the assumption of finite variance or tools based on the sample

second moments, will produce meaningless results. Consequently, by Fama

in [Fam63] the Stable Paretian distribution seem to fit the data better than

the Normal distribution. Mandelbrot’s work may be “doubtful”, since past

research on “speculative prices” has been based on statistical tools which

assume the existence of a finite variance.

The other shortcoming of the Stable Paretian distribution is the non-

existence of an explicit density function, 3 making it difficult to analyse the

sampling behaviour of the estimation of the Stable Paretian distribution pa-

rameters [Fam65]. The implementation problem of the Stable distribution

has also been noted by Huisman in [HKP98].

1The Normal distribution is obtained when the characteristic exponent equals 2. There-

fore, the Normal distribution is a special case of the Stable Paretian distribution [Fam63].
2If the characteristic exponent is in the interval (0; 1) there is no obvious interpretation

of the expected value [Man63]. The expected value of the Stable Paretian distribution is

finite when the characteristic exponent is greater than 1 and the variance exists only when

the characteristic exponent is equal to 2 [Fam63].
3The Stable Paretian distribution has an explicit density function in only two cases: the

Cauchy (when the characteristic exponent equals 1) and the Normal distributions (when

the characteristic exponent equals 1).
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For further applications of the Stable Paretian distribution in financial re-

turns see for example, Mandelbrot [Man63] and Blattberg et al [BG74]. Fama

in [Fam63] goes into a detailed analysis of Mandelbrot’s proposed Paretian

Stable distribution as a model for financial returns.

5.2 The Student’s t-distribution

The t-distribution suggested by Blattberg and Gonedes [BG74] as an alter-

native distribution to model financial returns, is characterised by the shape-

defining parameter known as the degree of freedom k > 0. The density

function is given by

tk(x) =
Γ(k+1

2
)

√
k π Γ

(
k
2

) (1 + x2

k

)− k+1
2

, (5.1)

where x is the random variable, k is the degree of freedom and Γ is the

gamma function. The t-distribution is similar to Normal distribution, it is

symmetrical about the mean and exhibits fatter tails. The mean of the dis-

tribution is zero when the k > 1, the mean is undefined and the variance is

given by k/(k − 2) for k > 2, the variance is infinite for 0 < k ≤ 2. The

degree of freedom k controls the fat tails of the distribution. The smaller

the value of k the fatter the tails of the distribution. When k increases the

variance approaches 1 and therefore the t-distribution converges the Normal

distribution 4.

Unlike the Stable Paretian distribution, the t-distribution has a well-

defined density function described in Equation 5.1, and therefore the maxi-

mum likelihood estimators of the distribution parameters can be easily ob-

tained [BG74]. However, the disadvantage with the t-distribution is that it

4When the degree of freedom k = 1 we have the Cauchy distribution [Pra72]
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does not address the skewness present in many financial returns, since, like

the Normal distribution, it is symmetrically distributed about the mean.

Application of the Student’s t-distribution in VaR estimation is given

by Huisman et al [HKP98] and a most recent application within the South

African equity market is by Milwidsky and Mare [MM10]. Blattberg et al

in [BG74] make a comparison of the t-distribution to the Stable distribution

as a statistical model for financial returns and they conclude that the prior

is far easier to implement since it has a well-defined density function and a

finite variance.

5.3 The Skew t-distribution

The Skew t is the skew extension of the t-distribution. It was first proposed

by Hansen in [Han94] as an alternative distribution to model financial re-

turns. There are several definitions of the density function of the Skew t

given in literature. We apply the one proposed by Azzalini and Capitanio in

[AC03] and it is given by:

st(x : k, β) = tk(x)2tk+1

(
βx

√
k + 1

x2 + k

)
, (5.2)

where tk(.) is the density function of the t-distribution given in Equation

(5.1) with degrees of freedom k and β is the skewness parameter. When

β = 0, the Equation (5.2) reduces to the t-distribution. The expected value

of the distribution is given by

E[x] = β

√
k

2

Γ((k − 1)/2)

Γ(k/2)
, k > 1, (5.3)

else the expected value does not exist when k < 1. The variance of the

distribution is given by

Var[x] =
k(1 + β2)

k − 2
− β2k

2

(
Γ((k − 1)/2)

Γ(k/2)

)2

, k > 2, (5.4)
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else the variance does not exist when k ≤ 2. The third moment does not

exist when k < 3, which makes the usual skewness to not be a good measure

of asymmetry for the distribution. According to Aas in [AH06], Skew t has

heavy tails, which means that it should model data with heavy tails well but

may not handle extensive skewness.

5.4 Generalised Hyperbolic distributions

The most recent alternative to the Normal distribution is a class of Gener-

alised Hyperbolic (GH) distributions and its sub-classes: Hyperbolic and the

NIG are a particular cases of the GH. The GH distribution possesses fatter

tails and can be both symmetric and skew [Pra99]. Generalised Hyperbolic

distributions were first introduced by Barndorff-Nielsen [BN97] in 1977 to

model grain size distribution of sand blown by wind. The GH distribution

may be defined as a Normal variance-mean mixture5 where the Generalised

Inverse Gaussian maybe defined as a mixing distribution [Pra97]. The den-

sity function of the Generalised Hyperbolic distribution is given by [Pra97]:

gh(x;λ, α, β, δ, µ) = a(λ, α, β, δ)(δ2 + (x− µ)2) (λ−1/2)/2

× Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
exp(β(x− µ)),

a(λ, α, β, δ) =
(α2 − β2) λ/2

√
2π αλ−1/2 δλKλ

(
δ
√
α2 − β2

) ; x, µ ∈ R,

(5.5)

where Kλ is a modified Bessel function of the third order with index λ

5A distribution of a random variable x is a Normal variance-mean mixture with a

mixing distribution G, if x for a given z ≥ 0 is normally distributed with mean µ+βz and

variance z, given that z follows a probability distribution G ∈ [0,∞) [BNKS82].
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and the integral representation is given by [Ebe01]:

Kλ(x) =
1

2

∫ ∞

0

τλ−1 exp

(
−1

2
x
(
τ + τ−1

))
dτ.

The gh density function depends on five parameters, namely α, β, µ, δ

and λ. The α determines the shape and is greater than 0, β in the interval

0 ≤ |β| < α determines the skewness and µ ∈ R is the location parameter

[Ebe01]. The scaling parameter is given by δ > 0 and it is similar to the σ

in the Normal distribution. Lastly, λ ∈ R determines the heaviness of the

tails and it also describes certain sub-classes of the GH distribution. For

λ = −0.5 we get the NIG distribution discussed in Chapter 4 and the Hyper-

bolic distribution is described for λ = 1 [Ebe01]. The Normal distribution is

obtained as a limiting case of the GH distribution for δ → ∞ and δ/α→ σ2.

Unlike the Normal distribution defined by two parameters µ and σ, the class

of Generalised Hyperbolic distributions is very flexible and therefore fits the

financial returns in an optimal way [Ebe01].

Eberlein and Keller [EK95] proposed the Hyperbolic distribution in 1995

as a better fitting model for financial returns. Küchler et al fitted the Hy-

perbolic distribution to the daily returns of the German stocks in [KNSS99],

in particular they demonstrated that skewness and kurtosis can be modelled

much better than the Normal distribution. However, according to Barndorff-

Nielsen [BN95] the Hyperbolic distribution lacks the property of being closed

under convolution.

Later Barndorff-Nielsen extended on Eberlein and Keller’s work by intro-

ducing the NIG distribution6 as a realistic model for financial returns [BN95].

6A detailed discussion on the Normal Inverse Gaussian distribution is presented in

Chapter 4 of this dissertation.
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Barndorff-Nielsen found that the NIG distribution was a better fit to the

daily empirical financial returns and is able to portray the heavy tails and

skewness of financial returns [BN95]. Unlike the Hyperbolic distribution, the

NIG distribution possesses an appealing property of being closed under con-

volution i.e. the sum of two independent random variables following an NIG

distribution is again NIG distributed [BN95]. This property is important in

forecasting application [HP07], for example time scaling of risk model such as

VaR, when computing the 10-day VaR estimate from the daily VaR estimate.

The NIG distribution determines a process with stationary independent

increments, which Barndorff-Nielsen in [BN95] refers to as the NIG processes.

This type of process is known as the Lévy process, which is discussed in Chap-

ter 4. Further reading on the implementation of the classes of generalised

hyperbolic distributions in finance can be found in a number literatures. (See,

for example Rydberg 1997 [Ryd97], Prause 1997 [Pra97], Bølviken and Benth

2000 [BB00], and Venter and Pieter [VdJ01]).

5.5 Extreme Value Theory

Extreme Value Theory (EVT) is the discipline of modelling the tails of a

distribution. According to Hull [Hul10], EVT is a way of smoothing and ex-

trapolating the tails of the probability distribution of daily returns calculated

using historical simulation. Hull [Hul10] further explains that, EVT leads to

VaR estimates that reflect the whole shape of the tail of the distribution, not

just the positions of a few losses in the tails [Hul10]. Therefore, EVT can

be used to assist in situations where risk managers want to estimate VaR

with a very high confidence level [Hul10]. There are two types of approaches

for Extreme Value Theory the block maxima (minima) model and Peak Over

Threshold (POT) [MEF05].
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The block maxima method involves modelling the largest observations col-

lected from a large sample of identically distributed observations [MEF05].

The analysis involves partitioning identically independent random variables

(Xi)i∈N into intervals of equal length j ∈ N. For each interval, the maxi-

mum observed value is obtained i.e. BMn = max{X1, X2, . . . , Xn}, BMn is

referred to as the block maxima. By the results of the Fisher-Tippett, Gne-

denko [MEF05], the limiting distribution of the normalized maxima BMn

are in the Generalized Extreme Value (GEV) family, which includes the fol-

lowing distributions: Fréchet, Gumbel and Weibull [MEF05]. The density

function of the GEV distribution is given by:

Hζ(x) =

{
exp (−(1 + ζ x)1/ζ), ζ ̸= 0,

exp (−e−x), ζ = 0,

where 1 + ζ x > 0 and ζ is the shape parameter [MEF05]. The type of

distribution is defined by Hζ depending on the values of ζ [MEF05]: when

ζ > 0, Hζ is a Fréchet distribution, when ζ = 0, Hζ is a Gumbel distribution

and when ζ < 0, Hζ is a Weibull distribution.

The POT model is more “modern” and “powerful”, it models all large

observations exceeding a certain threshold. McNeil et al., in [MEF05] argue

that the model is most efficient in using the data on extreme outcomes, which

is often limited. Whereas the block maxima is very wasteful of data, since

it models only the largest observation from a collection of large sample of

identically distributed observations.

McNeil in [McN99], sub-classify the analysis within the POT model into

two styles. The semi-parametric model based on the Hill estimator and the

full-parametric model based on the Generalised Pareto distribution (GPD).

The Generalised Pareto distribution is the probability distribution that mod-

els the exceedances over thresholds. Danielsson and Vries in [DdV00] work

with the semi-parametric model to evaluate conditional VaR. In this section,

we focus on the full-parametric model as described by McNeil in [McN99].
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5.5.1 Generalised Pareto distribution

The distribution function of GPD is given by:

Gζ,η(x) =

{
1− (1 + ζx/η)−1/ζ , ζ ̸= 0,

1− exp(−x/η), ζ = 0,
(5.6)

where η > 0, and x ≥ 0 when ζ ≥ 0 and 0 ≤ x ≤ −η/ζ when ζ < 0.

The variable x represents daily negative log returns, which are converted to

positive log returns. The GPD is depended on two parameters: ζ and η are

referred to the shape and scale parameters respectively. The GPD, like the

GEV includes a number of other distributions depending on the values of ζ:

when ζ > 0 the distribution function of GPD is that of an ordinary Pareto

distribution, in this case the GPD is heavy-tailed. When ζ = 0 the GPD

function corresponds to the exponential distribution and when ζ < 0 the

distribution is short-tailed known as the Pareto type II distribution.

Definition 5.5.1. [GR10] The distribution of the exceedances over a thresh-

old u for a given random variable X with a distribution function F is defined

by:

Fu(y) = P (X − u ≤ y|X > u) =
F (y + u)− F (u)

1− F (u)
. (5.7)

for 0 ≤ y < x0 − u, where x0 ≤ ∞ is the right endpoint of F [McN99].

Therefore, Fu describe the distribution of the losses above the threshold

u, given that the threshold u has been exceeded or the probability that a

loss exceeds the threshold by at most y, given that it exceeds the threshold

[McN99]. In the POT model, the excess distribution Fu(y) is best approxi-

mated by the Generalised Pareto distribution i.e.

Fu(y) = Gζ,η(y), (5.8)

[GR10] see also [McN99].
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5.5.2 The choice of threshold

The estimate of the parameters are dependent on the threshold u. The mean

excess plot is used to determine a suitable threshold. In general if the data

follows a Generalized Pareto distribution, then the plot will follow a reason-

able straight line above a certain value of u [MEF05]. More specifically, a

linear upward trend indicates a GPD model with a positive shape parameter

ζ, a flat linear trend indicates a GPD model with a zero shape parameter or

the exponential distribution and a linear downward trend indicates a GPD

model with a negative shape parameter [MEF05].

When selecting the value of threshold it is important to note that it should

be high enough for a better fit and not too high to result in an inadequate fit.

On the other hand, the threshold value should not be too low, though this

will result in a better fit but risks losing the extreme behaviour of the tail

[Hub12] and [WM07]. Hull [Hul10] recommends choosing a threshold value

close to the 95% percentile point of the empirical distribution.

Once the threshold u has been chosen, we now estimate the GPD pa-

rameters ζ and η using the maximum likelihood estimation method. In the

maximum likelihood estimation method, the parameter values are chosen

such that they maximize the joint probability density of the losses. There-

fore, if we have that a total of Nu out of n losses have exceeded the threshold

u, then the GPD is fitted to the Nu exceedances by estimating the parame-

ters ζ and η.
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5.5.3 Estimation of value-at-risk and expected short-

fall

By setting x = y + u in Equation (5.7), an approximation of F (x) where

Fu(y) = Gζ,η(y) for x > u is given by [McN99]

F (x) = (1− F (u))Gζ,η(y) + F (u), (5.9)

and F (u) is estimated by using the empirical cumulative distribution func-

tion (n−Nu)/n.

By substituting Equation (5.6) and the estimate of F (u) into Equation

(5.9), we obtain the following estimate for F (x)

F̂ (x) = 1− Nu

n

(
1 + ζ̂

x− u

η̂

)(−1/ζ̂)

, (5.10)

where x > u [McN99].

For a given probability q > F (u) the Value-at-Risk estimate is obtained

by solving for x in Equation (5.10) [McN99]

VaRq = u+
η̂

ζ̂

((
n

Nu

(1− q)

)−ζ̂

− 1

)
. (5.11)

Assuming that ζ < 1 the corresponding expected shortfall is estimated

as:

ESq =
1

1− q

∫ 1

q

VaRxdx =
VaRq

1− ζ
+
η − ζu

1− ζ
. (5.12)

5.6 Chapter Summary

In this chapter, we discussed some of the distributions that have been used

to model financial returns in literature. We have noted how each of the dis-

cussed distributions fit financial returns better than the Normal distribution.

We also noted how these distributions compare to the NIG distribution. For
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example, though the t-distribution has heavy tails it does not accommodate

the skewness found in the financial returns, as it is centered about zero. The

Hyperbolic distribution lacks the property of being closed under convolution,

making it not useable when modelling a portfolio of financial assets.

When focusing on the tails of the probability distribution of financial re-

turns, it is natural to consider the Extreme Value Theory. The inclusion of

this Extreme Value Theory is so that we can compare Value-at-Risk values

estimated by just focusing on modelling the tails of the distribution to mod-

elling the entire returns distribution.

The objective was to provide the reader with the literature review of some

of the distributions used to model financial returns and compare these distri-

butions to the NIG so that to justify our choice of the NIG. We also provided

basic background of concepts of the Extreme Value Theory, including how

Value-at-Risk is estimated under the EVT assumptions.
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Chapter 6

Distribution fitting and

evaluating Value-at-Risk

In this chapter, we fit the NIG model to the empirical data described in

Chapter 2 and compare the fit of the NIG to the fit of the Skew t, Normal

and t-distribution. We then model the tails for the empirical data using the

Generalised Pareto distribution and this is then followed by evaluate VaR un-

der the assumption that the empirical data follows the NIG distribution. We

compare the VaR estimates to those under the Normal, Skew t, t-distribution

and the Generalised Pareto distribution in the final section.

6.1 Distribution fitting

Fitting the NIG distribution is straightforward using the statistical program

R with the package fBasisc [De06] because the program has a predefined

function for the maximum likelihood estimation (MLE) of the NIG distribu-

tion.

Table 6.1 shows the maximum likelihood parameter estimates results for

the fitted NIG distribution. According to the NIG parameters in Table 6.1
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FTSE/JSE Top40, S&P 500 and African Bank display negative skewness,

where β̂ is −5.1090, −5.0934 and −0.6613 respectively. The skewness of

Standard Bank, Merafe, Grindrod and Anglo American is positive, which

indicates that log returns above zero occur more frequently than negative

log returns. The location parameter µ̂ for each stock and the indices is very

small as noted from the empirical statistics in Chapter 2. The tail parameter

α̂ is in the range 30-69 for each stock and the indices displaying a higher

peak and heavy tails.

Estimated parameters of the NIG

α̂ β̂ δ̂ µ̂

FTSE/JSE TOP 40 67.8875 −5.1090 0.0123 0.0014

S&P 500 58.3541 −5.0934 0.0075 0.0009

Standard Bank 44.7345 0.3524 0.0208 0.0003

African Bank 32.3720 −0.6613 0.0250 0.0005

Anglo American 43.1323 0.9557 0.0270 −0.0002

Merafe Resources 41.3981 4.5965 0.0527 −0.0054

Grindrod Limited 16.8123 0.4198 0.0185 0.0008

Table 6.1: Maximum likelihood parameter estimates resulting when fitting

the NIG distribution.

Statistical data of the fitted Normal Inverse Gaussian distribution

Mean Variance Skewness Kurtosis

FTSE/JSE TOP 40 0.0005 0.0002 −0.2474 3.684585

S&P 500 0.0002 0.0001 −0.3966 7.090656

Standard Bank 0.0005 0.0005 0.0245 3.225051

African Bank 0.0000 0.0008 −0.0681 3.71387

Anglo American 0.0004 0.0006 0.0616 2.581746

Merafe Resources 0.0005 0.0013 0.2262 1.451873

Grindrod Limited 0.0013 0.0011 0.1343 9.672519

Table 6.2: Statistical data of the fitted NIG distribution.
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The statistical data estimated using the NIG distribution is displayed in

Table 6.2. The plots of the fitted NIG log-density based on the estimated pa-

rameters from Table 6.1 together with the empirical log-density of each stock

and the indices are compared to the Normal distribution and are displayed

in Figure 6.1. Figure 6.1 shows how the Normal distribution has a shape of

a parabola and how it deviates from the tails of the empirical log-density.

Though the tails of the empirical log-density are heavier than those of the

NIG log-density, the approximation in the center is very good.
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Figure 6.1: The log-density of the empirical data with the fitted NIG and

Normal distribution.
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Table 6.3 shows the parameter estimates resulting from fitting the t-

distribution and Skew t. The tail parameter or degree of freedom is in the

range of 2.4-6.3 for each stock and indices. Figure 6.2 compares the log-

density of the NIG, Skew t and t-distribution to the empirical data, the

overall observation is that the Skew t and t-distribution have fatter tailed

compared to the NIG distribution. In addition, the NIG, Skew t and t-

distribution seem to adequately fit the center of the empirical distribution

quite well compared to the Normal distribution.

Estimated parameters of the Skew t and t-distribution

t-distribution parameters Skew t parameters

mean std dev. k mean std dev. k β

FTSE/JSE TOP 40 0.0007 0.0138 4.00 0.0005 0.0139 3.84 0.95

S&P 500 0.0006 0.0129 2.80 0.0003 0.0129 2.80 0.95

Standard Bank 0.0005 0.0222 4.00 0.0006 0.0222 4.00 1.01

African Bank 0.0001 0.0285 3.84 0.0001 0.0282 4.00 1.00

Anglo American 0.0003 0.0254 4.61 0.0004 0.0254 4.61 1.02

Merafe Resources 0.0000 0.0361 6.52 0.0008 0.0363 6.26 1.15

Grindrod Limited 0.0010 0.0430 2.41 0.0012 0.0430 2.41 1.01

Table 6.3: Parameter estimations for the Skew t and t-distribution where k

is the degrees of freedom and β is the skewness parameter.
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Figure 6.2: The log-density of the empirical data with the fitted NIG, Skew

t and the t-distribution.
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From Figure 6.3, it is observed that the NIG distribution fits the empiri-

cal histogram better than that of the Normal distribution and t-distribution.

The NIG distribution also matches the empirical distribution better with re-

spect to the skewness and the peak compared to the Normal distribution,

while the t-distribution show a higher peak and fatter tails. The maximum

likelihood estimated parameters are given in table 6.1.

The fatter tails of the t-distribution is more prevalent in the zoomed

left-tail of the distributions in Figure 6.4. Though the NIG distribution fits

the data much better, financial institutions are mostly concerned with the

extreme movements of the market as this could lead to huge losses. The ex-

treme movements resulting in losses occur at the left-tails of the distribution.

Hence, the need to study the tails distribution of the empirical data and this

is done through the Extreme Value Theory (EVT).
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Figure 6.3: Comparison of each stock and the indices histograms with the

fitted NIG, Skew t, t-distribution and Normal distribution.
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Figure 6.4: Comparison of each stock and the indices left-tail of the his-

tograms with the NIG, Skew t, Normal and t-distribution.
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6.2 Extreme Value Theory

To explore the heavy left-tail of the empirical distribution, the statistical

program R is used with the Extreme Value package in R (EVIR) [PMS12].

The aim is to model the behaviour of positive losses that exceed a pre-defined

threshold with the Generalized Pareto distribution [McN99]. This method is

called the Peaks over Threshold (POT), described in Chapter 5.

The first step of the analysis commences with the Q-Q plot of exponential

distribution against the left tail of the empirical distributions. Some of the

empirical quantiles deviate from the exponential quantile line, this suggests

that the empirical data exhibits heavier tails than that of the exponential

distribution see Figure 6.5.

The mean excess plot of the positive losses in Figure 6.6 is used to find

the threshold, which we denote by u. The chosen thresholds are listed in Ta-

ble 6.4, losses above these thresholds are modelled by the Generalized Pareto

distribution and the estimated parameters are also listed in Table 6.4.

If the mean excess plot has a linear upward trend, it indicates a GPD

model with a positive shape parameter ζ. A flat linear trend indicates a

GPD model with a zero shape parameter or the exponential distribution. A

linear downward trend indicates a GPD model with a negative shape param-

eter [MEF05]. Hull [Hul10] recommends choosing a threshold value close to

the 95% percentile point of the empirical distribution. The horizontal line

in the mean excess plot indicates the 95% percentile point of the empirical

distribution.
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Figure 6.5: Q-Q plot against the exponential distribution.
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Figure 6.6: Figure (a) shows the mean excess plot and (b) shows the empirical

distribution of excess and GPD fit.
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Estimated parameters of the Generalized Pareto distribution

Threshold ζ̂ η̂ n N

FTSE/JSE TOP 40 0.0211 0.1160 0.008 2252 229

S&P 500 0.0176 0.2650 0.004 2864 310

Standard Bank 0.0334 0.2060 0.008 2014 204

African Bank 0.0432 0.4060 0.005 1960 197

Anglo American 0.0387 0.1700 0.010 2070 209

Merafe Resources 0.0541 0.1420 0.015 1418 138

Grindrod Limited 0.0465 0.1760 0.018 1454 155

Table 6.4: Maximum likelihood parameter estimators of the Generalized

Pareto distribution for each stock and the indices, where n is the total number

of daily negative log returns and N is number of threshold exceedances.
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6.3 Risk Measure

In this section, we present the comparison of Value-at-Risk estimates under

the NIG, Skew t, Normal, t-distribution and Generalised Pareto distributions

to the empirical distribution of the stocks and indices described in Chapter 2.

We further verify the correctness of the VaR models using the backtesting

technique discussed in Chapter 3.

6.3.1 Value-at-Risk estimates

The VaR and ES estimates obtained on 31 July 2014 under the NIG, Skew t,

Normal, t-distribution and EVT assumption for a one-day holding period at

99% confidence level are shown in Table 6.5 and Table 6.6 respectively. The

VaR and ES estimates under the NIG, Normal and t-distribution assumption

were calculated using the Monte Carlo simulation as detailed in Chapter 3.

Under the EVT assumption, the VaR estimates were calculated using Equa-

tion (5.11) and the ES estimates were obtained using Equation (5.12).

Figure 6.7 shows VaR estimates for a one-day holding period with respect

to different confidence levels. The higher the confidence level, the higher the

VaR and ES estimates are under the NIG, Skew t, t-distribution and EVT

assumption compared to the Normal distribution.
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Estimates of one-day VaR at a 99% confidence level on 31 July 2014.

Non-parametric NIG Skew t t-dist. EVT Normal

FTSE/JSE TOP 40 3.79% 3.75% 3.84% 3.56% 4.21% 3.11%

S&P 500 3.15% 3.31% 3.45% 3.04% 3.14% 2.68%

Standard Bank 5.81% 5.81% 5.86% 5.65% 5.71% 4.87%

African Bank 7.35% 7.53% 7.54% 7.73% 6.82% 6.37%

Anglo American 6.60% 6.38% 6.46% 6.73% 6.76% 5.97%

Merafe Resources 9.02% 8.98% 8.13% 9.36% 9.39% 8.36%

Grindrod Limited 9.53% 9.82% 9.62% 10.14% 9.88% 7.73%

Table 6.5: Comparison of the Value-at-Risk estimates, the non-parametric

estimates are calculated using the Historical Simulation approach.

Estimates of one-day Expected Shortfall at a 99% confidence level on 31 July 2014.

Non-parametric NIG Skew t t-dist. EVT Normal

FTSE/JSE TOP 40 5.20% 4.96% 5.41% 4.89% 5.38% 3.50%

S&P 500 4.82% 4.69% 5.48% 4.88% 4.21% 3.01%

Standard Bank 7.96% 7.49% 8.03% 7.81% 7.33% 5.55%

African Bank 11.58% 9.62% 9.73% 11.06% 8.68% 7.76%

Anglo American 8.93% 8.33% 8.28% 8.71% 8.58% 6.76%

Merafe Resources 12.22% 10.96% 10.28% 11.70% 11.77% 9.55%

Grindrod Limited 13.61% 13.53% 16.99% 20.26% 13.15% 9.18%

Table 6.6: Comparison of the Expected Shortfall estimates, the non-

parametric estimates are calculated using the Historical Simulation approach.
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Figure 6.7: Value-at-Risk estimates at different confidence level.
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Backtesting the model

To verify the correctness of the VaR models we perform backtesting method

described in Section 3.7 of Chapter 3. We compare the VaR estimates ob-

tained on the 31 July 2014 to the actual observed returns over the period

1 August 2013 to 31 July 2014, the results are presented in Table 6.7. We

recorded the number of times the VaR estimates on 31 July 2014 exceeded

the observed returns over the period 1 August 2013 to 31 July 2014 and clas-

sified the results into the three zones defined by the Basel Committee. For

Example the results in Table 6.7 show that African Bank is the only stock

that had a higher number of exceptions with the VaR estimates for NIG,

Skew t and t-distribution recording 6 violations. Under the same example

the VaR estimate for EVT recorded 9 violation and the Normal distribution

recorded 11.

In Table 6.8 and Table 6.9 we show the likelihood of decreases on the given

interval likely to be realised once every number of years, calculated under the

NIG, Normal, Skew t, t-distribution and EVT assumptions of decrease in a

given interval. The results in Table 6.8 were calculated by fitting the NIG,

Normal, Skew t, t-distribution and EVT over the period 1 September 1997

to 31 July 2014 for Standard Bank, Grindrod and Anglo American. For

African Bank the period is 29 September 1997 to 31 July 2014, Merafe the

period is 17 December 1999 to 31 July 2014, for the FTSE/JSE Top 40 the

period is 30 June 1995 to 31 July 2014 and S&P 500 is 2 January 1991 to 31

July 2014. These results under the NIG, Normal, Skew t, t-distribution and

EVT assumptions are compared to the actual observed returns. For example

in the case of Standard Bank a decrease in the interval 8.75% to 10% was

observed once every 2.7 years over the period 1 September 1997 to 31 July

2014, the NIG estimates that such decrease would occur once every 4.7 years,

the Skew t and t-distribution estimates 4.3 years and 4.1 years respectively.

The EVT estimates the losses in the interval 8.75% to 10% to occur once

every 3.3 years, while the Normal distribution estimates the losses to occur
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Backtesting results for 99% daily-VaR over the most recent 250 days of our data.

Non parametric NIG Skew t t-dist EVT Normal

FTSE/JSE Top40
No. of ex 0 0 0 0 0 0

Zone Green Green Green Green Green Green

S&P 500
No. of ex 1 1 1 1 1 1

Zone Green Green Green Green Green Green

Standard Bank
No. of ex 0 0 0 0 0 0

Zone Green Green Green Green Green Green

African Bank
No. of ex 6 6 6 6 9 11

Zone Yellow Yellow Yellow Yellow Yellow Red

Anglo American
No. of ex 0 0 0 0 0 0

Zone Green Green Green Green Green Green

Merafe Resource
No. of ex 0 0 0 0 0 0

Zone Green Green Green Green Green Green

Grindrod Limited
No. of ex 0 0 0 0 0 0

Zone Green Green Green Green Green Green

Table 6.7: Backtesting results for one-day VaR at 99% a confidence level over

the most recent 250 days of our data.

once every 136 years.

Table 6.9 shows the likelihood of decreases on the given interval likely

to be realised once every number of years by fitting the NIG, Normal, Skew

t, t-distribution and EVT using the empirical data over the first half of the

original period for each stock and indices. For example, African Bank the

distributions were fitted using data over the period 29 September 1997 to 29

June 2006. These results were compared to the actual observed returns over

the second half of the data, i.e. 30 June 2006 to 31 July 2014 for African

Bank. The results in Table 6.9 shows that the losses in the interval 15% to

20% for African Bank were realised once every 2.6 years over the period 30

June 2006 to 31 July 2014. The NIG predicts that losses in the interval 15%

to 20% will occur once every 8.3 years, the Skew t and t-distribution predicts
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The likelihood of decreases on the given interval

likely to be realised once every number of years

Interval (decreases) for the period ending 31 July 2014

FTSE/JSE Top40 Observed NIG Skew t t-dist. EVT Normal

0 to 2.5% 0.0084 0.0091 0.0091 0.0090 0.0043 0.0084

2.5% to 5% 0.1176 0.1267 0.1411 0.1564 0.0676 0.1010

5% to 8.75% 0.9962 1.1863 1.1271 1.4119 0.5058 20.2065

8.75% to 10% 18.9286 38.2812 17.8197 24.2281 10.1798 1.68E+07

10% to 15% 18.9286 63.0238 14.3920 20.4024 10.7853 7.44E+09

15% to 20% - 2.51E+03 76.3979 115.7666 109.5912 -

S&P 500 Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0109 0.0089 0.0089 0.0088 0.0041 0.0081

2.5% to 5% 0.1521 0.1905 0.2246 0.2507 0.1729 0.2335

5% to 8.75% 1.2886 1.5236 1.3375 1.5406 1.0761 396.4572

8.75% to 10% 24.4841 37.6071 15.2851 17.7828 13.8078 1.08E+11

10% to 15% 24.4841 51.8338 10.0172 11.6906 10.0371 -

15% to 20% - 1.30E+03 37.5097 4.39E+01 45.8336 -

Standard Bank Observed NIG Skew t t-dist. EVT Normal

0 to 2.5% 0.0081 0.0100 0.0099 0.0100 0.0044 0.0105

2.5% to 5% 0.0434 0.0524 0.0543 0.0536 0.0556 0.0335

5% to 8.75% 0.2319 0.2650 0.2988 0.2875 0.2699 0.3495

8.75% to 10% 2.7050 4.6775 4.3308 4.1112 3.3265 136.4962

10% to 15% 4.0575 5.3219 3.4828 3.2886 2.4932 1.68E+03

15% to 20% 8.1151 85.8005 18.8816 17.7106 12.6540 -

African Bank Observed NIG Skew t t-dist. EVT Normal

0 to 2.5% 0.0080 0.0111 0.0110 0.0110 0.0043 0.0125

2.5% to 5% 0.0293 0.0387 0.0378 0.0381 0.0763 0.0269

5% to 8.75% 0.1252 0.1285 0.1475 0.1465 0.2742 0.1140

8.75% to 10% 0.6260 1.4867 1.8286 1.7623 2.3536 6.1621

10% to 15% 1.0434 1.2498 1.3973 1.3133 1.3237 25.6393

15% to 20% 3.1302 10.2350 7.1777 6.4388 4.0124 1.26E+05
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that losses for the same interval will occur once every 5.7 years and 4.7 years

respectively.

The likelihood of decreases on the given interval

likely to be realised once every number of years

Interval (decreases) for the period ending 31 July 2014

Anglo American Observed NIG Skew t t-dist. EVT Normal

0 to 2.5% 0.0080 0.0107 0.0106 0.0107 0.0046 0.0116

2.5% to 5% 0.0341 0.0404 0.0405 0.0402 0.0394 0.0283

5% to 8.75% 0.1544 0.1731 0.1916 0.1836 0.1707 0.1614

8.75% to 10% 1.2705 2.7994 2.8792 2.6915 2.0719 16.2080

10% to 15% 2.0645 3.0635 2.4844 2.2990 1.5932 97.0204

15% to 20% 5.5053 45.9263 15.7555 14.3929 8.8006 2.41E+06

Merafe Resources Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0079 0.0137 0.0132 0.0140 0.0051 0.0157

2.5% to 5% 0.0184 0.0265 0.0255 0.0272 0.0253 0.0242

5% to 8.75% 0.0626 0.0679 0.0754 0.0667 0.0799 0.0494

8.75% to 10% 0.3840 0.8528 1.0562 0.7564 0.8083 0.7074

10% to 15% 0.5302 0.8699 1.0229 0.6556 0.5760 1.1668

15% to 20% 11.1349 12.3783 9.2258 5.0981 2.9498 164.3330

Grindrod Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0083 0.0115 0.0113 0.0114 0.0056 0.0147

2.5% to 5% 0.0303 0.0457 0.0451 0.0448 0.0217 0.0238

5% to 8.75% 0.0943 0.1218 0.1411 0.1389 0.0543 0.0553

8.75% to 10% 0.4024 0.9978 1.2265 1.2014 0.4485 0.9991

10% to 15% 0.5248 0.6084 0.7063 0.6904 0.2752 1.9909

15% to 20% 12.0714 2.4948 2.2211 2.1661 1.0823 545.4484

Table 6.8: Comparison between observed likelihood of decreases on the given

interval likely to occur once every number of years to the likelihoods calcu-

lated under the EVT, Skew t, t-distribution, NIG and Normal distribution

for the ending 31 July 2014.
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The likelihood of decreases on the given interval

likely to be realised once every number of years for the

Interval (decreases) period ending 31 July 2014, using half the original data.

FTSE/JSE Top40 Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0086 0.0088 0.0087 0.0087 0.0213 0.0083

2.5% to 5% 0.0977 0.1423 0.1769 0.1664 0.0263 0.1221

5% to 8.75% 1.0525 1.6164 1.6920 1.5448 0.0227 39.1579

8.75% to 10% - 65.4568 29.6196 26.6067 0.0841 1.16E+08

10% to 15% - 122.7782 25.0948 22.3691 0.0271 9.14E+10

15% to 20% - 6.90E+03 143.3808 126.2540 0.0408 -

S&P 500 Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0112 0.0086 0.0085 0.0085 0.0458 0.0079

2.5% to 5% 0.1262 0.2335 0.2824 0.2927 0.0502 0.3526

5% to 8.75% 1.3598 3.1520 3.0754 3.2051 0.0375 1 826.47

8.75% to 10% - 148.6019 55.9240 58.3445 0.1235 -

10% to 15% - 301.0705 47.8661 4.99E+01 0.0346 -

15% to 20% - 2.07E+04 276.4179 2.88E+02 0.0415 -

Standard Bank Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0080 0.0106 0.0104 0.0105 0.0468 0.0111

2.5% to 5% 0.0511 0.0460 0.0476 0.0473 0.0513 0.0293

5% to 8.75% 0.3249 0.2001 0.2374 0.2225 0.0383 0.2003

8.75% to 10% 8.1230 3.1012 3.4007 2.9952 0.1261 30.1740

10% to 15% 8.1230 3.2491 2.7744 2.3480 0.0353 226.2969

15% to 20% - 43.5798 15.6583 12.3680 0.0422 -

African Bank Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0080 0.0116 0.0114 0.0117 0.0594 0.0135

2.5% to 5% 0.0303 0.0362 0.0361 0.0355 0.0638 0.0247

5% to 8.75% 0.1565 0.1133 0.1324 0.1203 0.0466 0.0752

8.75% to 10% 0.7825 1.2700 1.5678 1.3555 0.1501 2.1725

10% to 15% 1.9563 1.0481 1.1645 0.9859 0.0410 6.0698

15% to 20% 2.6085 8.2802 5.6955 4.7072 0.0473 5.88E+03

91

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



The likelihood of decreases on the given interval

likely to be realised once every number of years for the

Interval (decreases) period ending 31 July 2014, using half the original data.

Anglo American Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0079 0.0108 0.0106 0.0108 0.0199 0.0113

2.5% to 5% 0.0336 0.0402 0.0414 0.0400 0.0250 0.0287

5% to 8.75% 0.1332 0.1923 0.2236 0.1998 0.0221 0.1825

8.75% to 10% 0.9175 3.7993 4.1050 3.4787 0.0835 23.3041

10% to 15% 1.6516 4.8608 4.0876 3.3942 0.0274 159.6729

15% to 20% 4.1290 107.7421 34.2507 27.6963 0.0426 7.42E+06

Merafe Resources Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0079 0.0146 0.0140 0.0152 0.0279 0.0161

2.5% to 5% 0.0199 0.0238 0.0228 0.0261 0.0328 0.0239

5% to 8.75% 0.0679 0.0595 0.0665 0.0559 0.0267 0.0450

8.75% to 10% 0.3095 0.9944 1.1995 0.6216 0.0939 0.5675

10% to 15% 0.3980 1.4715 1.5565 0.5916 0.0284 0.8433

15% to 20% 5.5714 65.5644 29.7320 6.5581 0.0387 84.4776

Grindrod Observed NIG Skew t t-dist EVT Normal

0 to 2.5% 0.0080 0.0135 0.0134 0.0133 0.0448 0.0178

2.5% to 5% 0.0400 0.0402 0.0384 0.0384 0.0495 0.0239

5% to 8.75% 0.1830 0.0888 0.0958 0.0972 0.0372 0.0361

8.75% to 10% 1.2079 0.6407 0.7550 0.7741 0.1231 0.3265

10% to 15% 1.5099 0.3540 0.4188 0.4316 0.0347 0.3576

15% to 20% - 1.2103 1.2696 1.3171 0.0420 13.9601

Table 6.9: Comparison between observed likelihood of decreases on the given

interval likely to occur once every number of years to the likelihood calculated

under the EVT, Skew t, t-distribution, NIG and Normal distribution for the

ending 31 July 2014.
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6.4 Chapter Summary

In this chapter, we fitted NIG distribution to the empirical data and we

compared the fit to that of the Normal, Skew t and t-distribution. The NIG,

Skew t and t-distribution fitted the empirical data better and were able to

capture certain empirical data features like the heavy tails and skewness.

For heavier tailed data the Skew t and t-distribution provided better fit than

the NIG distribution. We also focused on the tails of the empirical data by

modelling the losses using the Extreme Value Theory.

We calculated VaR under the NIG, Normal, Skew t, t-distribution and

Extreme Value Theory assumptions. The results obtained showed that the

VaR calculated under the four distributions outperformed those under the

Normal distribution. The backtesting results clearly showed that large nega-

tive returns were more likely to occur under the EVT, t-distribution, Skew t

and NIG model as compared to the Normal distribution. Making the NIG, t-

distribution, Skew t and EVT better distributions to use for estimating VaR.

The results in Appendix A show that we fail to reject the null hypothesis

for the NIG, Skew t and t-distribution for the stocks and the indices with

exception to Merafe Resources. We calculated VaR under the NIG, Normal,

Skew t and t-distribution assumptions. The results obtained showed that

the VaR calculated under the three distributions outperformed those under

the Normal distribution for the three sample periods.

The Kupiec LR test further showed that the NIG provided better VaR

estimates over different sample periods as the null hypothesis was not rejected

at the 5% significant level over the different sample period. However, the t-

distribution VaR estimates were rejected for the S&P 500 over the pre-crisis

period and the Skew t VaR estimates were rejected for the S&P 500 and

Standard Bank during the pre-crisis and post-crisis period respectively.
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Chapter 7

Conclusion

In this dissertation, we studied how risk measures such as Value-at-Risk can

be estimated using the NIG, Normal, Skew t, t-distribution and Extreme

Value Theory. We have done our study in terms of distributional fit and

estimating Value-at-Risk of listed equity stocks and indices to determine the

distribution that best models the returns of the listed stocks and indices.

We demonstrated using five stocks listed on the Johannesburg Stock Ex-

change, the FTSE/JSE TOP 40 index and the S&P 500 that the NIG, Skew

t and t-distribution approximates log-return data reasonably well in the cen-

ter, out-performing the Normal. We have seen that the NIG distribution

estimates the tail behaviour better than the Normal. The Skew t and t-

distribution provided a better fit for data with heavy tails. The NIG distri-

bution has four parameters that capture characteristics like kurtosis or semi

heavy tails and skewness as observed in financial data. The Normal and t-

distribution have similar characteristics such as symmetry about the mean,

with the t-distribution providing the kurtosis displayed in financial data.

The next part of our work was to analyse Value-at-Risk model using the

Monte Carlo method. We estimated one-day VaR and ES at a 99% confidence

level for all the five stocks and indices using the Normal Inverse Gaussian,
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Normal, Skew t, t-distribution, EVT and the non-parametric model. The

results obtained clearly show, that the NIG, Skew t and t-distribution gave

values that are closer to the non-parametric VaR estimate. Whereas, the

Normal distribution gave values that are constantly too optimistic compared

to the other four distribution. This is expected as seen in the thin tails of

the Normal distribution. On the other hand the Skew t, t-distribution and

the Extreme Value Theory model competed very favourable with the Normal

Inverse Gaussian.

We used the backtesting method to compare VaR estimates based on re-

turns from the early half of the period against returns that actually occurred

on the second half of the period. The likelihood of an average move within a

given interval using the NIG, Normal, Skew t, t-distribution, EVT and the

actual observed likelihood based on frequency analysis were used. The inter-

vals were randomly selected to represent the negative returns of the stocks

and the indices. From these results we observed that the EVT method is

not the best method to predict estimates that do not occur in the extreme

tails of the distribution. The results show that large negative returns are

more likely to occur under the EVT, t-distribution, Skew t and NIG model

as compared to the Normal distribution.

There are a number of well-founded statistical distributions that can

model the distribution of financial returns for individual stocks. These statis-

tical distributions can be used to model specific parts of the financial returns

distribution. For example, when modelling the extreme events, the Pareto

distribution from the Extreme Value Theory would be more appropriate as

well as the t-distribution and Skew t. These give a good estimate of move-

ments that can be seen when external events cause market turmoil. The

NIG distribution can be used to best model the center and the tails of the

financial distribution. However, this dissertation focused on linear positions

of stocks, while on the non-linear level there is still a limited number of sta-
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tistical distributions that can be used to model financial returns. There is

an open field of research in the future for understanding the distribution of

non-linear positions for example portfolio risk management and asset alloca-

tion decisions. The problem in non-linear positions is in understanding the

dependency of individual stocks in a portfolio. The other challenge with the

higher dimension NIG model is the parameter estimation. Further research

could be done in incorporating the ARMA (1,1)-GARCH (1,1) time series to

the returns and volatility over the different sample periods in Appendix A

and estimating VaR.
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Appendix A

VaR estimates over different

sample periods

In this Appendix, we split the sample period into three sub-samples and fit

the NIG, Skew t, t-distribution and Normal distribution to Standard Bank,

African Bank, Merafe Resource, Anglo American, FTSE/JSE TOP40 (J200)

index and the S&P 500 index. We then estimate VaR over the different sam-

ple periods for each share and indices.

A.1 Empirical Data

The empirical study is done using four South African equity stocks, FTSE/JSE

TOP40 (J200) index and the S&P 500 index. The four shares (Standard Bank

(SBK), African Bank (ABL), Merafe Resource (MRF) and Anglo American

(AGL)) are listed on Johannesburg Stock Exchange. Maximum available

daily closing prices for the equity stocks were obtained resulting in varying

periods ending July 31, 2014. The entire sample period is split into three

sub-samples, that is:

(i) Pre-crisis (from 1991 January - December 2007);

(ii) Crisis period (from January 2008 - December 2009);
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(iii) Post-crisis (from January 2010 - July 2014).

The analysis is performed using the entire sample period and the three sub-

samples. We start off with a statistical summary of the data for each share

and the indices over varying periods ending July 31, 2014. Standard Bank

and Anglo American have large market capitalisation and we expect them

to mimic the FTSE/JSE TOP40, while Merafe and African Bank are small

and therefore would have an element of jump risk. Table A.1 below, shows

the statistical summary of the data for each share, computed using the daily

log returns. Based on the statistical results of the empirical data in Table

A.1 the mean of the each stock and the index is relatively small compared

to the variance it is almost insignificant. The excess kurtosis for each stock

and the index is greater than zero. This indicates a higher peak and heavier

tails meaning extreme loss and profit are more likely to occur than what the

Normal distributed would predict.

The Indices, Standard Bank, African Bank and Anglo American have

negative skewness that is the left tail is longer, indicating that losses occur

more frequently than profits over the entire sample period. While Merafe

has positive skewness implying more profits than losses were realised over

the period. In general each stock and the indices display fatter tails and

skewness in comparison to the Normal distribution as noted in literature

[Fam65].

A.2 Fitting the distribution

In this section, we fit the NIG, Skew t, and t-distribution and perform the

goodness of fit using the Kolmogorov-Smirnov test over the different sam-

ple periods. Table A.2 shows the maximum likelihood parameter estimates

results for the fitted distributions and the graphical representation of the

parameters is presented in Figure A.1, where for example alpha, beta, delta

and mu are the NIG parameter estimates of the entire sample period and
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Statistical data of the empirical distribution over the period 1991 January - July 2014.

Mean Variance Skewness Excess Kurtosis No. OBS1

S&P 500 0.00029 0.00014 −0.73247 15.95379 6170

FTSE/JSE TOP40 0.00048 0.00019 −0.40611 6.27868 4770

Standard Bank 0.00048 0.00047 −0.20369 4.86980 4090

African Bank −0.00003 0.00082 −0.78087 10.8220 3944

Anglo American 0.00038 0.00064 −0.07927 3.93211 4162

Merafe Resource 0.00054 0.00135 0.06429 2.52105 2806

Pre-crisis (from 1991 January - December 2007) statistical data.

Mean Variance Skewness Kurtosis No. obs

S & P 500 0.0004 0.0001 -0.0746 3.8997 4262

FTSE/JSE TOP40 0.0006 0.0002 -0.6571 8.1379 3124

Standard Bank 0.0006 0.0006 -0.3163 4.9000 2463

African Bank 0.0007 0.0009 -0.4599 7.9791 2338

Anglo American 0.0008 0.0006 -0.0394 3.0429 2520

Merafe Resources 0.0014 0.0014 0.4452 1.3903 1485

Crisis period (from January 2008 - December 2009) statistical data.

Mean Variance Skewness Kurtosis No. obs

S & P 500 -0.0005 0.0005 -0.0963 4.3544 505

FTSE/JSE TOP40 -0.0001 0.0005 0.0408 1.3969 501

Standard Bank 0.0000 0.0007 0.1997 1.3906 490

African Bank -0.0002 0.0009 0.0418 0.4575 491

Anglo American -0.0005 0.0016 -0.1295 1.8202 499

Merafe Resources -0.0011 0.0022 -0.6017 2.7368 457

Post- crisis (from January 2010 - July 2014) statistical data.

Mean Variance Skewness Kurtosis No. obs

S & P 500 0.0004 0.0001 -3.2713 49.1255 1403

FTSE/JSE TOP40 0.0005 0.0001 -0.1593 1.3757 1145

Standard Bank 0.0003 0.0002 -0.1336 1.1070 1137

African Bank -0.0014 0.0006 -2.5109 29.7154 1115

Anglo American -0.0001 0.0003 0.1624 0.5933 1143

Merafe Resources -0.0000 0.0008 0.1183 1.8172 864

Table A.1: Statistical data for each stock and indices.
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alpha1, beta1, delta1 and mu1 represent the NIG parameter estimates of the

Pre-crisis period.

Table A.3 shows the Kolmogorov-Smirnov test statistic values and crit-

ical values for different confidence levels. The test statistic values are the

distance between the empirical cumulative distribution and the fitted cumu-

lative distribution. The results of the table shows that we do not reject the

null hypothesis for the NIG, Skew t and t-distribution. However, the null

hypothesis is rejected for the Normal distribution for all the shares with ex-

ception of Merafe Resources and in some cases the other three distributions

are rejected for Merafe Resources as well.

A.3 Value-at-Risk

In this section, we present the comparison of Value-at-Risk estimates under

the NIG, Skew t, Normal and t-distribution to the empirical distribution of

the stocks and indices over the four sample periods. We further verify the

correctness of the VaR models using the backtesting technique.

A.3.1 Value-at-Risk estimates

The VaR and ES estimates obtained under the NIG, Skew t, Normal and

t-distribution assumption for a one-day holding period at 99% confidence

level are shown in Table A.4 and Table A.5 respectively. The VaR and ES

estimates under the NIG, Normal, Skew t and t-distribution assumption were

calculated using the Monte Carlo simulation. The results for these two tables

shows that the VaR estimates under the Normal distribution underestimates

the VaR and ES values, as it is well known in literature. The VaR estimates

under the NIG, Skew t and t-distribution better values when compared to

the Historical VaR and ES values.
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Parameter estimates over the period 1991 January - July 2014

NIG t-dist. Skew t

α̂ β̂ δ̂ µ̂ k̂ k̂ β̂

S&P 500 58.3541 -5.0934 0.0075 0.0009 2.7962 2.8038 0.9519

FTSE/JSE TOP 40 67.8875 -5.109 0.0123 0.0014 4.0000 3.8419 0.9533

Standard Bank 44.7345 0.3524 0.0208 0.0003 4.0000 4.0006 1.0145

African Bank 32.372 -0.6613 0.025 0.0005 3.8414 4.0000 1.0000

Anglo American 43.1323 0.9557 0.027 -0.0002 4.6143 4.6127 1.0208

Merafe Resources 41.3981 4.5965 0.0527 -0.0054 6.5225 6.2649 1.1460

Pre-crisis ( from 1991 January - December 2007) parameter estimates

NIG t-dist. Skew t

α̂ β̂ δ̂ µ̂ k̂ k̂ β̂

S & P 500 82.3073 -2.7308 0.0084 0.0006 4.0000 3.5163 0.9765

FTSE/JSE TOP40 77.3477 -5.8151 0.0128 0.0015 4.0000 4.2290 0.9605

Standard Bank 44.1135 -0.1645 0.0238 0.0007 4.0000 4.3920 1.0121

African Bank 32.4499 0.9420 0.0274 -0.0001 4.0105 4.0001 1.0373

Anglo American 53.2541 0.9913 0.0306 0.0002 5.6917 5.6988 1.0134

Merafe Resources 58.7370 15.7660 0.0737 -0.0192 9.2786 9.2746 1.2459

Crisis period (from January 2008 - December 2009) parameter estimates

NIG t-dist. Skew t

α̂ β̂ δ̂ µ̂ k̂ k̂ β̂

S & P 500 27.9336 -3.9019 0.0137 0.0014 2.5545 2.5254 0.9124

FTSE/JSE TOP40 59.4900 -0.3225 0.0270 0.0000 5.7367 5.7149 0.9874

Standard Bank 45.3549 4.4290 0.0323 -0.0031 5.5645 5.6319 1.0618

African Bank 78.1936 5.9075 0.0715 -0.0056 14.7400 14.4505 1.0546

Anglo American 29.5059 -0.0252 0.0474 -0.0005 5.2692 5.2457 1.0149

Merafe Resources 29.4521 -4.0030 0.0611 0.0073 5.6407 5.8777 0.9300

Post- crisis (from January 2010 - July 2014) parameter estimates

NIG t-dist. Skew t

α̂ β̂ δ̂ µ̂ k̂ k̂ β̂

S & P 500 70.5049 -13.0538 0.0070 0.0017 2.9116 2.9563 0.9094

FTSE/JSE TOP40 122.4542 -13.7630 0.0132 0.0020 5.6707 5.7635 0.9264

Standard Bank 128.9099 -7.2170 0.0251 0.0017 8.8356 4.0000 1.0000

African Bank 34.4911 -7.7071 0.0175 0.0026 3.3022 3.3084 0.8747

Anglo American 123.3751 11.4136 0.0420 -0.0040 12.8391 13.2898 1.0454

Merafe Resources 72.0322 11.2690 0.0558 -0.0088 10.1389 8.8798 1.2196

Table A.2: Maximum likelihood parameter estimates.
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A.3.2 Backtesting the model

Table A.7 shows the test statistic values according to Kupiec likelihood ratio

(LR) test [Kup95]. The Kupiec LR test is given by:

−2 ln[(1− p)n−xpx] + 2 ln[(1− x/n)n−x(x/n)x], (A.1)

where p is the probability under the VaR model, x is the number of viola-

tions and n the sample period. Under the null hypothesis the Kupiec LR

test follows a chi-square distribution with one degree of freedom. The values

of Kupiec LR test are high for either very low or very high numbers of vio-

lations [Hul10]. The null hypothesis is not reject when the Kupiec LR test

is less than the critical values. At a 5% significance level the critical value is

given by 3.8415, the null hypothesis is rejected for S&P 500 index under the

Skew t and t-distribution VaR model during the pre-crisis period. Standard

Bank Kupiec LR test is rejected during the post-crisis period, the number of

violations is to low compared to the expected number of violations. The null

hypothesis is rejected under the Normal VaR model for most of the different

sample periods. The null hypothesis is not reject for all sample periods and

for all shares and indices at the 5% significance level, this seems to be a

better model for risk managers, given the results of the Kupiec LR test.

A.4 Conclusion

In this Appendix, we implement the NIG distribution and compare the fit-

ting to that of the Skew t, t-distribution and Normal distribution over four

sample periods defined in Appendix A.1. The NIG, Skew t and t-distribution

fitted the financial returns better both in the center and tails as compared

to the classic Normal distribution, with the Skew t and t-distribution show-

ing heavier tails than the NIG semi-heavy tails. We failed to reject the null

hypothesis for the NIG, Skew t and t-distribution for the stocks and the

indices with exception to Merafe Resources. We calculated VaR under the
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NIG, Normal, Skew t and t-distribution assumptions. The results obtained

showed that the VaR calculated under the three distributions outperformed

those under the Normal distribution.

The Kupiec LR test further showed that the NIG provided better VaR

estimates over different sample periods as the null hypothesis was not rejected

at the 5% significant level over the different sample period. However, the

t-distribution VaR estimates were rejected for the S&P 500 over the pre-

crisis period and the Skew t VaR estimates were rejected for the S&P 500

and Standard Bank during the pre-crisis and post-crisis period respectively.

Further research could be done in incorporating the ARMA (1,1)-GARCH

(1,1) time series to the returns and volatility over the different sample periods

and estimating VaR.
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Figure A.1: Graphical representation of the NIG, t-distribution and Skew

t-distribution maximum likelihood parameters estimates.
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Parameter estimates for the period 1991 January - July 2014

Kolmogorov-Smirnov Critical Value

NIG t-dist. Skew t Normal C0.9 C0.95 C0.975 C0.99

S & P 500 0.0058 0.0135 0.0113 0.0875 0.0156 0.0173 0.0188 0.0207

FTSE/JSE TOP40 0.0081 0.0082 0.0046 0.0580 0.0177 0.0197 0.0214 0.0236

Standard Bank 0.0201 0.0190 0.0184 0.0560 0.0191 0.0212 0.0231 0.0255

African Bank 0.0173 0.0150 0.0149 0.0657 0.0195 0.0216 0.0236 0.0259

Anglo American 0.0114 0.0101 0.0088 0.0443 0.0190 0.0211 0.0229 0.0252

Merafe Resources 0.0809 0.0862 0.0828 0.0765 0.0232 0.0257 0.0280 0.0308

Pre-crisis ( from 1991 January - December 2007) parameter estimates

Kolmogorov-Smirnov Critical Value

NIG t-dist. Skew t Normal C0.9 C0.95 C0.975 C0.99

S & P 500 0.0117 0.0187 0.0163 0.0626 0.0187 0.0208 0.0227 0.0249

FTSE/JSE TOP40 0.0116 0.0103 0.0092 0.0535 0.0219 0.0243 0.0265 0.0291

Standard Bank 0.1934 0.0288 0.0272 0.0546 0.0247 0.0274 0.0298 0.0328

African Bank 0.0245 0.0247 0.0224 0.0641 0.0253 0.0281 0.0306 0.0337

Anglo American 0.0112 0.0104 0.0105 0.0349 0.0244 0.0271 0.0295 0.0324

Merafe Resources 0.0885 0.0994 0.0968 0.0982 0.0318 0.0352 0.0384 0.0422

Crisis period (from January 2008 - December 2009) parameter estimates

Kolmogorov-Smirnov Critical Value

NIG t-dist. Skew t Normal C0.9 C0.95 C0.975 C0.99

S & P 500 0.0278 0.0369 0.0288 0.0860 0.0545 0.0604 0.0659 0.0724

FTSE/JSE TOP40 0.0162 0.0177 0.0181 0.0410 0.0547 0.0607 0.0661 0.0727

Standard Bank 0.0235 0.0285 0.0287 0.0618 0.0553 0.0614 0.0669 0.0735

African Bank 0.0261 0.0297 0.0237 0.0279 0.0552 0.0613 0.0668 0.0735

Anglo American 0.0322 0.0342 0.0336 0.0676 0.0548 0.0608 0.0663 0.0729

Merafe Resources 0.0596 0.0557 0.0606 0.0594 0.0573 0.0635 0.0692 0.0761

Post- crisis (from January 2010 - July 2014) parameter estimates

Kolmogorov-Smirnov Critical Value

NIG t-dist. Skew t Normal C0.9 C0.95 C0.975 C0.99

S & P 500 0.0160 0.0212 0.0165 0.1066 0.0327 0.0363 0.0395 0.0435

FTSE/JSE TOP40 0.0135 0.0166 0.0171 0.0504 0.0362 0.0401 0.0437 0.0481

Standard Bank 0.0175 0.0160 0.0254 0.0293 0.0363 0.0403 0.0439 0.0483

African Bank 0.0279 0.0236 0.0152 0.0942 0.0367 0.0407 0.0443 0.0487

Anglo American 0.0150 0.0138 0.0142 0.0266 0.0362 0.0402 0.0438 0.0481

Merafe Resources 0.0945 0.0932 0.1072 0.0899 0.0416 0.0462 0.0504 0.0554

Table A.3: Kolmogorov-Smirnov test statistics and estimated critical values

for the fitted distributions.
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VaR estimates over the period 1991 January - July 2014

Historical NIG t-dist Skew t Normal

S&P 500 3.15% 3.31% 3.04% 3.45% 2.68%

FTSE/JSE TOP 40 3.79% 3.75% 3.56% 3.84% 3.11%

Standard Bank 5.81% 5.81% 5.65% 5.86% 4.87%

African Bank 7.35% 7.53% 7.73% 7.54% 6.37%

Anglo American 6.60% 6.38% 6.73% 6.46% 5.97%

Merafe Resources 9.02% 8.98% 9.36% 8.13% 8.36%

Pre-crisis (from 1991 January - Dec 2007) VaR estimates

Historical NIG t-dist Skew t Normal

S & P 500 2.6213% 2.8307% 2.5053% 2.8592% 2.3426%

FTSE/JSE TOP40 3.7136% 3.5412% 3.5011% 3.6038% 2.9309%

Standard Bank 6.4264% 6.1871% 6.0822% 6.2585% 5.2607%

African Bank 7.6811% 8.2170% 7.9237% 7.7267% 7.0160%

Anglo American 6.1856% 6.2482% 6.0138% 5.9658% 5.5577%

Merafe Resources 8.0043% 8.3464% 9.2559% 7.9108% 8.3902%

Crisis period (from January 2008 - December 2009) VaR estimates

Historical NIG t-dist Skew t Normal

S & P 500 6.2799% 7.2567% 6.3789% 8.4283% 5.1633%

FTSE/JSE TOP40 5.3725% 5.6579% 5.4216% 5.5736% 4.8682%

Standard Bank 6.5636% 6.6214% 6.9057% 6.3490% 6.1787%

African Bank 6.8522% 7.2559% 7.6928% 7.2836% 6.9659%

Anglo American 9.9742% 10.5935% 10.9597% 10.1201% 9.4863%

Merafe Resources 13.5510% 12.4084% 11.6611% 12.8104% 10.9410%

Post- crisis (from January 2010 - July 2014) VaR estimates

Historical NIG t-dist Skew t Normal

S & P 500 2.8858% 2.8198% 2.9767% 3.2944% 2.5355%

FTSE/JSE TOP40 2.8897% 2.7751% 2.8675% 2.8675% 2.3807%

Standard Bank 3.6093% 3.6265% 3.3549% 4.1969% 3.1541%

African Bank 6.8760% 7.7128% 6.5781% 7.1226% 6.1529%

Anglo American 4.3435% 4.4079% 4.5477% 4.4322% 4.2903%

Merafe Resources 6.4198% 6.6560% 7.0918% 6.3123% 6.3751%

Table A.4: Comparison of the Value-at-Risk estimates, the non-parametric

estimates are calculated using the Historical Simulation approach.
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Estimates of one-day Expected Shortfall.

Historical NIG t-dist. Skew t Normal

FTSE/JSE TOP 40 5.20% 4.96% 4.89% 5.41% 3.50%

S&P 500 4.82% 4.69% 4.88% 5.48% 3.01%

Standard Bank 7.96% 7.49% 7.81% 8.03% 5.55%

African Bank 11.58% 9.62% 11.06% 9.73% 7.76%

Anglo American 8.93% 8.33% 8.71% 8.28% 6.76%

Merafe Resources 12.22% 10.96% 11.70% 10.28% 9.55%

Pre-crisis ( from 1991 January - Dec 2007) Expected shortfall estimates.

Historical NIG t-dist. Skew t Normal

S & P 500 3.47% 3.64% 3.39% 4.19% 2.67%

FTSE/JSE TOP40 5.21% 4.57% 4.85% 4.94% 3.39%

Standard Bank 8.76% 7.99% 8.20% 8.25% 5.99%

African Bank 11.35% 10.28% 11.17% 10.22% 8.01%

Anglo American 7.96% 7.79% 8.04% 7.44% 6.35%

Merafe Resources 9.77% 10.01% 11.37% 9.51% 9.67%

Crisis period (from January 2008 - December 2009) Expected shortfall estimates.

Historical NIG t-dist. Skew t Normal

S & P 500 8.20% 9.49% 11.42% 21.09% 5.88%

FTSE/JSE TOP40 6.58% 6.80% 7.06% 7.26% 5.49%

Standard Bank 7.96% 8.20% 8.94% 8.20% 7.11%

African Bank 8.86% 8.47% 8.99% 8.51% 7.95%

Anglo American 14.01% 13.35% 14.02% 13.44% 10.78%

Merafe Resources 17.44% 15.43% 14.84% 16.01% 12.50%

Post- crisis (from January 2010 - July 2014) Expected shortfall estimates.

Historical NIG t-dist. Skew t Normal

S & P 500 4.74% 3.91% 4.72% 5.17% 2.90%

FTSE/JSE TOP40 3.29% 3.69% 3.62% 3.69% 2.71%

Standard Bank 4.37% 4.37% 4.06% 6.01% 3.64%

African Bank 12.55% 10.28% 9.82% 10.50% 7.06%

Anglo American 4.95% 5.08% 5.53% 5.13% 4.93%

Merafe Resources 9.10% 8.00% 8.61% 7.78% 7.43%

Table A.5: Comparison of the one-day Expected Shortfall estimates. The

non-parametric estimates are calculated using the Historical Simulation ap-

proach.
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Number of violations for 99% daily-VaR.

Historical NIG t-dist. Skew t Normal Expected violations

S&P 500 63 54 72 51 102 62

FTSE/JSE TOP 40 49 51 56 43 98 48

Standard Bank 41 41 46 39 72 41

African Bank 40 37 37 37 60 39

Anglo American 42 48 38 45 63 42

Merafe Resources 28 30 25 36 34 28

Pre-crisis ( from 1991 January - December 2007) Number of violations.

Historical NIG t-dist Skew t Normal Expected violations

S & P 500 43 32 56 30 74 43

FTSE/JSE TOP40 32 35 36 34 63 31

Standard Bank 25 27 28 27 45 25

African Bank 24 17 22 24 29 23

Anglo American 26 24 28 28 37 25

Merafe Resources 17 13 8 18 13 15

Crisis period (from January 2008 - December 2009) Number of violations.

Historical NIG t-dist Skew t Normal Expected violations

S & P 500 6 4 5 3 11 5

FTSE/JSE TOP40 6 5 5 5 9 5

Standard Bank 5 5 4 6 7 5

African Bank 5 5 4 4 5 5

Anglo American 5 4 4 5 7 5

Merafe Resources 5 8 9 7 9 5

Post - crisis (from January 2010 - July 2014) Number of violations.

Historical NIG t-dist Skew t Normal Expected violations

S & P 500 15 17 13 8 20 14

FTSE/JSE TOP40 12 15 12 12 26 11

Standard Bank 12 12 17 5 23 11

African Bank 12 9 14 10 17 11

Anglo American 12 10 8 10 12 11

Merafe Resources 9 8 7 9 9 9

Table A.6: Number of violations for each VaR model and the expected vio-

lations at 99% confidence level.
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Kupiec LR test statistic.

Historical NIG t-dist. Skew t Normal

S&P 500 0.0275 1.0133 1.6484 1.9920 22.2150

FTSE/JSE TOP 40 0.0355 0.2255 1.3817 0.4838 41.0648

Standard Bank 0.0002 0.0002 0.6175 0.0906 19.4767

African Bank 0.0080 0.1557 0.1557 0.1557 9.3361

Anglo American 0.0035 0.9414 0.3276 0.2701 9.5849

Merafe Resources 0.0001 0.1325 0.3499 2.0832 1.1898

Pre-crisis ( from 1991 January - December 2007) Kupiec LR test statistic.

Historical NIG t-dist skew t Normal

S & P 500 0.0034 2.9251 3.8616 4.2101 19.1317

FTSE/JSE TOP40 0.0185 0.4400 0.6983 0.2394 25.1881

Standard Bank 0.0056 0.2234 0.4461 0.2234 13.6734

African Bank 0.0165 1.9429 0.0839 0.0165 1.2677

Anglo American 0.0254 0.0586 0.3033 0.3033 4.8774

Merafe Resources 0.3004 0.2430 3.8349 0.6321 0.2430

Crisis period (from January 2008 - December 2009) Kupiec LR test statistic.

Historical NIG t-dist Skew t Normal

S & P 500 0.1703 0.2375 0.0005 0.9837 5.2982

FTSE/JSE TOP40 0.1859 0.0000 0.0000 0.0000 2.5964

Standard Bank 0.0020 0.0020 0.1781 0.2328 0.8026

African Bank 0.0017 0.0017 0.1819 0.1819 0.0017

Anglo American 0.0000 0.2129 0.2129 0.0000 0.7268

Merafe Resources 0.0397 2.1249 3.3823 1.1226 3.3823

Post- crisis (from January 2010 - July 2014) Kupiec LR test statistic.

Historical NIG t-dist Skew t Normal

S & P 500 0.0662 0.5949 0.0783 3.0980 2.2671

FTSE/JSE TOP40 0.0263 1.0129 0.0263 0.0263 13.7331

Standard Bank 0.0346 0.0346 2.4442 4.5606 9.2683

African Bank 0.0639 0.4483 0.6807 0.1241 2.6714

Anglo American 0.0283 0.1887 1.1616 0.1887 0.0283

Merafe Resources 0.0149 0.0491 0.3362 0.0149 0.0149

Table A.7: Kupiec likelihood ration test statistic results.
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Appendix B

Modified Bessel Function

The objective behind this chapter is to summaries some of the properties of

the modified Bessel function found in the Normal Inverse Gaussian distribu-

tion.

Definition B.1. The solutions to the Bessel Equation

x2
d2w

dx2
+ x

dw

dx
− (x2 + λ2)w = 0 (B.1)

are called the modified Bessel function and denoted by Kλ(x) and I±λ(x).

These solutions are regular function of x ∈ C throughout the x − plane cut

along the negative real axis, and for fixed x ̸= 0 each is an entire function of

λ. Kλ(x) tends to 0 as |x| → ∞ in the sector |arg (x)| < π/2 and for all λ.

Kλ(x) and I±λ(x) are real and positive when λ > −1 and x > 0.

[Pra99],[AS64]

Theorem B.2. (Basic Properties)

Kλ(x) = K−λ(x) (B.2)

Kλ+1(x) =
2λ

x
Kλ(x) +Kλ−1(x) (B.3)
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[Pra99]

Theorem B.3. (Integral Representation)

Kλ(x) =
1

2

∫ ∞

0

τλ−1 exp

(
−1

2
x
(
τ + τ−1

))
dτ. (B.4)

[Pra99]

Theorem B.4. (Asymptotic Formula)

K1(x) ∼
√
π/2 x−1/2 e−x, as x→ ∞. (B.5)

[BN95]

Theorem B.5. (Derivatives)

K ′
0(x) = −K1(x) (B.6)

K ′
λ(x) = −1

2
(Kλ+1(x) +Kλ−1(x)) (B.7)

= −λ
x
Kλ(x)−Kλ−1(x) (B.8)

(lnKλ(x))
′ =

λ

x
− Kλ+1(x)

Kλ(x)
, x > 0. (B.9)

[Pra99],[AS64]
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Appendix C

R source codes

Figure C.1: R source codes for the closing price and daily log returns graphs.
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Figure C.2: R source codes for QQ-plots.
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Figure C.3: R source codes for fitting the NIG and t-distribution.
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Figure C.4: R source codes for generating EVT parameters.
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Figure C.5: R source codes for computing cumulative probabilities of the

fitted NIG and t-distribution.
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