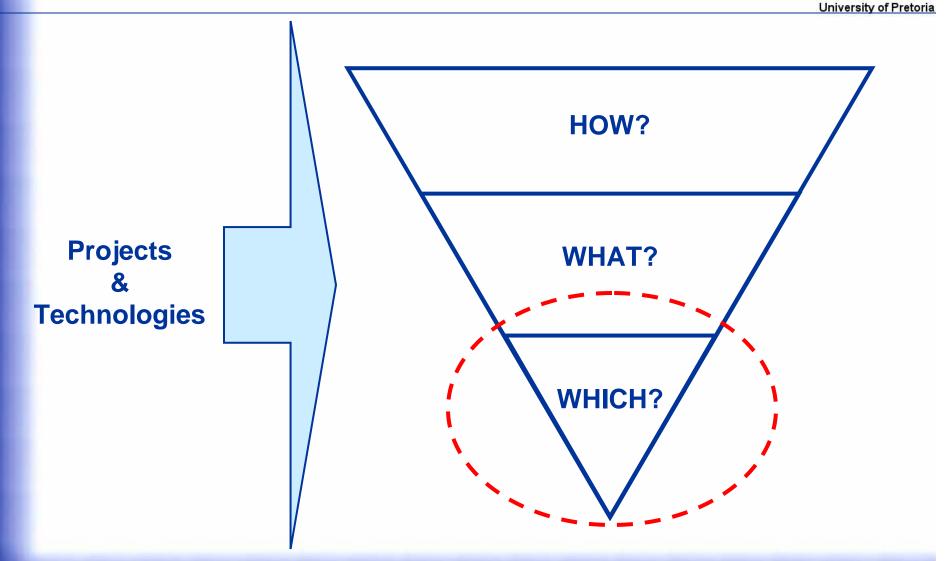
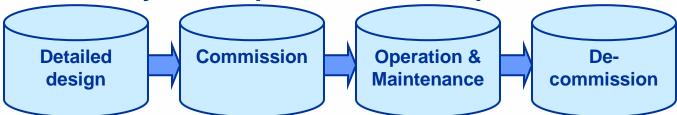

A CASE STUDY IN THE PROCESS INDUSTRY TO DEVELOP A CALCULATION PROCEDURE FOR SOCIAL INDICATORS FOLLOWING CONVENTIONAL LCIA METHODS

Alan Brent and Carin Labuschagne

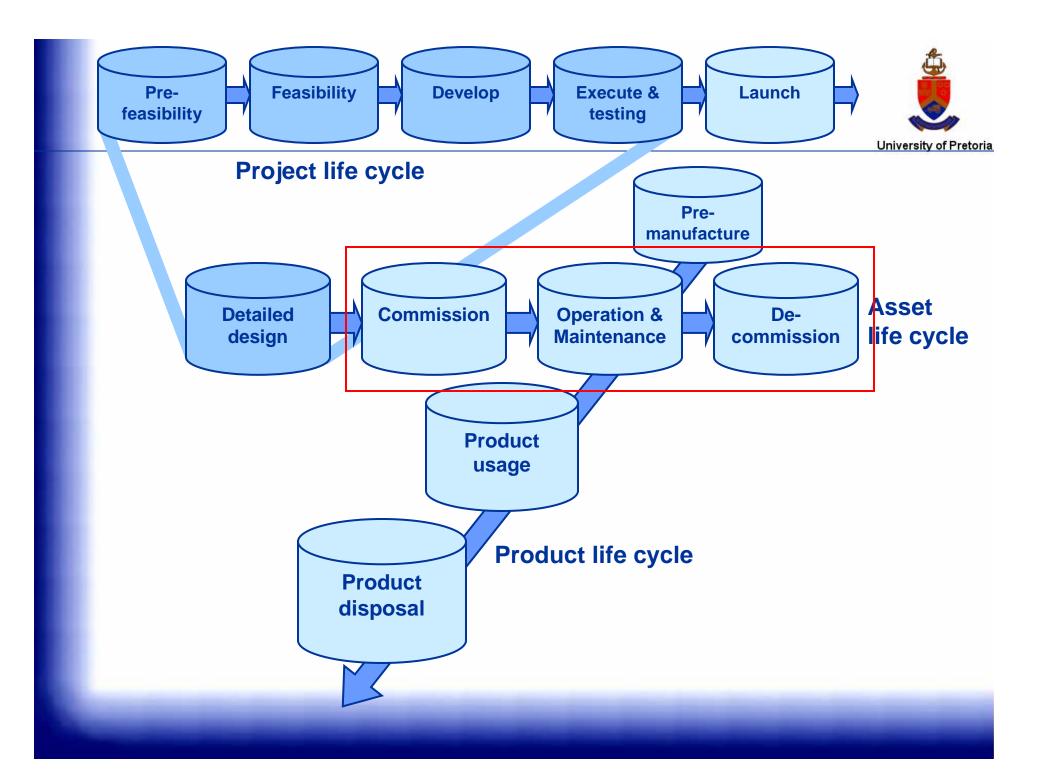
- Chair: Life Cycle Engineering
- Department of Engineering and Technology Management
- University of Pretoria
- > Tel: +27 12 420 3929
- > Fax:+27 12 362 5307
- > E-mail: alan.brent@up.ac.za


Aims of the presentation in terms of assessing the sustainability of operational initiatives

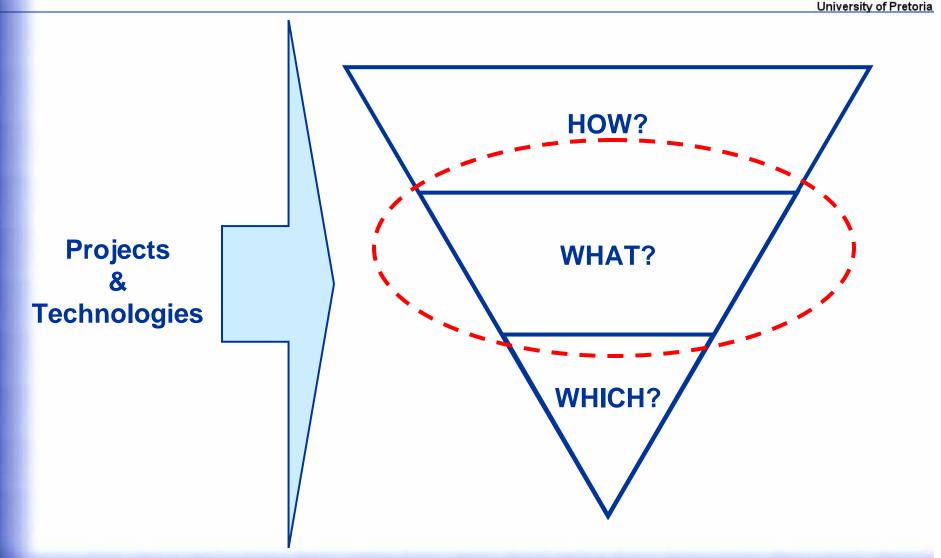
Aims of the presentation in terms of assessing the sustainability of operational initiatives


Three life cycles that are fundamental to management in the manufacturing industry

Project life cycles – drivers of internal change



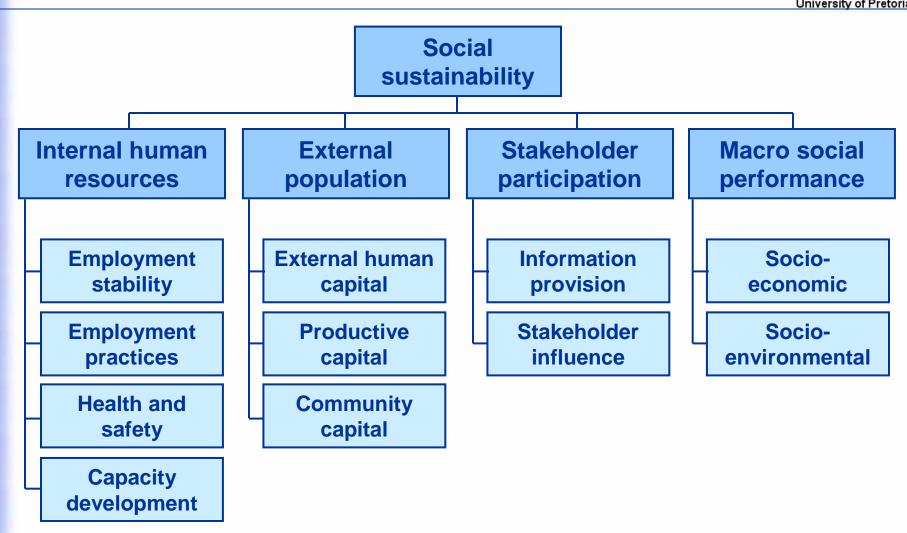
Asset life cycles – optimise internal operations


Product life cycles – profit generation of operations

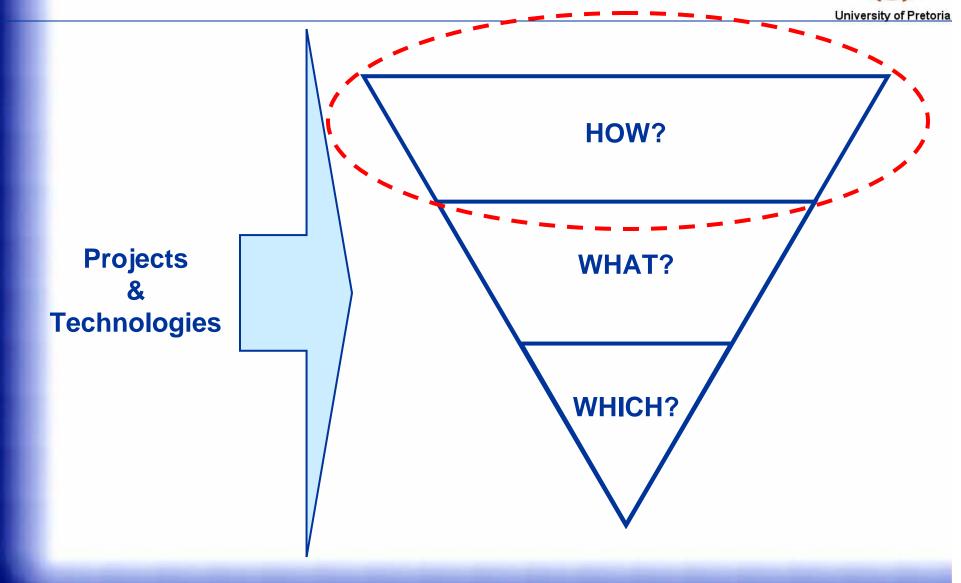
Aims of the presentation in terms of assessing the sustainability of operational initiatives

A framework of sustainable development criteria from an industry perspective

A framework of sustainable development criteria from an industry perspective



- > From a business perspective:
 - The inclusion or consideration of social aspects in sustainability practices is marginal compared to the environment and economic dimensions
- From an academic perspective:
 - The current state of the development of indicators or measurement procedures of the social performances of industry parallels that of environmental performances approximately 20 years ago


Define the sub-criteria of social sustainability

Aims of the presentation in terms of assessing the sustainability of operational initiatives


Identification of suitable indicators to assess the sustainability of projects and technologies

- The scientific methodology to translate the operational initiative information
 - Little consensus internationally
 - Environment and social dimensions of sustainability
- ➤ The kind of information that is available at the point of assessing the sustainability performance of an operation initiative
 - For example, in the process industry, detailed data may not be available in the early stage of a new development/project
- The preferences of the specific project/technology appraisers
 - Sustainability accounting or MCDA techniques

Indicator & Evaluation Development = Life Cycle Impact Assessment (ISO 14042)

Calculation of indicators for the four main criteria or groups of each dimension of sustainability

Calculation of Resource Impact Indicators for the environmental dimension

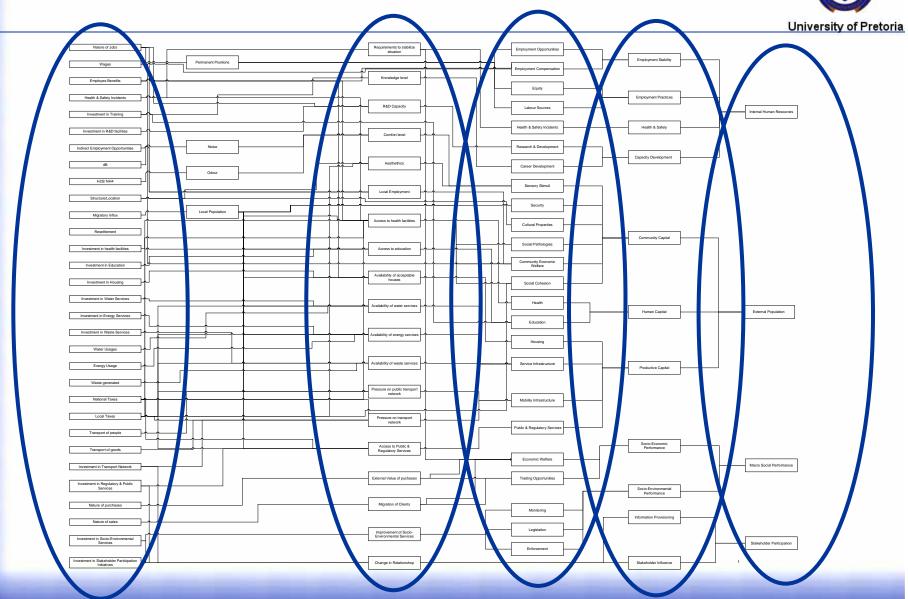
$$RII_{G} = \sum_{C} \sum_{X} Q_{X} \cdot C_{C} \cdot N_{C} \cdot S_{C}$$

- RII_G = Resource Impact Indicator calculated for a main resource group through the summation of all impact pathways of all environmental interventions of an evaluated system
- Q_X = Quantifiable release to or abstraction from a resource of a constituent (X) of a life cycle system in an impact category C
- C_C = Characterisation factor for an impact category (of constituent X) within the pathway
- N_C = Normalisation factor for the impact category based on the ambient environmental quantity and quality objectives, i.e. the inverse of the target state of the impact category
- S_C = Significance (or relative importance) of the impact category in a resource group based on the distance-to-target method, i.e. current ambient state divided by the target ambient state

Evaluation Method: LCIA Method (ISO 14042)

$$SII_{G} = \sum_{C} \sum_{X} Q_{X} \cdot C_{C} \cdot N_{C} \cdot S_{C}$$

- SII_G = Social Impact Indicator calculated for a main social group through the summation of all impact pathways of all social interventions of an evaluated life cycle system
- Q_X = Quantifiable social intervention (X) of a life cycle system in an impact category C
- C_C = Characterisation factor for an impact category (of intervention X) within the pathway
- $N_{\rm C}$ = Normalisation factor for the impact category based on the social objectives in the region of assessment, i.e. the inverse of the target state of the impact category
- S_C = Significance (or relative importance) of the impact category in a social group based on the distance-to-target method, i.e. current social state divided by the target social state


Requirements to follow the Social Impact Indicator (SII) approach

- ➤ Identify possible social interventions along the asset life cycle, including the associated product/service life cycle
 - Previously identified case studies
- Identify the classified midpoint categories with respective characterisation factors for the social interventions
 - Map the list of possible interventions against the social sub-criteria
- Establish normalisation values
 - Target background social footprint
- Establish significance factors
 - Current background social footprint

Indicator Development

Three measurement methods are proposed to apply the defined midpoint categories

- > Established risk assessment approaches
 - Subjective evaluation of:
 - The probability of occurrence
 - The projected frequency of the occurrence
 - The potential intensity thereof
- Quantitative evaluation approaches
 - For example:
 - Full cost accounting approaches
 - Direct measurements in society
- Qualitative evaluation approaches
 - Appropriate subjective scales and associated guidelines
 - Industrial ecology discipline
 - Streamlined LCA discipline

Mid Points & Measurement Methods

SIIs	Midpoint category	Measurement methods
Internal Human Resources	Permanent internal employment positions	Quantitative
	Internal Health and Safety situation	Risk
	Knowledge level / Career development	Quantitative
	Internal Research and Development capacity	Quantitative

Mid Points & Measurement Methods

University of F				
SIIs	Midpoint category	Measurement methods		
	Comfort level / Nuisances	Risk		
	Perceived aesthetics	Qualitative/Quantitative		
	Local employment	Quantitative		
	Local population migration	Qualitative		
	Access to health facilities	Quantitative		
	Access to education	Quantitative		
External	Availability of acceptable housing	Quantitative		
Population	Availability of water services	Quantitative		
	Availability of energy services	Quantitative		
	Availability of waste services	Quantitative		
	Pressure on public transport services	Quantitative		
	Pressure on the transport network / People and goods movement	Quantitative		
	Access to regulatory and public services	Quantitative		
	Comfort level / Nuisances	Risk		

Mid Points & Measurement Methods

SIIs	SIIs Midpoint category Measure	
Macro Social Performance	External value of purchases / supply chain value	Quantitative
	Migration of clients / Changes in the product value chain	Qualitative
	Improvement of socio-environmental services	Quantitative
Stakeholder Participation	Change in relationships with stakeholders	Qualitative

Demonstration (Case Study): Chemical Plant Decommissioning (Mpumalanga)

Intervention	Project Information Available	Social Footprint Information
Nature of Jobs	140 employment opportunities lost	Number of Employed Personnel & Unemployment Percentage
Water Usage	200 m ³ per month	Not available
Energy Usage	861 MWh per month	Electricity Usage of entire local council
Nature of Sales	R150 million annual turnover	GDP of region

Demonstration (Case Study): Chemical Plant Decommissioning (Mpumalanga)

Area of Protection	Intervention	Normalisation Value (T _s ⁻¹)	Significance Value (C _s /T _s)	Midpoint Indicator Value	SII Value
Internal Human Resources	Nature of jobs	9.50 x 10 ⁻⁶	0.728	-9.68 x 10 ⁻⁴	-9.68 x 10 ⁻⁴
External	Nature of jobs	3.49 x 10 ⁻⁵	1.6667	-8.15 x 10 ⁻³	9.81 x 10 ⁻³
Population	Energy Usage	2.09 x 10 ⁻⁵	1.0	1.80 x 10 ⁻²	
Macro Social Performance	Nature of Sales	1.28 x 10 ⁻⁵	1.0	-9.7 x 10 ⁻⁴	-9.7 x 10 ⁻⁴
Stakeholder Participation					Not available

Demonstration (Case Study): Chemical Plant Decommissioning (Kwa-Zulu Natal)

University of Pretoria

Intervention	Project Information Available	Social Footprint Information	
Nature of Jobs	250 employment opportunities lost	Number of Employed Personnel & Unemployment Percentage	
Work-hours lost due to injuries	423.4	Target ?	
Atmospheric Emissions:	0.462 kilo ton SO ₂ 0.104 kilo ton NO _x 0.005 kilo ton VOC	Permit: 1.375 SO ₂ SO ₂ and NO _x emissions for the entire Durban area	
Water Usage	1 330 GL per year	Water usage of the entire local council	
Energy Usage	45.13 GWh per year	Information not available	
Nature of Sales	R500 million annual turnover	GDP of region	

Demonstration (Case Study): Chemical Plant Decommissioning (Kwa Zulu Natal)

Area of Protection	Intervention	Normalisation Value (T _s ⁻¹)	Significance Value (C _s /T _s)	Midpoint Indicator Value	SII Value
Internal Human Resources	Nature of jobs	1.11 x 10 ⁻⁶	0.87	-2.3 x 10 ⁻⁴	-2.3 x 10 ⁻⁴
External	Nature of jobs	3.14 x 10 ⁻⁶	1.85	-1.39 x 10 ⁻³	
Population	Energy Usage	N/A	1.0	N/A	1.375 x 10 ⁻²
	Water Usage	3.57 x 10 ⁻⁶	1.0	4.74 x 10 ⁻³	1.375 X 10 -
	Sensory Stimuli	1.84x 10 ⁻²	1.0	1.04 x 10 ⁻²	
Macro Social Performance	Nature of Sales	9.24 x 10 ⁻⁶	1.0	-4.26 x 10 ⁻³	-4.26 x 10 ⁻³
Stakeholder Participation					Not available

Conclusions and further work required

> Conclusions:

- Normalisation and significance steps will be constraint by what is practicably measurable within a society where an operational initiative will occur
 - From an industry perspective
 - Availability of information will definitely differ between developing and developed countries
- Future projection of social interventions of a project or technology may be problematic or at least differ from case to case

> Future work:

- Survey within industry to determine relevant midpoint categories
- Delphi technique case study to determine measurability of mid-points
- Case study to test the SII calculation procedure

South African on-going LCM activities

Closure and questions

