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Abstract

The phenomenon of overfitting, where a feed-forward neural network (FFNN) over trains

on training data at the cost of generalisation accuracy is known to be specific to the

training algorithm used. This study investigates overfitting within the context of particle

swarm optimised (PSO) FFNNs. Two of the most widely used PSO algorithms are

compared in terms of FFNN accuracy and a description of the overfitting behaviour is

established. Each of the PSO components are in turn investigated to determine their

effect on FFNN overfitting. A study of the maximum velocity (Vmax) parameter is

performed and it is found that smaller Vmax values are optimal for FFNN training. The

analysis is extended to the inertia and acceleration coefficient parameters, where it is

shown that specific interactions among the parameters have a dominant effect on the

resultant FFNN accuracy and may be used to reduce overfitting. Further, the significant

effect of the swarm size on network accuracy is also shown, with a critical range being

identified for the swarm size for effective training. The study is concluded with an

investigation into the effect of the different activation functions. Given strong empirical

evidence, an hypothesis is made that stating the gradient of the activation function

significantly affects the convergence of the PSO. Lastly, the PSO is shown to be a very

effective algorithm for the training of self-adaptive FFNNs, capable of learning from

unscaled data.
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Adaptive Neural Networks
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“The question of whether a computer can think is no more interesting

than the question of whether a submarine can swim.”

Edsger Dijkstra

“Everything that civilisation has to offer is a product of human intelli-

gence; we cannot predict what we might achieve when this intelligence is

magnified by the tools that AI may provide, but the eradication of war, dis-

ease, and poverty would be high on anyone’s list. Success in creating AI

would be the biggest event in human history. Unfortunately, it might also be

the last.”

Stephen Hawking
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Chapter 1

Introduction

Swarm intelligence (SI) can be defined as the emergent, problem-solving behaviour that

stems from the interaction of a communicative group of agents acting on their local

environment [7, 26, 59]. Computational swarm intelligence is the collection of algorithmic

models of such behaviours [26].

One such algorithmic model is the particle swarm optimisation (PSO) algorithm

which has enjoyed much attention within the computational intelligence (CI) community,

largely due to its effectiveness on a vast number of optimisation problems [21, 25, 26, 103].

The PSO algorithm is a population-based global optimisation algorithm that explores a

given problem space by modelling the social behaviour of a flock of birds [19, 58].

Neural networks (NN), one of the seminal fields of CI [6, 17, 39, 77, 120], are math-

ematical models inspired by natural neural networks such as the human brain. One of

the very first applications of the PSO algorithm was the training of feedforward neural

networks (FFNN) [19, 57], a particular type of artificial neural network that consists of

multiple, forwardly connected layers of artificial neurons [89].

Although the PSO algorithm has been studied both theoretically and practically as

a neural network training algorithm [103], little has been done to investigate the effect

of PSO training on the generalisation and overfitting capability of the the FFNN, which

is the main objective of this study.

The motivation for this study is given in Section 1.1. The research objectives are

given in Section 1.2. The primary contributions of the study are given in Section 1.3.

1



Chapter 1. Introduction 2

Finally, an outline of the thesis is given in Section 1.4.

1.1 Motivation

This section briefly discusses previous work that serves as the motivation for this study.

Generalisation accuracy, within the context of NNs, describes the network’s ability

to generalise, that is, to apply concepts learned from the training data to previously

unseen data. Overfitting is the phenomenon where a NN has adequate performance

on the training data, but poor performance on unseen data and thus also in real-world

application where the data is sampled from [40].

Various techniques have been developed to reduce overfitting, such as: regularisa-

tion [8, 16], architecture selection [34, 44, 65] and early stopping [92]. However, these

techniques have been developed in the context of gradient based training methods [103].

Furthermore, research by Lawrence and Giles [64] has shown that overfitting in neural

networks is specific to the algorithm used to train the networks.

The motivation for this thesis is the understanding of the effect of PSO training

on FFNN accuracy, in particular generalisation and overfitting. Further, how accuracy

and overfitting may be improved or controlled by adapting the PSO algorithm or its

parameters.

1.2 Objectives

The primary objective of this thesis is an empirical analysis of the effect of the PSO

algorithm and its components on accuracy and overfitting when training FFNNs. The

following sub-objectives are identified:

• To provide an overview of FFNN training and overfitting.

• To review the PSO algorithm, the algorithm’s components and parameters and the

approach used to train FFNNs.

• To establish a baseline of FFNN accuracy and overfitting behaviour when trained

by PSO algorithms.
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• To analyse the effect each of the major PSO algorithm parameters has on FFNN

accuracy and overfitting.

1.3 Contributions

The novel contributions, in the context of FFNN training, of this study include:

• An empirical comparison of the PSO with the Guaranteed Convergence Particle

Swarm Optimisation (GCPSO) in terms of FFNN accuracy and overfitting.

• An analysis of the effect of the Vmax PSO control parameter on FFNN accuracy

and the parameter’s control of overfitting through the swarm diversity.

• A study of the PSO inertia and acceleration coefficient control parameters and

their effect on FFNN accuracy and overfitting.

• An analysis of the PSO swarm size and its effect on swarm diversity and FFNN

accuracy and overfitting.

• A comparison of FFNN activation functions and their indirect effect on PSO swarm

divergence and thus the network’s accuracy.

• An analysis of PSO training of FFNNs using adaptive activation functions and their

use in improving FFNN accuracy and overfitting on scaled and unscaled data.

1.4 Dissertation Outline

The remainder of the thesis is structured as follows.

• Chapter 2 provides a background review of NNs, FFNN training, overfitting and

the PSO algorithm.

• Chapter 3 gives an empirical analysis and comparison of two PSO algorithms:

the lbest PSO and the GCPSO as well as establishing a baseline of FFNN accuracy

and overfitting on a set of data sets used throughout the thesis.
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• Chapter 4 provides an analysis of the first major PSO control parameter: Vmax.

The use of the parameter to control FFNN accuracy through the swarm’s diversity

is discussed.

• Chapter 5 presents a study of the inertia, social acceleration coefficient and cogni-

tive acceleration coefficient control parameters and their effect on FFNN accuracy

and overfitting.

• Chapter 6 discusses the PSO swarm size and the effect on swarm diversity when

training FFNNs.

• Chapter 7 compares three FFNN activation functions and their effect on the PSO

during FFNN training.

• Chapter 8 presents a PSO algorithm for training FFNNs with adaptive activation

functions along with a comparison with regular FFNNs. The benefit and use of

adaptive activation functions on overfitting and learning from unscaled data is also

discussed.

• Chapter 9 concludes the study with an overview of conclusions reached and pos-

sible future work.

The following appendices to the thesis are included:

• Appendix A provides a list of acronyms used in the work along with their defi-

nitions.

• Appendix B presents a list of mathematical symbols used throughout the thesis

and their associated meaning.

• Appendix C lists the publications derived from this work.



Chapter 2

Background

This chapter introduces and gives background on the CI paradigms relevant to this

study. NNs are discussed in Section 2.1, with specific focus on FFNNs and their training.

Section 2.2 reviews overfitting and related literature. This is followed by a discussion on

the workings of the PSO algorithm in Section 2.3 and the PSO algorithm’s applications

in Section 2.4. The chapter is summarised in Section 2.5.

2.1 Artificial Neural Networks

This section discusses artificial neural networks (ANN) with specific focus on multi-layer

perceptrons (MLP) in Section 2.1.1. NN learning and FFNN applications are discussed

in Sections 2.1.2 and 2.1.3 respectively.

ANNs, or simply NNs [5], are mathematical data models inspired by studies of biolog-

ical NNs like the human brain. In general, NNs provide a method for learning arbitrary

mappings from an input space (or data set) to an output space (or data set). These

spaces may be real valued or discrete, contain noisy or missing values or be ill defined in

some other way. It is exactly this versatility of NNs that make them useful for a large

variety of tasks.

Most ANNs typically consist of an arrangement of artificial neurons (crude functional

abstractions of biological neurons), often in layers, that are connected to each other

with weights. As a mathematical model, these weights are the NN’s free or adjustable

5
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parameters. In order for the network to perform a particular mapping, appropriate

values for the weights need to be found.

NNs are a cornerstone of the CI field and as such have been studied in great detail.

This lead to the existence of many different types of NNs differing mostly in arrangement

and function of the neurons as well as the methods used to learn the weights. An

exhaustive list of NN types is beyond the scope of this study and the interested reader

is referred to books by Bishop [5, 6] and Haykin [41] for more information.

2.1.1 Multi-layer Perceptrons

The particular NNs relevant to this study are called MLPs, or more commonly standard

FFNNs. FFNNs consist of a number of layers of neurons where the first layer is called

the input layer and the last the output layer. All layers in between the input and

output layers are known as hidden layers. Although a FFNN can have any number of

hidden layers, it has been shown that NNs with monotonically increasing, differentiable

activation functions and enough hidden units can approximate any continuous function

[47]. An illustration of a FFNN is given in Figure 2.1. It consists of three layers that

are fully connected — weights exist between all units in consecutive layers. The input

and hidden layers contain bias units, shown with dashed outlines in Figure 2.1. Bias

units have no incoming signals but are fully connected to the next layer. The purpose

of bias units is to adjust the threshold value of the activation functions in the units

of the subsequent layer and thereby, assuming classification, offset the decision planes

constructed by the NN [5](chapter 3). Typically, bias units have a constant activation

value of negative one, which is then adjusted by their outgoing weights.

As shown in Figure 2.1 the hidden and output units contain activation functions. An

activation function serves as an abstraction for the action potential found in biological

neurons. The input layer units do not normally have activation functions but simply

pass a pattern’s input vector through.

In most real-world cases it is not possible to obtain a data set that completely de-

scribes the true population it is sampled from. Therefore, a NN typically learns from a

data set sampled from the true data population. Let a data pattern consist of an input

vector zp of dimension I and an associated target vector tp of dimension K. The output
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Figure 2.1: Abstract Representation of a Multi-Layer Perceptron.

neural network

of the NN is calculated by feedforward pass of the input vector. A feedforward pass

computes the activation of each hidden and output unit as follows [5](chapter 4):

yj,p = fyj(
I+1∑
i=1

wjizi,p), ∀ j ∈ {1, ..., J} (2.1)

ok,p = fok(
J+1∑
j=1

wkjyj,p), ∀ k ∈ {1, ..., K} (2.2)

where ok is the kth output unit, wji is the weight from input unit zi to hidden unit yj and

wkj is the weight from hidden unit yj to output unit ok; functions fok and fyj represent

the activation functions for units ok and yj respectively.

A typical activation function that is used is the sigmoid function since it is differen-

tiable, monotonically increasing and yields an output in (0, 1):

f(net) =
1

1 + e−λ(net)
(2.3)
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where λ controls the function’s steepness.

Application areas of FFNNs include amongst others image analysis [23], real-time

biometric data recognition, for example face detection [45], and game learning [4].

2.1.2 Neural Network Training

Learning in FFNNs is the process of finding a set of weights that realise a particular task.

In general, the FFNN is presented with a pattern’s input vector which is fed through the

network yielding an output. The weights are then adjusted such that the error between

the NN’s output and the target output is minimised. This type of learning is known

as supervised learning, as the learner is minimising the error between its output and a

known target output. Formally, the task of learning a data set DT of size PT is finding

the function fNN : RI −→ RK by minimising the empirical error:

E(DT ; w) =
1

PT

PT∑
p=1

(FNN(zp,w)− tp)
2 (2.4)

where FNN is the FFNN described by the weight set w, and tp is the target output of

pattern p [26](chapter 3).

In practice it is necessary to estimate the network’s performance on data patterns

not contained in the training set. Performance on unseen data is often referred to as the

NN’s generalisation performance. The data set D is divided into a training set DT , and

a generalisation set DG. The latter is used to estimate the generalisation performance.

Let ET and EG denote the errors on DT and DG respectively.

The process of training the NN is automated by a training algorithm (also called

a learning algorithm). The goal of the learning algorithm is to minimise the objective

function given by Equation (2.4) by adjusting the NN weights. Minimisation ceases when

an acceptable error or a maximum number of epochs have been reached. A large variety

of NN training algorithms have been developed and can broadly be classified into two

classes: local and global optimisation algorithms. With local optimisation algorithms

optimisation usually starts at a single point in the search space and uses only local search

space information. Local optimisation algorithms are therefore more prone to getting

stuck in a local optimum. Backpropagation training using gradient descent (GD) is an
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example of a local optimisation NN training algorithm [112]. With global optimisation

the algorithm attempts to find the global optimum by searching a larger part of the

search space through the use of global search space information, usually starting at a

number of different points. LeapFrog optimisation is an example of a global optimiser

[95, 96].

Regardless of the optimisation method used, the weights of the NN must be initialised

to appropriate values. Weight initialisation is dependent on the activation function. A

simple strategy, applicable to activation functions with domains centred around zero, is

random initialisation in the range (−0.5, 0.5). Initialisation with small values around 0

is appropriate since this will lead to mid-ranged activation output, avoiding bias toward

a particular solution [26](chapter 7). Work by Wessels and Barnard [113] has shown that

a good range for initialisation is ( −1√
fanin

, 1√
fanin

), where fanin is the number of incoming

weights for a specific unit.

An important consideration in NN training is the selection of an appropriate network

architecture for the learning problem at hand. The number of units contained in the input

and output layers is derived from the problem. For the input layer the number of units is

usually equal to the dimension of the pattern input vector — the number of independent

variables, I, plus a bias unit. For the output layer size a number of strategies can be

followed. For a function approximation task the output layer size is the dimensionality

of the target space — the number of dependent variables. For classification problems,

considering a data set with T number of classes, the researcher can use a single output

unit and scale the class target values to the activation range of the unit, dividing the

range into T intervals. The scaling of output targets to numerically smaller ranges has

been shown to have the disadvantage of increasing training time [28]. Alternatively,

T separate output units may be used, which has the disadvantage of increasing the

number of weights in the network and therefore the dimensionality of the search space

of the training algorithm. A compromise is to use a binary encoding for the T classes,

where each class is represented by a bit string. In this case the number of output units

K is equal to the number of bits it takes to represent the classes i.e. K = dlog2 T e. The

result is fewer than T output units and each unit uses the full activation range.

Although also problem specific, choosing the hidden layer size is not as straightfor-
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ward as for the input and output layer sizes. This is because the number of hidden units

is the primary factor that determines the network’s learning ability — the complexity of

the function it can approximate, or mapping it can learn [5](chapter 1). No rule exists

for determining the number of hidden units necessary to learn complex real world tasks.

However, VC-dimensions may be used to determine an upper bound for the number

of hidden units [5]. Intuitively, the simplest method of selecting an appropriate archi-

tecture would be an exhaustive search using trial and error: select an architecture and

evaluate the performance. If the generalisation error is too large, a different architecture

is chosen [5](chapter 9). Sietsma and Dow [94] have, however, shown that smaller net-

works will yield better generalisation performance on average. If too few hidden units

are chosen though, the network will be incapable of accurately modelling the data. An

excess of hidden units on the other hand may cause the network to accurately model

the noise in the data set or memorise training patterns, resulting in poor generalisation.

This phenomenon is called overfitting. A detailed discussion of overfitting and network

architecture selection is given in Section 2.2.

2.1.3 FFNN Applications

FFNNs have the ability to learn non-linear and arbitrary mappings between input and

target spaces of a data set. Because of this, FFNNs have a wide area of application. The

two tasks they are used for in this study are classification and time series regression. With

a classification task the aim is to predict the class of an input data vector. Examples of

classification data sets can be found at the UCI machine learning repository [1]. Time

series regression/forecasting is an example of function approximation with the exception

that the function output values are autocorrelated. In this case the NN is trained to

approximate the functional mapping.

2.2 Overfitting

This section defines the concept of overfitting along with the causes and consequences

thereof. This is followed by an overview of NN architecture selection in Section 2.2.2.

Overfitting is the statistical phenomenon where a model has adequate performance
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on the training data set, but relatively poor performance on unseen data. Hawkins

describes overfitting as the violation of the principle of parsimony, or Ockham’s Razor,

in that the model uses an over complicated architecture to describe the data mapping

[40].

Fundamentally, overfitting occurs when the NN memorises the patterns and the noise

contained in the training set. Consequently the network has poor performance on the

generalisation data set.

Figure 2.2 illustrates the occurrence of overfitting during NN training. Initially, both

the training and generalisation errors decrease over time as the network learns. At a

specific point, the training error continues to decrease while the generalisation error

starts to increase. This is the point of overfitting.

E
rr

o
r

Training time

Point of overfitting

Training Error
Generalization Error

Figure 2.2: An illustration of overfitting.

Three conditions are necessary for overfitting to occur. First, it is necessary for the

NN to have too many weights (and therefore an excess of free parameters), due to having

too many hidden units and redundant or irrelevant input units [5](chapter 1). It is these

additional parameters that the NN uses to model the noise or memorise the training set.
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Secondly, it is necessary for the data set to contain noise. Finally, there must be enough

training time for the NN to learn the noise contained in the data set. The amount of

training time necessary for the NN to start overfitting is dependent on the problem.

Overfitting is disadvantageous for a number of reasons. Overfitting directly leads

to the network performing worse on any data not included in the training set and may

therefore perform badly during real world application. Not only does the network mem-

orise the training data, it also learns noise and outlier data. This could lead to variation

in the correct prediction of non-noisy patterns [40]. Another consequence of overfitting

is that the training error is no longer a valid measure of accuracy. This is problematic

in cases where the generalisation error is not a reliable estimate of generalisation ability,

for example in cases where the generalisation data set is too small or unavailable.

2.2.1 Measuring Overfitting

The Röbel generalisation factor was developed by Röbel as a method for measuring the

degree of overfitting given a training and generalisation error [88]. The generalisation

factor is calculated as the ratio between the training and generalisation errors, i.e. ρF =
MSEG

MSET
. A ratio of ρF ≤ 1 is indicative of valid generalisation as it implies MSEG ≤

MSET . Conversely, a ρF > 1 means the generalisation performance is worse than the

training performance which indicates overfitting. This study uses the generalisation

factor ρF as both an indicator and measure of the overfitting of an algorithm on a

particular data set.

2.2.2 Architecture Selection

Architecture selection broadly concerns the selection of an appropriate number of input

and hidden units as well as the number of weights for the learning problem at hand

— enough to accurately learn the mapping, but less than is necessary for overfitting to

occur. Three main approaches exist for selecting optimal network architectures:

Regularisation: Regularisation relies on the assumption that smoother network map-

pings will tend to avoid overfitting. Regularisation attempts to create smoother
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network mappings by adding a penalty term to the error function being optimised:

E = ET + vΩ (2.5)

where ET is the standard error being optimised (refer to Equation (2.4)) and v

is a parameter controlling the influence of the penalty term, Ω [5]. One of the

simplest forms of regularisation is weight decay where the intention is to drive small

weights to zero [8, 16, 38], effectively removing the weight from the architecture.

The penalty function for weight decay is defined as the sum of the squares of the

weights in the weight set, w:

Ω =
1

2

∑
i

w2
i (2.6)

In terms of conventional curve fitting, weight decay is a form of ridge regression

and it has been shown empirically that this form of regularisation can lead to

improved generalisation [43]. Further heuristic justification of weight decay is given

in [5](chapter 9). A disadvantage of the method is that small weights and large

weights are penalised equally. A potential solution to this problem is the use of

hyperbolic or exponential penalty functions that penalise smaller weights more

than large weights [38]. A further disadvantage is the possible addition of local

minima due to the additional term in the objective function.

A closely related alternative to ridge regression that also limits the complexity

of the network is early stopping, also known as stopped training [92]. With early

stopping a large number of hidden units is chosen for the network. The network is

then trained as usual. As soon as an increase in the generalisation error is witnessed

(as in Figure 2.2), training is stopped, leading to a network with optimal estimated

generalisation performance [92].

An example of an early stopping condition developed for gradient-based learning

algorithms is the GL5 stopping criterion — a specific instance of the more general

GLα stopping criterion [81]. The criterion measures the generalisation loss (GL)

during training:

GL(t) = 100

(
Eg(t)
Eopt(t)

− 1

)
(2.7)
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where Eg(t) is the generalisation error at time step t and Eopt(t) is defined as

Eopt(t) = min
t′≤t
{Eg(t′)} (2.8)

Training is stopped as soon as the generalisation loss exceeds a threshold, α.

Advantages of early stopping include that it requires less training time, and that

it can be applied to large networks with no additional overhead in computational

costs. An analysis of early stopping has been conducted by Sarle [92].

Many other forms of regularisation and penalty functions exist and thorough stud-

ies into network regularisation have been conducted by Girosi et al. [36] and

Williams [115].

Network Construction (Growing): With NN growing training starts on a network

with a small number of hidden units. Training continues until the optimisation

algorithm becomes stuck in a local minimum at which point additional hidden units

are added with randomly initialised weights [34, 44, 50]. A number of difficulties

exist in a network construction process: when exactly a new unit needs to be

added, when to stop growing the network, and how to connect the new unit while

avoiding a restart of the training process [26](chapter 7). An example of a learning

architecture that uses growing is a cascade-correlation network [29]. With the

cascade-correlation learning architecture a learning algorithm is used that creates

and installs new units. Although new units are fully connected in the architecture,

the new unit’s incoming weights are frozen and only the outgoing weights are

trained. At the time a unit is added, an attempt is made by the training algorithm

to maximise the correlation between the output of the new unit (determined by

the fixed weights) and the residual error signal. Training is stopped when no

significant improvement is witnessed after a number of iterations (controlled by a

user set parameter).

Kwok and Yeung [63] conducted a survey of NN construction techniques for regres-

sion problems and concludes that computational complexity is a concern in growing

algorithms. In networks where complex hidden units (for example adaptive spline

network units or projection pursuit regression units) are used, it is often necessary
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to freeze the weights of previously installed hidden units in order for the learning

algorithm to cope with a new unit. Learning weights layer-by-layer or restricting

the hidden unit activation function to a parametric form can also be used to reduce

computational complexity.

Network Pruning: NN pruning involves removing unnecessary weights, hidden units

or input units from the network. Training starts on an oversized network from

which weights or neurons are removed either during training or after solution con-

vergence [5](chapter 9). The decision of which parameters to remove is in most

cases related to a pruning heuristic that measures the parameter’s salience, i.e.

the relevance the parameter has to the network’s accuracy. A simple measure of

salience is the increase in the training error that occurs when the specific param-

eter is removed [5](chapter 9). If parameters with a small salience are removed

the training error will not drastically increase, but the network is more likely to

generalise well [101].

An example of a pruning algorithm is the Optimal Brain Damage (OBD) algorithm

developed by Le Cun et al. [65]. The OBD algorithm uses second-order derivative

information (an approximation of the network’s Hessian matrix) to measure the

salience of network weights. It is, however, necessary for the network to be trained

to a local minimum before the approximation can be computed. Weights are sorted

in order of decreasing salience and a number of low salience weights are removed

by setting them to a constant zero value. The process of training and removal is

repeated while an acceptable error is still obtained by the network.

The OBD algorithm is a sensitivity analysis based pruning technique. A variety of

other pruning techniques exists that include evolutionary approaches [62, 83, 114]

and statistical hypothesis testing based techniques [3, 81, 99].

Selecting the optimal architecture is however not necessarily enough to prevent overfit-

ting from occurring. Lawrence and Giles have shown that the degree of overfitting is

dependent on the training algorithm even when an appropriate number of hidden units

is used for the problem [64]. In their empirical analysis a NN was used to approximate

a sinusoidal function perturbed with noise. Four hidden units were sufficient for a GD
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algorithm to learn the function with very good generalisation error. Even when using a

large hidden layer size (100 units) no noticeable overfitting occurred. When the same four

hidden unit network was trained with a conjugate gradient (CG)[2] training algorithm

significant overfitting occurred becoming worse as the hidden layer size increased.

These observations show that overfitting as a phenomenon is specific to the train-

ing algorithm used, and that additional mechanisms may be necessary to obtain good

generalisation performance and to avoid overfitting even when an optimal architecture

has been selected [103]. In order to develop any such mechanisms it is first necessary to

study the overfitting behaviour in the context of a specific NN training algorithm. This

study investigates the overfitting phenomenon in the case where PSO is used as a FFNN

training algorithm.

2.3 Particle Swarm Optimisation

This section describes the PSO algorithm. A detailed explanation of the algorithm is

given in Section 2.3.1. Sections 2.3.2, 2.3.3 2.3.4 discuss the PSO control parameters,

swarm diversity and PSO neighbourhood topologies respectively. Finally, the GCPSO

algorithm is described in Section 2.3.5.

The PSO algorithm is a stochastic function optimisation algorithm first published

in 1995 by Eberhart and Kennedy [19, 58]. It is a population-based search algorithm

maintaining a group of entities called particles in a collection known as a swarm. The

algorithm is inspired by the complex movements and social interaction of birds within

a flock [58]. Conceptually, particles are flown with specific velocity through the search

space, attracted by potentially good solutions found either individually or by the rest of

the swarm. The swarm is usually arranged in a predefined structure that governs the

communication between the particles called a neighbourhood topology.

2.3.1 The PSO Algorithm

The PSO algorithm described here is the Shi and Eberhart modified PSO algorithm that

uses a global best neighbourhood topology and includes the use of an inertia weight [93].

The inertia weight is discussed in Section 2.3.2. The algorithm is a single solution PSO
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algorithm, meaning there is a single objective for the optimisation process, which yields

a single solution as the result.

Particles have a number of properties associated with them; for a particle i the

properties are:

Position: Let the current position of particle i at time step t be denoted by xi(t). This

is a position within the optimisation problem’s hyper-dimensional solution space

(also called a search space). Let n denote the search space dimensionality. The

particle’s current position represents a solution to the optimisation problem.

Velocity: Each particle has a velocity vector, vi(t), that represents a step size of the

particle in the search space.

Solution Quality: A particle’s solution quality is calculated from the particle’s current

position using the optimisation problem’s objective function, f . Let f(xi(t)) denote

the quality of solution xi(t).

Personal Best Position: Each particle also maintains the best position it has found

during the entire optimisation process, denoted by yi(t).

Neighbourhood Best Position: Each particle references the best solution found in

the particle’s neighbourhood. The neighbourhood topology is responsible for track-

ing the best solutions within each neighbourhood. In the case of the global best

topology, this is the best solution within the entire swarm. Let ŷ(t) represent the

neighbourhood best position.

At the start of the PSO algorithm the particles are initialised to random positions within

the search space: xi(0) ∼ U(xmin,xmax)
n, with vi = 0 and yi(0) = xi(0). The algorithm

proceeds by updating each particle’s position as follows:

xij(t+ 1) = xij(t) + vij(t), ∀ j ∈ {1, ..., n} (2.9)

The velocity is calculated as:

vij(t+ 1) = ωvij(t) + c1r1j(t)[yij(t)− xij(t)] +

c2r2j(t)[ŷij(t)− xij(t)], ∀ j ∈ {1, ..., n}
(2.10)
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The velocity update has three distinct terms that influence the overall result [103]:

Previous Velocity (Momentum), ωvi(t): In essence this term represents the parti-

cle’s momentum. It forces the particle to maintain a consistent direction, prevent-

ing drastic change of the velocity. The term’s influence is weighed by the inertia

control parameter, ω.

Cognitive Component, c1r1(t)
(
yi(t)− xi(t)

)
: The cognitive component represents the

particle’s personal experience. The term drives the particle back to the best solu-

tion the particle has found so far. The cognitive component term is stochastically

weighed with random numbers r1 ∼ U(0, 1)n and the cognitive acceleration coeffi-

cient c1, an algorithm control parameter. The exact impact of the term therefore

varies from time step to time step.

Social Component, c2r2(t)
(
ŷi(t)− xi(t)

)
: The social component draws the particle to

the best solutions found in the particle’s neighbourhood. In the case of the global

best topology, all particles are drawn to the best solution found by the entire

swarm. Just like the cognitive component, the term is stochastically weighed with

random numbers r2 ∼ U(0, 1)n and the social acceleration coefficient c2.

At each time step the quality of the solution represented by each particle is calculated

and the personal best and neighbourhood best positions are updated as necessary. A

number of criteria (stopping conditions) can be used to terminate the algorithm:

• A fixed number of iterations have been completed. This criterion is typically

used when the algorithm has a restricted time period to execute in. Naturally,

allocating too few iterations might not give the algorithm adequate time to find a

good solution.

• A fixed number function evaluations have taken place. Objective function

evaluations are almost always the most expensive operation that occurs during

algorithm execution. This stopping condition is often used to limit the number of

expensive operations or in cases where algorithms of different type or configuration

are being compared.
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• An adequate solution has been found. Often it is not necessary to find the

absolute optimal solution in the search space and the algorithm may be terminated

when an acceptable solution has been found.

• No further improvement in the solution is observed. It is possible for the

swarm to become trapped in a local optimum, in which case optimisation can be

terminated.

Pseudo code for a PSO is given in Algorithm 1 [93].

Algorithm 1 The gbest PSO algorithm.

Initialise the swarm S, of size ns, within the n-dimensional search space.

while all stopping conditions are false do

for each particle i = 1, ..., ns do

Calculate the particle’s fitness f(xi(t))

if f(xi(t)) < f(yi(t)) then

yi(t) = xi(t)

end if

if f(yi(t)) < f(ŷi(t)) then

ŷi(t) = yi(t)

end if

end for

for each particle i = 1, ..., ns do

Update the particle’s velocity vi(t) using Equation (2.10)

end for

for each particle i = 1, ..., ns do

Update the particle’s position xi(t)using Equation (2.9)

end for

end while

The PSO algorithm described above has a number of parameters that control various

aspects of the optimisation process. The algorithm parameters drastically affect the

performance of the PSO and are discussed in the next section.
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2.3.2 Algorithm Control Parameters

Control parameters aim to balance the exploration and exploitation of the search process.

Exploration refers to the algorithm’s ability to explore a larger part of the search space.

Exploitation is the ability of the algorithm to search in a focused area around a good

solution with the intent of further refining the solution. Exploration and exploitation

are contradictory objectives and ideally an algorithm should seek an optimal balance

between them [26](chapter 16).

The Acceleration Coefficients

The acceleration coefficients c1 and c2 (along with a stochastic variable) respectively

control the influence of the cognitive and social terms of the velocity update equation.

Indirectly, however, they also influence the balance between exploration and exploitation

of the search space. If c1 is set to be much larger than c2, the particle’s personal best

position is a greater attractor than the neighbourhood best. In this case particles act as

multiple hill-climbers and focus their search in the areas local to their initialised positions

[57]. Although this gives the PSO better opportunity to explore the search space the

swarm could fail to converge, leading to a large number of sub-optimal solutions — a

property useful for a niching algorithm [9]. On the other hand, if c2 is much larger than

c1, the swarm better exploits the area around the best solution in a neighbourhood. This

expedites the optimisation process, but might lead to premature swarm convergence [57].

Although the optimal values of c1 and c2 are problem specific, often the choice is

made to set c1 = c2, balancing exploration and exploitation.

In most cases the values for c1 and c2 are static throughout the optimisation process.

Ratnaweera et al. [82] propose a strategy where c1 decreases linearly over time while

c2 linearly increases. This is potentially beneficial to the optimisation process as it

encourages exploration near the start, but focuses on solution exploitation towards the

end.
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Maximum Velocity

When the PSO algorithm was first proposed, it was found that in certain situations it

is possible for particle velocity values to become inappropriately large during the algo-

rithm’s execution. This is known as swarm explosion and often occurs when there are

frequent changes in the neighbourhood best position, forcing some particles to have to

change regions. The maximum velocity parameter, Vmax, was introduced later to specif-

ically address this problem [22](chapter 6). The parameter specifies a maximum value

that velocity values are clamped to if they exceed it. Clamping occurs after calculation

of the velocity, but before the position update:

vij(t+ 1) =


v′ij(t+ 1) if |v′ij(t+ 1)| < Vmax,j

−Vmax,j if v′ij(t+ 1) ≤ −Vmax,j, ∀ j ∈ {1, ..., n}

Vmax,j if v′ij(t+ 1) ≥ Vmax,j

(2.11)

where v′i(t+ 1) is calculated using Equation (2.10).

Appropriate settings of Vmax can prevent swarm explosion, but also has a large effect

on the granularity of the search. If Vmax is set to small values, particles make small jumps

in the search space, thereby exploiting the local area they are in [22](chapter 6). The risk

associated with too small values for Vmax is that a particle may become stuck in a local

optimum, unable to generate the necessary velocity to escape. A second disadvantage

is that a maximum velocity slows the optimisation process as particles will take longer

to reach good optima. Large values for Vmax allow the particles to make large jumps

through the search space which better facilitates exploration [22](chapter 6) and faster

search. But again, too large values for Vmax is disadvantageous as the risk of swarm

explosion occurring is increased and may lead to particles missing optima by flying past

them.

Optimal values for Vmax is problem specific, but similar to the acceleration coeffi-

cients, adaptive strategies have been proposed. An example of such a strategy is to decay

Vmax values exponentially [30]:

Vmax,j(t+ 1) = [1− (
t

T
)hVmax,j(t)], ∀ j ∈ {1, ..., n} (2.12)

where T is the maximum number of time steps and h is a positive constant controlling
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the degree of decay.

Inertia

The inertia parameter, ω, controls the influence of the previous velocity. The parameter’s

purpose is two-fold: to balance the exploration and exploitation objectives of the swarm,

and to eliminate the need for Vmax [21]. The experimentation showed that, although it

is useful for balancing the objectives, the Vmax parameter could not be eliminated com-

pletely. Intuitively, large values of ω allow larger jumps (assuming no velocity clamping)

and promotes exploration, with small values aiding exploitation.

A second, very important aspect of ω is its interaction with the other control param-

eters in ensuring convergent swarm behaviour: If ω ≥ 1 then velocities increase during

algorithm execution, eventually reaching maximum velocity if Vmax is used [107]. This

leads to a divergence of the swarm as it is difficult for particles to move toward promising

areas. With ω < 1, velocities tend towards 0 over time (depending on the values of ci

and c2) aiding in both exploitation and swarm convergence [107]. An empirical study by

Shi and Eberhart [93] showed that ω ∈ [0.8, 1.2] resulted in faster swarm convergence;

with ω > 1.2 the swarms failed to converge.

Due to the interaction between ω and the acceleration coefficients, an ω < 1 is not

enough to ensure swarm convergence. Van den Bergh and Engelbrecht have derived

an inequality that guarantees convergent particle trajectories [103, 107], with similar

findings shown in [102]:

ω >
1

2
(c1 + c2)− 1 > 0 (2.13)

However, both the studies of [102] and [107] use fixed points for the stochastic components

in the PSO model. A more recent theoretical analysis by Cleghorn and Engelbrecht [13]

leave the stochastic components unfixed, adding the following restriction for convergence:

0 < c1 + c2 < 4 (2.14)

If the inequalities are not satisfied, particles may exhibit divergent or cyclic trajectories,

irrespective of whether ω < 1 [13, 103, 107].

Strategies have also been developed to dynamically adapt the inertia weight during

the optimisation process. An example is to linearly decrease inertia, thereby encouraging
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exploration initially and focusing on exploitation near the end of the process [73, 82, 100]:

ω(t) = (ω(0)− ω(T ))
(T − t)
T

+ ω(T ) (2.15)

For further reading on adaptive inertia strategies the reader is referred to [26](chapter

16).

Swarm Size

The swarm size refers to the number of particles in the swarm. The size of the swarm

determines the initial diversity of the solutions, provided the particles are initialised in

the search space using a uniform random number generator [26](chapter 16). A large

swarm size facilitates that a larger part of the space can be searched per iteration at

the cost of greater computational complexity due to an increase in function evaluations.

It might therefore be necessary to reduce the number of algorithm iterations for the

complexity to remain consistent to that of a smaller swarm. In reducing the number of

iterations it is however possible that the algorithm will not be given a sufficient amount

of time to refine a good solution.

Keeping the number of fitness evaluations constant therefore forces a trade-off be-

tween the swarm size and the number of iterations. Malan and Engelbrecht [70] con-

ducted an empirical study investigating this trade-off using a gbest PSO on a number of

benchmark optimisation problems. As expected, the results showed that the trade-off is

problem specific, in some cases a smaller swarm size with more iterations fared better

than a large swarm size and vice versa. However, the results also showed that a large

swarm size often outperformed a smaller swarm size with highly multi-modal problems

or problems with a high dimensionality.

2.3.3 Swarm Diversity

The swarm diversity is the degree to which the particles are dispersed within the search

space [75]. Diversity is directly related to exploration and exploitation of the PSO

algorithm as a large diversity implies a large area of the search space is explored, whereas

a small diversity implies that a small area of the search space is being exploited by the

swarm.
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A number of methods for calculating swarm diversity have been developed [42, 61, 87].

A comparison of these methods is given by Olorunda and Engelbrecht [75]. Their analysis

concludes that the average distance around the swarm centre measurement [61] is a

valid indicator of swarm diversity, accurately representing the particle dispersion while

remaining robust against outliers [75].

The average distance around the swarm centre is calculated as follows:

Davg =
1

|ns|

|ns|∑
i=1

√√√√ n∑
k=1

(xik − x̄k)2 (2.16)

where |ns| is the swarm size, n is the dimensionality of the search space, xi and x̄

represent the position of particle i and the swarm centre respectively. For the reasons

given above, the average distance around the swarm centre measurement was used in the

empirical work of this study.

2.3.4 Neighbourhood Topologies

Particles are connected to each other in a social structure called a neighbourhood topol-

ogy (also called a social network structure). The neighbourhood topology controls the

flow of information within the swarm. Particles are grouped together in neighbourhoods

and information is shared with other particles in the same neighbourhood via the social

term of the velocity update equation (refer to Equation (2.10)). A number of social

structures exist [72], three of which are well studied and widely used within the field:

Global Best (gbest): With the gbest topology all particles are fully connected to each

other in a star structure. As all particles are in a single neighbourhood, the global

best solution serves as a single global attractor, and because of the fully connected

structure all particles receive the information instantly. Compared to other topolo-

gies, the gbest topology has the fastest flow of information, which has been shown

to lead to fast swarm convergence [19, 22, 60].

Local Best (lbest): The lbest topology connects particles on a one-dimensional ring

lattice. A particle’s neighbourhood is defined as the nns closest (based on index)

particles to it on the lattice, including the particle itself. Instead of a single global
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best, a neighbourhood best is selected from each neighbourhood. Information

flow is much slower in this topology as a good solution has to travel through

each neighbourhood via the overlapping particles, around the lattice to reach all

particles. Convergence speed is therefore slower, with the benefit that the lbest

topology has more time to explore the search space because of the multiple social

attractors. The lbest topology has been shown to be less susceptible to local minima

[19, 22, 60], and is thus well suited to multi-modal environments.

Von Neumann (VN ): The VN social structure arranges the particles in a two-

dimensional lattice. A neighbourhood is defined as the particles to the left, right,

top and bottom of a particle on the lattice, including the particle itself. The

rate of information flow balances the objectives of exploration and exploitation.

Empirical studies have shown that this topology regularly outperforms the gbest

and lbest topologies [60, 78]. A study by Franken in the domain of PSO NN training

for game learning has, however, shown that, in the presence of a Vmax parameter,

the lbest topology performed better than the VN topology [33].

2.3.5 Guaranteed Convergence Particle Swarm Optimisation

It is possible for the standard PSO algorithm to convergence to a point in the search

space that is not an optimum [106]. A cause of such stagnation is due to particle positions

being equal to their personal and global best positions, i.e. xi = yi = ŷ, where i is the

particle index. From Equation (2.10) it is clear that in this case the particles’ next

velocity update will depend solely on the ωvi(t) term. If ω < 1, this term tends to 0

as long as the condition remains, thereby causing the swarm to converge to arbitrary

points in the search space.

This problem can be addressed by ensuring that the global best position is continually

forced to change, which causes at least the social component of the velocity update to

be non-zero thereby preventing stagnation. One of the first algorithms to solve this

problem is the GCPSO algorithm. The GCPSO algorithm prevents stagnation of the

global best particle until at least a local optimum is found [106]. This is accomplished

through modification of the position and velocity update equations of the global best
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particle [106]:

xγj(t+ 1) = ŷj(t) + ωvγj(t) + ρ(t)(1− 2r2(t)), ∀ j ∈ {1, ..., n} (2.17)

vγj(t+ 1) = −xγj(t) + ŷj(t) + ωvγj(t) + ρ(t)(1− 2r2j(t)), ∀ j ∈ {1, ..., n} (2.18)

where γ is the index of the global best particle and ρ(t) is an additional algorithm

control parameter. The −xγ(t) term reverses the particle’s previous position update and

returns the particle to the ŷ position. The current search direction is maintained by

the ωvγj(t) term. To this the randomly generated component, ρ(t)(1− 2r2j(t)), sampled

from a space with side lengths 2ρ(t), is added. The PSO therefore randomly searches for

a better position within the bounded sample space [106]. The bounds are continually

adapted depending on the PSO’s success or failure to find a better position within the

area. This is done by adapting the ρ parameter as follows [106]:

ρ(t+ 1) =


2ρ(t) if #successes > sc

0.5ρ(t) if #failures > fc

ρ(t) otherwise.

(2.19)

where sc and fc are control parameters defining threshold values for the number of con-

secutive #successes or #failures to find a better global best position. The #failures

count is reset to 0 immediately after a better position is found; similarly, #successes

is returned to 0 as soon as a failure to do so occurs. The initial values for ρ, sc and fc

are dependent on the objective function. An empirical study has however shown that a

default ρ value of 1.0 produces acceptable results [106]. Similarly, an fc = 5 and sc = 15

are recommended for high dimensional search spaces [106].

The GCPSO has been formally proven to converge to at least a local optimum [103].

It is important to note that except for the global best particle, all particles continue to

use the standard position and velocity update equations as defined in Section 2.3.1.

2.3.6 Application of PSO to FFNN Training

This section describes the procedure of supervised learning for FFNNs using PSO for

the purposes of this study’s experimental work.



Chapter 2. Background 27

In addition to the algorithmic components defined above, a further two need to

be defined in order to apply PSO to FFNN training: the particle representation and

the objective function. Each particle in the swarm represents a complete FFNN. This is

accomplished by serialising the FFNN’s weights and biases to a multi-dimensional vector

which forms a particle’s position.

The objective function is defined as the mean squared error (MSE) over the training

set DT , of size PT :

MSET =

∑PT

p=1

∑K
k=1 (tk,p − ok,p)2

PTK
(2.20)

The MSE is deemed an appropriate objective function as it measures the network’s

training accuracy while remaining independent of both the algorithm and data set size.

2.4 PSO Neural Network Applications

The application areas of PSO are vast and diverse. A few examples include biomedical

optimisation, data mining and clustering, process control, visualisation, video analysis,

robotics, scheduling and many more. A survey of PSO applications has been done by

Poli [80]. PSO has also been used successfully in training a variety of NNs, including

radial bases function networks [49, 68, 84], recurrent networks [10, 55, 56, 85, 90] and

product unit NNs [52]. One of the first PSO applications however was in training FFNNs

[19, 57], and it is also the area of application most relevant to this study. The rest of

this section gives a brief overview of PSO development and application with regards to

FFNNs.

Comparison against gradient based algorithms. Mendes et al. [72] compared

PSO against a number of other FFNN training algorithms, namely backpropagation

(BP), QuickProp and RProp (which are all gradient based) [86] as well as an evolution-

ary programming (EP) technique [31]. Their results show that the RProp algorithm

outperformed the PSO algorithm on the problems used, but that PSO showed promise

when compared against the EP. They also state that the PSO algorithm is better suited

to multi-modal problems such as FFNN training. Similar results are reported on an elec-

tromagnetic load forecasting problem in [37], where PSO trained FFNNs were compared
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against networks trained by a genetic algorithm (GA) and a BP algorithm.

Comparison against other global optimisation algorithms. The usefulness of

PSO as a global optimisation algorithm became very evident in the training of product

unit FFNNs [52, 105]. Product unit FFNNs differ from summation unit FFNNs in

calculating the weighted product of the input signal during the feedforward process as

opposed to the weighted sum [18, 67]. Product unit FFNNs are capable of learning

higher-order functional mappings than summation unit FFNNs with the same number

of hidden units [52]. They are, however, significantly harder to train due to the search

space containing steep gradients and a large number of local optima. Studies by Ismail

and Engelbrecht [52] and later Van den Bergh and Engelbrecht [105] showed that the

PSO algorithm is very successful at training product unit FFNNs, outperforming other

global optimisation algorithms including a GA and the LeapFrog optimisation algorithm.

A thorough theoretical study of PSO that includes an investigation into the feasibility

of PSO FFNN training has been conducted by Van den Bergh [103]. The work com-

pared four PSO variants against two GAs and two gradient based learning algorithms.

The algorithms trained both summation unit FFNNs as well as product unit FFNNs

on a variety of classification and regression problems. The investigation showed that,

with appropriate parameter choices, the PSO had competitive performance against the

gradient algorithms in training the summation FFNNs and generally yielded superior

generalisation performance over the GAs when training the product unit FFNNs.

Modified PSOs. A number of studies have investigated modifications to the stan-

dard PSO algorithm specifically to improve performance in FFNN training. Liu et al.

[69] achieved moderate success using an lbest PSO with a variable neighbourhood size

(increasing from two to the swarm size during the course of optimisation). The results

showed that the so called vbest PSO had faster convergence than a standard lbest PSO

and a lower total error than a gbest PSO on the iris classification problem.

Zhao et al. proposed a modification to the position update equation in [119]. In

their work a particle’s position is constructed by (per dimension) choosing parts from

the previous, personal best or global best positions. The decision is made using the

velocity vector, the components of which are stochastically generated from U(0, 1) and
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act as probabilities. This strategy is similar to that of a crossover operation in a GA.

The new algorithm showed some improvement when compared against BP training and

a standard PSO algorithm on a number of classification problems.

PSO hybrid algorithms. In an attempt to further improve FFNN training, a num-

ber of hybrid optimisation algorithms that include PSO as a sub-algorithm have been

developed. One such algorithm, a PSO incorporating BP, has been developed by Zhang

et al. [118]. With their approach FFNNs are trained using a PSO with adaptive inertia.

If no improvement in the global best is shown for a number of generations, the global

best NN is further refined using BP. The hybrid approach improved both convergence

and overall error on the test problems.

Carvalho and Ludermir investigated the performance of a number of PSO-RProp

hybrids in [11]. The hybrid algorithms were compared against their individual component

algorithms on three classification problems. The results showed that, although the hybrid

PSO algorithms were successful in training the NNs, the RProp algorithm by itself

yielded the best performance on the problems used.

Generalisation of PSO trained FFNNs. Very little work has been done to inves-

tigate PSO trained NN generalisation performance and overfitting, and in some pub-

lications pertaining to PSO FFNN training the generalisation error is not reported at

all.

One approach that has been investigated involves optimising the network architecture

alongside the network weights. This has successfully been done in [116, 117] using an

evolutionary algorithm (EA) and PSO hybrid algorithm.

Carvalho and Ludermir [11] directly addresses overfitting in their investigation of

early stopping using a PSO. It was shown that the GL5 early stopping criterion is

inappropriate for PSO as it hampers the algorithm’s exploration of the search space and

leads to significantly worse results. Later work by the same authors added weight decay

to the PSO training process [12], this resulted in better generalisation by the NNs.
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2.5 Summary

This chapter provided background information on the algorithms and methods used in

this study. Section 2.1 introduced NNs and FFNNs along with a detailed discussion of the

elements involved in their training. This was followed by a discussion on the phenomenon

of overfitting in Section 2.2 which included a review of methods that attempt to prevent

overfitting from occurring. Motivation and supporting literature was given surrounding

why it is deemed necessary to study the phenomenon in the context of particle swarm

optimisation.

Section 2.3 focused on the PSO algorithm and its control parameters. Finally a brief

overview of PSO applications was given in Section 2.4.

The next chapter marks the beginning of the experimental work of this study and

provides a baseline analysis of overfitting in PSO trained FFNNs.
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Comparing PSO and GCPSO

Chapter 2 discussed two widely used PSO algorithms: the modified PSO that includes

the inertia term (for the purposes of this chapter referred to as the standard PSO) in

Section 2.3.1 and the GCPSO algorithm in Section 2.3.5.

Although the GCPSO solves a particular deficiency in the algorithm, it also intro-

duces additional algorithm complexity and a number of additional control parameters.

The primary purpose of this chapter is to empirically compare the standard PSO and

GCPSO algorithms on the task of FFNN training. The results and subsequent discussion

presented in this chapter will serve as motivation for algorithm and parameter choices

for the rest of this study.

The chapter also aims to establish an empirical baseline to characterise and demon-

strate ‘typical’ overfitting behaviour by the PSO algorithm.

The remainder of this chapter is structured as follows: the FFNN architectures used

for the empirical work are given in Section 3.1. The test data sets and data set prepa-

ration methods are given in Section 3.2. The experimental methodology is discussed

in Section 3.3. This is followed by an empirical comparison of the PSO and GCPSO

algorithms in Section 3.4. The chapter is concluded with a summary in Section 3.5.

31
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3.1 Architecture Selection

For each of the data sets an appropriate network architecture has been selected. As

discussed in Section 2.2, a number of techniques exist for selecting an optimal network

architecture. Overfitting is however specific to the training algorithm and selecting an

optimal architecture is not guaranteed to prevent overfitting [64]. As the purpose of

this study is to analyse overfitting specifically for the PSO, network architectures that

have the potential to allow overfitting were selected. The generalisation performance

was therefore not considered as a factor for the purposes of architecture selection and no

attempt at optimisation was made in this regard.

All networks had a single hidden layer. A bias unit was included in both the input

and hidden layers of each network. The sigmoid activation function (as defined in Section

2.1.1) was used as the activation function in the hidden and output layers of the FFNNs.

The size of the input layer was set to the number of input variables associated with

the data set. For all data sets a single neuron was used in the output layer, a strategy

discussed in Section 2.1.2.

3.2 Data Sets

This section details the data sets selected for the empirical work of this chapter as well

as the methods used to pre-process and prepare the data sets.

Data Set Selection

A set of 10 different and well-studied data sets were chosen for use in the empirical study.

The sets are split evenly between classification and regression problems. Furthermore,

the data sets vary in the number of input variables (pattern dimensionality), number

of patterns and the scale of the input and output ranges. For the regression problems,

time series were selected as the functions to approximate. Time series are appropriate

regression functions as they inherently contain noise, which is a necessary condition for

overfitting to occur.

The chosen data sets, corresponding network architectures, resulting search space
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dimensionality and number of patterns in each set are given in Table 3.1. The equations

for the various time series are listed below:

Table 3.1: The data sets used in the experimental work. The number of patterns in each set

(P ), chosen neural network input (I), hidden (J) and output layer (K) sizes and search space

dimensionality (n) is shown.

Data Set P I J K n

Classification problems

Glass Identification UCI MLR [1] 214 9 12 6 133

Iris UCI MLR [1] 150 4 8 3 49

Pima Indians Diabetes UCI MLR [1] 768 8 20 2 201

Wisconsin Diagnostic Breast Cancer UCI MLR [1] 569 30 25 2 801

Wine UCI MLR [1] 178 13 10 3 151

Regression problems

Henon Map Equation (3.1) [103] 100 2 10 1 41

Logistic Map Equation (3.2) 981 4 10 1 61

Mackey-Glass Equation Equation (3.3) [79] 981 4 20 1 121

Sunspots(Annual) NGDC [74] 305 4 10 1 61

TS5 Equation (3.4) 291 10 5 1 61

• Henon Map:

zt = 1 + 0.3zt−2 − 1.4z2t−1; z0 and z1 ∼ U(−1, 1) (3.1)

• Logistic Map:

zt = rzt−1(1− zt−1); z0 = 0.01, r = 4 (3.2)

• Mackey-Glass Equation:

zt = (1− b)zt−1 + a
zt−τ

1 + z10t−τ
; b = 0.1, a = 0.2, τ = 30 (3.3)
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• TS5:

zt = 0.3zt−6 − 0.6zt−4 + 0.5zt−1 + 0.3z2t−6 − 0.2z2t−4 + nt; nt ∼ N(0, 0.05) (3.4)

For the Henon Map, Logistic Map, Mackey-Glass and TS5 time series, 1000 points

were sampled from each equation. Training patterns were then constructed from the

sampled points by taking, for a target point t + 1, t > I, a window of the I preceding

points as input variables; where I is the size of the input layer as given in Table 3.1. The

Mackey-Glass equation was an exception to this, where instead the t, t− 6, t− 12 and

t− 18 points were used as input parameters, as in [79].

Data Set Preparation

The data sets were preprocessed in the following manner: the values of the input vector

were scaled to the range [−2, 2] which is a rational approximation of [−
√

3,
√

3], the

active domain of the sigmoid function [28]. Although scaling of the input values is not

strictly necessary, it has been shown to improve training performance [28]. The data set’s

target values were scaled to [0.1, 0.9] which falls within the output range of the sigmoid

function. In the case of classification problems, nominal class values were converted to

a numeric representation and then scaled to the range [0.1, 0.9] such that the scaled

target values are numerically equidistant. Although this particular method of encoding

class values has been shown to increase training time [28] it allows a FFNN to use a

single output neuron to classify any number of classes, avoiding an increase in network

complexity as well as aiding deeper analysis of the FFNN output values across problems.

The data sets were split in a 2 : 1 ratio into a training set DT and a generalisation

set DG, with DG being used to estimate the generalisation ability of the NN. In the

case of the classification data sets, the patterns were assigned randomly to DT and

DG and shuffled. Whereas with the time series the patterns were assigned in order to

each set. Also, for the classification data sets, while calculating both the training and

generalisation errors, the patterns are presented to the NN stochastically, preventing

inadvertent memorisation of the pattern sequence.
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3.3 Experimental Methodology

This section gives the general methodology used for this experiment. The hypothesis

and significance testing methods are given along with the algorithm configurations and

experimental procedure.

3.3.1 Hypothesis and Significance Testing

For this experiment, the following null and alternative hypotheses were used:

• H0: There is no significant difference in performance between the standard PSO

and the GCPSO.

• H1: There is a significant difference in performance between the standard PSO and

the GCPSO.

To determine statistical significance a two-tailed Mann-Whitney U non-parametric

test was performed [71]. A significance level of 5% (α = 0.05) was used for all tests.

Where multiple comparisons were made per test (as opposed to a binary comparison),

the significance level was adjusted using Bonferroni correction [46]: β = α
n
, where β is

the adjusted significance level and n is the number of comparisons performed.

3.3.2 PSO Configurations

The following parameter values were used in the experimental work for both the standard

PSO and GCPSO. The c1 and c2 control parameters were set to 1.496180, with inertia

(ω) set to 0.729844. These values are known to be appropriate for a number of problems

and correspond to those used in [20]. More importantly, the values ensure convergent

particle trajectories [103]. For both algorithms a swarm size of 25 particles was used.

The effect of the swarm size on FFNN training is investigated in a later chapter.

For the GCPSO, a ρ = 1 was used with a success threshold (sc) of 15 and a fail-

ure threshold (fc) of 5. These values correspond to the recommended values for high

dimensional search spaces [106].
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The lbest neighbourhood topology with a neighbourhood size of 5, as described in

Section 2.3.4, was used for both the standard PSO and GCPSO, thereby making both

algorithms less susceptible to local minima.

In order to reduce the number of experiment variables, no Vmax parameter was

defined for either algorithm for this experiment. The effect of the Vmax parameter on

overfitting is investigated in detail in a later chapter.

A fixed number of 50 000 objective function evaluations was used as stopping criterion

for both PSO algorithms, resulting in 2000 iterations with a swarm size of 25.

Algorithm Initialisation

The particle swarms and NNs were initialised as follows: the network weights (and

therefore the particle positions, as each particle position represents a network’s weight

vector) were randomly initialised in the range [ −1√
fanin

, 1√
fanin

], where fanin is the number

of incoming connections of the corresponding neuron. This weight initialisation strategy

has been shown to aid in avoiding local minima during training [113].

The particles were initialised stationary, that is, velocities were initialised to the zero

vector 0. This initialisation strategy has been shown to lead to superior optimisation

speed compared to other strategies [27].

3.3.3 Experimental Procedure

For each of the problems the algorithms were executed 30 times, with each run using a

Mersenne twister pseudo-random number generator (PRNG) with a unique seed. The

means and standard deviations are reported across all 30 samples. Where stated, the

sample median is also reported; the median is a better indication of population locality

in cases where the population is highly skewed.

Algorithm Measurements

The following algorithm measurements were calculated during each run of an algorithm:

• ET : The re-scaled mean squared error over the training data set as per Equation

(2.20).
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• EG: The re-scaled mean squared error over the generalisation data as per Equation

(3.5).

• ρF : The Röbel generalisation factor as given in Section 2.2.1.

• Davg: The swarm diversity as per Equation (2.16).

Similar to the training error, the generalisation error is calculated as:

EG =

∑PG

p=1

∑K
k=1 (tk,p − ok,p)2

PGK
(3.5)

where PG is the number of patterns in the generalisation set and K is dimensionality of

the target pattern.

It is important to note that the errors were calculated on re-scaled data. That is,

the NN’s output and pattern’s target value is scaled back to the target value’s original

range. The re-scaling results in a finer indication of the NN’s accuracy relative to the

original form of the data sets.

3.4 Results

The results of the comparison between the two algorithms are given in this section. The

results are presented in four parts, one per performance measurement.

Table 3.2 shows the re-scaled training error results for the PSO and GCPSO algo-

rithms run on the five classification and five regression problems.

The standard PSO obtained a marginally lower error than the GCPSO for four of

the five classification problems, the WDBC data set being the exception. For all five

classification problems the difference in training error performance was not statistically

significant. The PSO obtained an insignificantly lower training error on the Logisitics

Map, Mackey-Glass equation and TS5 data sets. The reported standard deviations were

low (relative to their scale) on all the data sets indicating that both algorithms showed

consistent performance over the 30 samples.

From these results it is clear that the algorithms did not differ significantly and H0

is not rejected for any of the data sets, based on training error.
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Table 3.2: Re-scaled training error (ET ) means (µ̄), medians (x̃) and standard deviations (σ)

for the PSO and GCPSO algorithms after 50 000 objective function evaluations. The p-value

indicates the result of the significance test.

Problem PSO GCPSO

µ̄ x̃ σ µ̄ x̃ σ p-value

Diabetes 0.11841 0.1178 0.00528 0.11884 0.11818 0.00394 0.542

Glass 0.298 0.30054 0.05045 0.30241 0.29927 0.06605 0.994

Iris 0.00852 0.00849 0.00478 0.00927 0.00826 0.00505 0.612

WDBC 0.01235 0.01223 0.00263 0.01207 0.01135 0.0026 0.878

Wine 0.00179 0.00166 0.00116 0.00183 0.00125 0.00155 0.752

Henon Map 0.00101 0.0009 0.00057 0.00097 0.00081 0.00058 0.476

Log. Map 0.0008 0.00079 0.00019 0.00081 0.00081 0.00016 0.912

M.-Glass 0.00079 0.00077 0.00016 0.00082 0.00081 0.00016 0.413

Sunspots 155.602 162.201 18.037 155.203 155.746 15.171 0.592

TS5 0.00203 0.00203 0.00015 0.00208 0.00207 0.00014 0.26

The re-scaled generalisation error results for both algorithms are summarised in Table

3.3. The GCPSO obtained marginally lower generalisation errors for all of the classifica-

tion problems with the exception of the Diabetes set. The PSO obtained slightly lower

errors on the Henon Map, Mackey-Glass equation, Sunspots and TS5 regression data

sets. The results also show consistent performance in terms of the standard deviations

for all 30 samples.

Similar to the training error results, H0 is not rejected and it is concluded that no

significant difference in generalisation performance exists between the PSO and GCPSO

for any of the classification or regression problems.

The generalisation factor results for both algorithms are given in Table 3.4. For the

Iris, Wine and Henon Map data sets very large standard deviations were obtained for

both the PSO and GCPSO. This that the obtained generalisation factor differed greatly

between samples on these three data sets. As a result, the median was considered a
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Table 3.3: Re-scaled generalisation error (EG) means (µ̄), medians (x̃) and standard deviations

(σ) for the PSO and GCPSO algorithms after 50 000 objective function evaluations. The p-

value indicates the result of the significance test.

Problem PSO GCPSO

µ̄ x̃ σ µ̄ x̃ σ p-value

Diabetes 0.16925 0.16516 0.01227 0.16942 0.16936 0.00892 0.676

Glass 1.03654 1.0316 0.25657 0.99216 0.95951 0.30607 0.552

Iris 0.03733 0.03399 0.02032 0.03666 0.03292 0.01869 0.832

WDBC 0.03318 0.03256 0.00896 0.03259 0.03346 0.01002 0.878

Wine 0.04289 0.04069 0.0185 0.04267 0.03972 0.01582 0.912

Henon Map 0.01077 0.00564 0.01371 0.01225 0.00722 0.01614 0.665

Log. Map 0.00144 0.00126 0.0007 0.00133 0.00126 0.00055 0.697

M.-Glass 0.00129 0.00131 0.00053 0.0013 0.0014 0.00049 0.831

Sunspots 231.801 222.978 43.871 233.922 229.986 40.366 0.602

TS5 0.0044 0.00408 0.00114 0.00472 0.00461 0.00138 0.35

better indicator of performance.

For both algorithms a ρF > 1 was obtained on all problems, which shows that both

algorithms overfitted the training set to some degree. However, from the large standard

deviations it is clear that the degree of overfitting greatly differed between samples.

This indicates that the stochastic conditions has a potentially large effect on overfitting,

either during swarm initialisation or over the course of the algorithm. Swarm position

initialisation (weight initialisation) is investigated in a later chapter.

Similar to the training and generalisation error results there was no significant differ-

ence in terms of generalisation factor between either algorithm; H0 is not rejected with

p > 0.05 for all of the problems.

A question remains whether the algorithms had similar accuracy and performance

over time. In order to investigate this aspect, the training and generalisation errors

were plotted against the iterations of the algorithms. Showing these results for all data
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Table 3.4: Results showing the generalisation factor (ρF ) means (µ̄), medians (x̃) and standard

deviations (σ) for the PSO and GCPSO algorithms after 50 000 objective function evaluations.

The p-value indicates the result of the significance test.

Problem PSO GCPSO

µ̄ x̃ σ µ̄ x̃ σ p-value

Diabetes 1.43409 1.39204 0.14529 1.42813 1.42547 0.10333 0.774

Glass 3.69748 3.13202 1.60842 3.58291 3.45989 1.69696 0.786

Iris 10.831 4.198 18.382 9.85419 4.18937 18.265 0.665

WDBC 2.87078 2.75135 1.14998 2.92848 3.0237 1.30513 0.832

Wine 52.348 26.678 87.873 39.127 27.529 34.97 0.697

Henon Map 10.762 8.424 11.188 15.974 12.161 19.557 0.39

Log. Map 2.06341 1.60321 1.402 1.78381 1.5952 0.96168 0.513

M.-Glass 1.78528 1.46487 1.0028 1.73461 1.67639 0.9086 0.994

Sunspots 1.53515 1.43052 0.45634 1.53766 1.45766 0.39045 0.581

TS5 2.1867 2.00878 0.61799 2.28335 2.25962 0.68583 0.561

sets is infeasible and therefore a number of figures that are considered representative or

interesting are shown below. Unless otherwise stated, all figures show the mean over 30

samples.

Figure 3.1 shows the training and generalisation performance over time for both

algorithms on the Diabetes classification data set. As seen in the figure there is no

discernible difference in either training or generalisation performance, which indicates

that the algorithms not only obtained near equal final errors, but also behaved very

similarly over time. Figure 3.1 is representative of most of the other classification as

well as regression problems, with the exception of the Glass and Henon Map data sets.

Also clearly visible in the Figure 3.1 is the divergence of the training and generalisation

errors, indicating overfitting of the training set after approximately 200 iterations. This

behaviour was consistent over all data sets.

The ET and EG graphs for the Glass data set are given in Figure 3.2. Similar
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Figure 3.1: ET and EG over 2000 training iterations on the Diabetes data set.

to the results for all other data sets, the algorithms had near identical training errors

throughout the run. The Glass data set was the only data set where, in the case of

the generalisation errors, the PSO obtained a marginally higher error throughout the

execution of the algorithm. However, as shown in Table 3.3, the difference was not

significant.

The results for the Henon Map data set are illustrated in Figure 3.3. Similar to the

results for the Glass data set, the PSO generalisation error began to deviate from the

GCPSO generalisation error early in the execution of the algorithm. Although worse

than the training error throughout the run, the generalisation error improved over time,

lessening the extent of the overfitting. The PSO later succeeded in obtaining a general-

isation error lower than that of the GCPSO.

The above graphs illustrate that the algorithms had very similar performance through-

out the optimisation process, with minor variance shown on some, unrelated data sets.
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Figure 3.2: ET and EG over 2000 training iterations on the Glass data set.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  250  500  750  1000  1250  1500  1750  2000

M
S

E
 (

re
s
c
a

le
d

)

Iterations

PSO Training Error
PSO Generalization Error

GCPSO Training Error
GCPSO Generalization Error

Figure 3.3: ET and EG over 2000 training iterations on the Henon Map data set.



Chapter 3. Comparing PSO and GCPSO 43

Diversity

The diversity results for both algorithms showed that swarm divergence occurred on all

data sets (both classification and regression) during the course of optimisation. Swarm

divergence can be seen as an increase of diversity over time as measured by the average

distance around the swarm centre.

Figures 3.4 and 3.5 show the diversity per iteration on the WDBC classification data

set, for the PSO and GCPSO respectively. The WDBC diversity was representative

of the other classification problems, for comparison, the Iris diversity results are also

shown in Figure 3.6. The individual samples varied widely and also differed greatly in

size. Therefore samples are shown individually and have been log scaled with the median

result shown in red (along with diamond shaped markers).

 1

 10

 100

 1000

 10000

 100000

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

D
iv

e
rs

it
y
 (

lo
g

 s
c
a

le
d

)

Iterations

Figure 3.4: PSO Davg over 2000 training iterations on the WDBC data set. Graph shows 30

individuals samples with median result indicated in red.

For both algorithms, the figures show that although some samples showed relatively

stable diversity (a value of approximately 50), other samples diverged widely. When com-

paring the algorithms, the standard PSO showed less divergence, with samples showing
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Figure 3.5: GCPSO Davg over 2000 training iterations on the WDBC data set. Graph shows

30 individuals samples with median result indicated in red.
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Figure 3.6: PSO Davg over 2000 training iterations on the Iris data set. Graph shows 30

individuals samples with median result indicated in red.
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tighter clustering around the median as compared to the GCPSO.

The diversity results indicate that, although the algorithms obtained a solution, the

swarm did not fully converge on the solution. One method for addressing swarm di-

vergence is the correct choice of control parameters, most notably the Vmax parameter.

As this initial experiment was a baseline comparison, the control parameters were not

optimised, nor their effect on controlling overfitting investigated.

The effect of swarm convergence and the Vmax parameter, as well as other control

parameters, on overfitting is analysed in the following chapters.

3.5 Summary

This chapter provided an empirical comparison of two widely publicised PSO algorithms:

the standard PSO that includes an inertia term and the GCPSO. The NN architectures

and data sets used for the comparison were given in Sections 3.1 and 3.2. The experi-

mental methodology was given in Section 3.3.

The results were given in Section 3.4. An empirical baseline for overfitting behaviour

on the selected data sets was established. It was observed that overfitting by both PSO

algorithms occurred early in the optimisation process, in most cases, no later than 200

iterations or 5000 objective function evaluations with a swarm size of 25.

It was further shown empirically that there was no significant difference between the

GCPSO and PSO in terms of algorithm performance and overfitting behaviour either

over the course of optimisation or in the final result obtained.

However, analysis of the diversity results showed that the particle swarms for both

algorithms diverged over the course of the optimisation process. This is most likely

due to choice of control parameters for this experiment. The control parameters may

also contribute to the overall degree of overfitting, which is investigated in the following

chapters.



Chapter 4

PSO Maximum Velocity

Chapter 3 established a baseline for the overfitting behaviour of FFNNs when trained

using particle swarms, comparing the lbest- and GCPSO algorithms.

Two primary observations were made, the first is that there is no significant difference

in behaviour or performance of the algorithms. The second was that swarm divergence

occurred on all problems in the case of both PSOs. It is likely that the cause of the

divergence is due to the lack of the use of a maximum velocity (Vmax) parameter in the

initial experiment.

The purpose of this chapter is to investigate the effect, if any, of the Vmax parameter

on the overfitting behaviour of the FFNNs. The hypothesis that the lack of the Vmax

parameter in the initial experiment was the cause of the divergent swarms will also be

investigated.

The remainder of the chapter is structured as follows: Section 4.1 describes the

methodology used for the investigation, including the method used to explore the Vmax

parameter space, algorithm configurations and measurements. This is followed by the

results in Section 4.2. A summary of the chapter is given in Section 4.3.

4.1 Experimental Methodology

This section describes the methods used to analyse the potential effect of Vmax on

overfitting.

46
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4.1.1 Vmax selection

In order to analyse the effect of Vmax, a number of candidate Vmax values needed to

be chosen for study. Considering the problem domain, that is, the training of FFNNs

using the sigmoid activation function (2.1.1), the Vmax parameter effectively limits the

maximum size of the updates to the neural network weights (i.e. the particle positions).

The optimal range for Vmax is therefore tied to the specific activation function used by

the FFNN, as it is the activation function that determines the effective domain of the

weights. In the case of the sigmoid function, the active domain is defined as [−
√

3,
√

3]

[28]. It therefore follows that an appropriate range for Vmax would be relatively small,

perhaps within, or slightly larger than the active domain.

Assuming the use of a sigmoid activation function, the Vmax parameters to be used

for the analysis were generated using the following exponential equation:

Vmaxi = 0.008e4.83
s
S , ∀ i ∈ 1, ..., n; s ∈ [1..S]. (4.1)

where n is the dimensionality of the search space, s is the sample to generate, and S is

the number of Vmax samples to generate. All components (Vmaxi) of each Vmax vector

were equal. For this analysis, 10 Vmax parameters (S = 10) were sampled. This yields

Vmax parameters with components in the range (0.0, 10.017]. Due to the exponential

nature of Equation (4.1) the majority of the generated parameter values are small, falling

within the domain of the activation function. Larger values (closer to 10.0) are included

for the sake of completeness. The analysis therefore focuses on smaller Vmax parameters,

which is deemed appropriate.

4.1.2 Experimental Procedure

The data sets used for the experiment comprised of the same ten data sets specified in

Section 3.2, split evenly between classification and regression problems. Similarly the

NNs used the same architectures given in Table 3.1.

The lbest PSO was then executed on each of the data sets using each of the 10 selected

Vmax parameters and the results recorded. Each execution of the algorithm on a specific

problem with a specific Vmax value was repeated 30 times using a Mersenne twister
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PRNG with a unique seed. The means and standard deviation (and, where stated, the

median) across the 30 samples are reported.

PSO Configuration

As shown in Chapter 3 there is no significant advantage in using the GCPSO algorithm

over the standard PSO. The GCPSO also adds additional complexity and parameters. As

such, the PSO algorithm used for the Vmax analysis was an lbest PSO with ω = 0.729844.

The c1 and c2 parameters were set to 1.496180 and a neighbourhood size of 5 was used.

The swarm size was set to 25 particles. The number of objective function evaluations

performed by the PSO were limited to 50000.

As described in Section 3.3.2 the particle positions were randomly initialised in the

range [ −1√
fanin

, 1√
fanin

], with velocities initialised to 0.

This is the exact same configuration used in Chapter 3 which makes the results,

especially swarm convergence, comparable.

Algorithm Measurements

The algorithm measurements as defined in Section 3.3.3 were used. That is, the training

error ET , generalisation error EG, Röbel generalisation factor ρF , and swarm diversity

Davg.

4.2 Results

This results of the experimental work of this chapter is given in this section. The

purpose of the experiment was two-fold: firstly, to determine whether Vmax has an effect

on overfitting and secondly, whether the lack of Vmax lead to the divergent behaviour

seen in Chapter 3. The results are therefore divided into two subsections: Section 4.2.1

focuses on diversity, with the accuracy and overfitting results discussed in Section 4.2.2.

A general discussion and analysis of the results is given in Section 4.2.3.
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4.2.1 Diversity

The diversity results for each of the data sets and Vmax values are given in Table 4.1.

The results show that the lowest diversities coincided with the lowest tested Vmax value

of 0.129 for all the data sets, with the exception of the Diabetes data set, where diversity

was lowest for the slightly higher Vmax = 0.21. Diversity also increased monotonically

as Vmax increased. The standard deviations of the results show that the diversities were

consistent across samples.

These results are expected, as a smaller Vmax hampers the speed of the particles dur-

ing the optimisation process, thereby leading to smaller position changes which reduces

the distance a particle may travel from the swarm centre within a finite number of steps.

A smaller Vmax therefore reduces the exploration potential of the swarm. A higher Vmax

will in turn allow a particle to potentially move further away from the swarm centre in

fewer iterations, thereby allowing more exploration of the search space, leading to a

higher diversity. However, the question remains on whether the swarms stagnated to a

higher final diversity in the presence of a higher Vmax, or whether there was an initial

phase of convergence followed by divergence, due to increased velocities allowed by the

higher Vmax [15].

Figure 4.1 illustrates the effect of Vmax on the swarm diversity over time. The figure

shows the diversity, per sample, on the WDBC data set for increasing values of Vmax.

When compared to the results in Section 3.4, the introduction of the Vmax parameter has

indeed had the desired effect of reducing the swarm divergence. As seen in Figure 4.1a,

for small Vmax values, the swarm goes through an initial phase of intense exploration,

ending within approximately 100 iterations. After which the swarm diversity decreased

until finally stagnating. However, the final diversity values are still relatively large for

some samples, indicating the swarm did not converge on a single point.

When compared with Figures 4.1b, 4.1c and 4.1d, it is seen that for larger Vmax values

(generally for Vmax > 1.0, depending on the data set), the swarm has a far shorter (if

any) period where diversity decreases and instead continues to explore throughout the

optimisation process, with the divergence increasing in severity as the value of Vmax

increased. This behaviour was consistent across all data sets.

Due to the large diversities seen for Vmax > 1, which continue to increase as Vmax



Chapter 4. PSO Maximum Velocity 50

increases, it is clear that the lack of a Vmax parameter is not the underlying cause of the

swarm divergence. Instead, the use of a sufficiently small (depending on the data set)

Vmax limits any divergence that does occur.

The effect of Vmax, or indeed the convergence of the swarm, on overfitting, training

and generalisation accuracy is investigated next.
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 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

D
iv

e
rs

it
y

Iterations

(b) Vmax = 0.895

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

D
iv

e
rs

it
y

Iterations

(c) Vmax = 3.812
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(d) Vmax = 10.02

Figure 4.1: Swarm diversity, per sample, vs. iterations for the WDBC data set with increasing

Vmax values. The median result is shown in red (diamonds)
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4.2.2 Accuracy

Training Accuracy

Table 4.2 shows the training error means for each of the Vmax values across all data sets.

The standard deviations indicate the results were consistent with the reported mean

values.

The effect of the Vmax parameter on the training accuracy was dependant on the

data set. Primarily two behaviours were observed.

For the Diabetes, Glass, WDBC and Wine classification data sets the lowest training

errors were achieved for a Vmax < 0.2. Furthermore, as seen in Table 4.2 a non-monotonic

increase in the training errors were observed as the Vmax parameter increased.

In the case of the other data sets (all regression data sets as well as the Iris data set),

the observed training errors remained stable, merely fluctuating for the different values

of Vmax. Notwithstanding, for the Iris, Mackey-Glass and TS5 data sets the PSO still

achieved the lowest training errors for a Vmax < 1.0.

The difference in the two PSO behaviours on the data sets is clearly shown in Figure

4.2. As shown in the figure, there is an initial decrease in training error for the Logistic

Map data set for Vmax < 0.1 after which it remains stable around ET = 0.0008. However,

for the Wine data set there is a clear increase in training error as Vmax increases, peaking

around Vmax = 6.0.

Also illustrated in Table 4.2, any effect Vmax did have on the training error diminished

beyond, approximately, a value of 6 regardless of data set.

In summary, the results show that lower Vmax values, Vmax < 1.0, lead to an im-

provement in training accuracy for eight of the ten data sets tested, especially in the case

of the larger data sets. The severity of the effect is however largely dependent on the data

set. Considering the diversity results for the Vmax values in this range, it is likely that

the reduced divergence of the swarm allowed for exploitation and improvement of any

optima found, thereby decreasing the training error. The effect of Vmax on the training

errors also seemed to reached a plateau for Vmax > 6.0. Considering the high swarm

diversity for Vmax > 6.0, it follows that the swarms likely failed to effectively find and

exploit optima, reducing the training accuracy of the FFNNs. Most importantly, despite
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Figure 4.2: ET for each value of Vmax on the Logistic Map and Wine data sets.

small Vmax values improving swarm convergence, the swarms still failed to converge to

a single point within the available iterations.

Generalisation Accuracy

The generalisation error results are given in Table 4.3. Similar to the training error

results, the standard deviations indicate results were consistent with the mean value

across all data sets for each value of Vmax.

For most data sets, Vmax had little effect on the generalisation error, although a

marginal decrease in the generalisation error is noticeable for the Diabetes data set as

Vmax is increased. The specific Vmax value for which the lowest generalisation error was

obtained differed greatly between data sets.
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For illustrative purposes the generalisation errors for the Wine and Logistic Map data

sets are shown in Figure 4.3. The errors are logarithmically scaled to account for the

difference in magnitude. Though some fluctuation in the errors can be seen, no clear

trend emerges. Similar to the training error, any change in generalisation error seems

to lessen in severity as the Vmax value increases. This was characteristic across all the

data sets.

Generally, the results show that Vmax and by extension the diversity had little effect

on the generalisation performance. Since the generalisation error is not directly optimised

by the PSO (as opposed to the training error which is used as the objective function),

it would follow that a change in the swarm’s optimisation behaviour, in this case, the

divergence, could potentially have little effect on the actual generalisation of the FFNNs,

as is the case here.

However, considering an increase in training error relative to an increasing Vmax and

a constant generalisation error, it is expected that overall, overfitting should decrease

with an increase in Vmax, an effect more clearly seen through the generalisation factor.

Generalisation Factor

Finally, the generalisation factor results are given in Table 4.4. The Diabetes, Glass,

Wine and WDBC data sets showed a marked decrease in the generalisation factor, which

indicates a reduction in overfitting, as Vmax increased. However, as mentioned above,

this is expected, as a decrease in ET (as was the case with these four data sets) along

with a (near) constant EG will result in a decrease of the generalisation factor.

This shows a weakness in the use of the generalisation factor as the sole indicator of

overfitting, since, as shown here, generalisation was unaffected and the decrease in ρF

was due to the reduced accuracy on the training data.

In terms of the regression data sets, lower generalisation factors were generally ob-

tained for lower Vmax values, as opposed to higher values as with the classification data

sets. On the Logistic Map, Mackey-Glass, Sunspot and TS5 data sets, the generalisation

factor remained roughly the same across the range of Vmax, with only marginal increases

as Vmax increased. This is consistent with expectations, as Vmax did not have as drastic

an effect on the training accuracy on these data sets.
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Figure 4.3: EG (log scaled) for each value of Vmax on the Logistic Map and Wine data sets.

The effect of the generalisation factors on a classification and a regression data set is

graphed in Figure 4.4 for the WDBC and Logistic Map data sets. The figure clearly shows

the decrease in overfitting on the WDBC data set and the slight increase in generalisation

factor on the Logistic Map data set. Again, any effect became less pronounced as Vmax

increased.

4.2.3 Discussion

In terms of Vmax’s effect on the PSO algorithm itself it was shown that the lack of a Vmax

parameter was not the cause of the divergence of the swarms seen in the results of Chapter

3, but divergence was reduced by the use of a Vmax in the range (0.0, 1.0]. Generally, for

Vmax > 1.0 the swarms failed to converge during the course of optimisation, with the
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Figure 4.4: ρF for each value of Vmax on the Logistic Map and WDBC data sets.

effect becoming worse as Vmax was increased.

An assumption of this investigation was the activation function used, in this case the

standard sigmoid function. Further investigation is required into the effect of modified

sigmoid and other activation functions, including whether a small Vmax is still appro-

priate. This is discussed in a later chapter.

Further, it was shown that Vmax largely effects only the training error, likely due

to the parameter’s effect on the diversity. On the larger (both in terms of the num-

ber of patterns and the search space dimensionality) data sets, the training accuracy

was improved for smaller Vmax values. However, the generalisation accuracy remained

unaffected regardless of the value of Vmax.

On the less complex data sets, Vmax had little effect on accuracy (both training and

generalisation), with all errors remaining roughly the same for the values of Vmax that
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were tested.

4.3 Summary

This chapter investigated the effect of the PSO Vmax parameter on swarm diversity and

overfitting in the context of training FFNNs. Section 4.1 described the methodology

used for the investigation, particularly the method of exploring the Vmax parameter

space along with other algorithm considerations. The results and a discussion thereof

was given in Section 4.2.

A Vmax ≈ 1.0 offered accuracy results comparable to higher values, while reducing

divergence. None of the tested Vmax parameters could however guarantee convergence

of the swarm.

The next chapter similarly investigates the effect of the other control parameter in-

volved in the PSO’s velocity update equation, namely the inertia and social and cognitive

acceleration coefficients.
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Chapter 5

PSO Velocity Parameters

Chapter 4 investigated the effect of the Vmax control parameter on FFNN accuracy and

overfitting. The purpose of this chapter is to similarly investigate the influence of the

additional control parameters involved in the calculation of a particle’s velocity, that is,

the inertia weight, cognitive and social acceleration control parameters. The goal of the

analysis is not merely to find the absolute best parameters for each data set, but rather

to attempt to discover any commonality in parameter choices or defining interactions

across all data sets that favourably or adversely affect FFNN performance, in terms of

accuracy and overfitting.

The experimental methodology used to investigate the effect of the control parameters

is given in Section 5.1. The results and discussion of the findings are given Section 5.2.

Section 5.3 summarises the chapter.

5.1 Experimental Methodology

This section discusses the specific methods used in this chapter to explore and investigate

the effect of the inertia weight (ω), cognitive (c1) and social (c2) acceleration control

parameters on FFNN accuracy and overfitting.

The effect and purpose of the acceleration coefficient and inertia control parameters

in the PSO algorithm has been discussed in Section 2.3.2. An important aspect of these

parameters, as detailed in Section 2.3.2, is the co-dependent interaction between the
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Chapter 5. PSO Velocity Parameters 62

parameters and their affect on swarm convergence. Due to this interaction, it is inap-

propriate to analyse any one of the parameters in isolation, as specific combinations of

parameter values might affect performance in specific ways. As such, a method was re-

quired where all three parameters are analysed simultaneously, including any interaction

between the parameters.

To this end, an exploratory data analysis technique that makes use of low-discrepancy

sequences (LDS) and high dimensional data visualisation was used [32]. This method of

exploring the parameter space holds a number of advantages suitable to the investigation

of the control parameters in this chapter, namely [32]:

• Discovering any interactions between parameters.

• Avoiding biased step sizes in the parameter space.

• Analysing a representative sample of the parameter search spaces.

• Limiting the required number of experiment simulations that needs to be per-

formed.

LDSs are used to generate values in the control parameter search space and subse-

quently parallel coordinate plots to visualise the parameters along with the algorithm

performance measurements. These techniques are briefly discussed below with their

application in the experimental work discussed in Section 5.1.3.

Low-Discrepancy Sequences

Low-discrepancy sequences, also known as quasi-random numbers, are numerical se-

quences for which the elements have a low discrepancy (are roughly equidistributed)

for any size of the sequence [35]. The purpose of LDSs are to uniformly fill the unit

hypercube as evenly as possible while still maintaining the appearance of randomness

[35]. This effectively samples a given area in a uniform manner while avoiding potential

aliasing which occurs when using a fixed step size to sample the space. For the purposes

of this study, Sobol sequences (a specific type of LDS) were used [97, 98], primarily due

to the efficiency of their generation and their previous use in analysis of the parameter

space in CI algorithms [32, 54, 108].



Chapter 5. PSO Velocity Parameters 63

Parallel coordinates

Parallel coordinates, or parallel coordinate plots, is a method which “induces a nonpro-

jective [sic] mapping between n-dimensional and two-dimensional sets”, thereby enabling

the visualisation of high dimensional data on a two-dimensional plot [51, 111]. The pri-

mary advantage of using parallel coordinates in analysing the effect of parameters is that

it greatly aids in the identification of clusters or trends of data through human pattern

recognition. An example of a parallel coordinate plot of 7-dimensional data is given in

Figure 5.1, showing clustering of the data in the fourth and fifth dimensions.

Figure 5.1: Example parallel coordinate plot of 7-dimensional data.

5.1.1 Data Sets

The ten data sets (five classification and five regression data sets) described in Section

3.2 were used for the purposes of this analysis. The NN architectures given in Table 3.1

were again used, making results comparable to those of previous chapters.
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5.1.2 PSO Configuration

Similar to Chapter 4, the PSO algorithm used in this chapter was an lbest PSO with a

neighbourhood size of 5. The swarm size was set to 25 particles. The number of fitness

evaluations performed by the PSO were limited to 50000.

The particle positions were randomly initialised in the range [ −1√
fanin

, 1√
fanin

], with

velocities initialised to 0 as described in Section 3.3.2.

A Vmax value of 1 was used for all problem data sets. As shown in Chapter 4, this

value aids in preventing swarm divergence from occurring whilst still allowing adequate

swarm exploration.

5.1.3 Experimental Procedure

Analysis proceeded as follows: for a data set, a set of 64 3-dimensional Sobol points were

generated. Each Sobol point represented a single control parameter configuration, with

the first dimension representing ω, the second c1 and the third c2. Each dimension was

scaled to a range known to be appropriate for the relevant parameter [103]: 0 < ω < 1;

0 < c1 < 2 and 0 < c2 < 2. The algorithm was then executed 30 times for each of the

64 parameter configurations using a Mersenne Twister PRNG with a unique seed. The

mean performance over the 30 samples is reported. The 64 aggregated result sets were

then visualised using parallel coordinates and analysed for any patterns or trends. This

procedure was repeated for all data sets.

Algorithm Measurements

The training (ET ) and generalisation error (EG) as well as the generalisation factor (ρF )

as described in Section 3.3.3 were used to measure the performance of each execution

of the algorithm. The diversities of the swarms were also recorded for the purpose of

ensuring drastic swarm divergence (a swarm explosion) did not occur.



Chapter 5. PSO Velocity Parameters 65

5.2 Results

The results of the parameter analysis are given in this section, followed by a discussion

thereof.

Despite some parameter configurations violating the inequality given in Equation

(2.13), the diversity results showed no drastic swarm divergence occurred for any of the

parameter configurations on any of the data sets. This is likely due to the choice of

Vmax = 1.0 which, as shown in Chapter 4, sufficiently aids in preventing drastic swarm

divergence within the permitted 50000 fitness evaluations.

5.2.1 Individual Data Set Results

The parameters that lead to the lowest generalisation errors per data set are shown in

Table 5.1. For eight of the ten data sets a ω value in the range of (0.59, 0.74) lead

to the lowest generalisation error. Unlike ω, the optimal values for c1 and c2 could

not be consolidated to a common range for all data sets, with optimal values occurring

throughout the range (0.22053, 1.93756).

Table 5.1 also shows a ρF > 1 for all data sets, with exceptionally high ρF values

occurring for the Iris, Wine, Henon Map and Mackey-Glass data sets. It is clear that

for these data sets, the parameter configurations not only lead to the lowest EG results,

but also lead to very low training errors, to a point at which severe overfitting is shown

to occur.

Table 5.2 shows the parameter configurations that lead to the highest generalisation

errors per data set. Unlike the optimal parameter results, regions that lead to the

absolute highest generalisation error for all data sets could be identified for each of the

parameters: ω ∈ (0.14, 0.24), c1 ∈ (0, 1.0) and c2 ∈ (0, 0.5). These regions make intuitive

sense as a low inertia and acceleration coefficients restrict particle movement, preventing

effective optimisation.

These results are further discussed in Section 5.2.4.
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Table 5.1: Parameter configurations that lead to the lowest generalisation error per data set.

Problem ω c1 c2 ET EG ρF

Diabetes 0.70342 0.22053 0.34541 0.14366 0.15887 1.10940

Glass 0.70342 0.22053 0.34541 0.55144 0.84202 1.61516

Iris 0.85952 1.90634 0.78247 0.01645 0.02870 2.13375

WDBC 0.25075 1.50050 1.50050 0.01674 0.02777 1.75793

Wine 0.59416 1.93756 1.93756 0.00118 0.03317 57.2235

Henon Map 0.71903 0.68881 1.18831 0.00064 0.00693 12.9213

Logistic Map 0.73464 1.15709 1.53172 0.00075 0.00127 1.86779

Mackey-Glass 0.62538 0.25175 1.75025 0.00060 0.00126 2.28892

Sunspots 0.46928 0.18931 1.68781 141.038 224.351 1.61574

TS5 0.67220 0.78247 0.65759 0.00232 0.00413 1.80070

5.2.2 Favourable Parameter Regions

The results shown in Tables 5.1 and 5.2 show only the single highest and lowest gen-

eralisation error results of the 64 configurations tested per data set. In order to more

comprehensively identify appropriate ranges for the parameters and further analyse their

interactions, the parallel coordinate plots for each data set were used.

An aggregate parallel coordinate plot of all tested data set results is shown in Figure

5.2. Errors are shown normalised to the range [0.0, 1.0] and results are ranked according

to the generalisation error.

Considering the training and generalisation error axes, the figure shows two clusters

of results grouped at the upper and lower regions of each axis. This indicates that the

tested parameter configurations had a type of binary effect on the overall performance:

parameters either lead to the PSO finding an acceptable solution, and then refining

the solution, or alternatively not finding a solution at all (or an exceptionally poor

solution). Few of the parameter configurations tested fell in between these two extremes.

This implies that the PSO is sensitive to the correct choice of inertia and acceleration

parameters in order to find an acceptable solution when training FFNNs. The highlighted
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Table 5.2: Parameter configurations that lead to the highest generalisation error per data set.

Problem ω c1 c2 ET EG ρF

Diabetes 0.14148 0.84491 0.47028 0.22527 0.22449 0.99702

Glass 0.14148 0.84491 0.47028 2.78991 2.88053 1.03811

Iris 0.23514 0.15809 0.53272 0.58071 0.61542 1.06298

WDBC 0.14148 0.84491 0.47028 0.22489 0.22682 1.00930

Wine 0.23514 0.15809 0.53272 0.55863 0.56210 1.00956

Henon Map 0.28197 0.56394 0.31419 0.41303 0.42738 1.05953

Logistic Map 0.14148 0.84491 0.47028 0.06436 0.06571 1.02358

Mackey-Glass 0.14148 0.84491 0.47028 0.06355 0.06490 1.02369

Sunspots 0.42245 0.28297 0.15809 1658.6 1754.8 1.06720

TS5 0.14148 0.84491 0.47028 0.01676 0.01717 1.04500

area, which shows the top 20% configurations by rank, is shown to nearly completely

cover each of the parameter axes. This shows that no specific parameter regions can be

identified for any of the parameters that lead to better FFNN accuracy across all data

sets, further indicating the data set dependent nature of optimal parameters.

Figure 5.2 also shows the generalisation factor as the fourth axis. For the sake of

comparison across the data sets, the generalisation factor results are normalised to the

range [0.0, 1.0] . However, an absolute (non-normalised) ρF > 1, which would potentially

indicate overfitting, was observed for all data sets and the normalised ρF serves as an

indicator of the severity of overfitting.

The figure shows specific parameters which lead to both low training and generalisa-

tion errors, and therefore low generalisation factors, indicating a lack (or reduction) of

overfitting. An example of such a parameter configuration is shown in Table 5.3 for the

Diabetes data set. As seen in the table, configuration (1) obtained a significantly better

generalisation error and lower generalisation factor compared with configuration (2).

Although certain specific parameter configurations such as these were found on a

per data set basis, the figure again shows that the entire ρF axis falls in the highlighted
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Figure 5.2: Parallel coordinate plot of all data set results, ranked according to EG. Top 20%

parameter configurations by rank are highlighted. Stippled lines indicate parameter configura-

tions with absolute lowest EG.

Table 5.3: Diabetes data set example of specific parameters leading to increased overfitting.

Errors indicate mean over 30 samples.

ω c1 c2 ET EG ρF

1. 0.76586 1.09466 0.22053 0.14498 0.15978 1.10589

2. 0.62538 0.25175 1.75025 0.10266 0.18338 1.7966

area. This indicates that no specific pattern or interaction where parameters lead to

good accuracy and reduced ρF values (such as in the example shown in Table 5.3) could

be identified for all tested data sets.

Upon further analysis, one distinctive parameter interaction could however be iden-

tified consistently for all of the data sets. Although difficult to see in Figure 5.2, it

was observed that for configurations where the inertia parameter was low, good gener-

alisation was still obtained if the corresponding social acceleration value was high and
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vice versa. In cases where both parameter values were high, generalisation performance

was also good. More specifically, in order for the FFNN to obtain good generalisation

accuracy, the PSO required either a ω > 0.5 or a c2 > 1.0, but not necessarily both.

This observation was common for all tested data sets.

Table 5.4 breaks down the observations from Figure 5.2 for each data set, showing the

extent of the parameter regions of the top 20% results individually for each of the data

sets. The individual breakdown shows that, for four of the five regression data sets, the

top 20% results fell in the smaller, as compared with the classification data sets, inertia

region (0.36, 0.89073], indicating that in general better network accuracy was obtained

with slightly higher inertia values on the regression data sets.

Table 5.4: Extents of parameter regions associated with the top 20% generalisation error

results per data set.

Problem ω c1 c2

Diabetes [0.02441, 0.98439] [0.06444, 1.90634] [0.03322, 1.81269]

Glass [0.02441, 0.87513] [0.06444, 1.90634] [0.22053, 1.64098]

Iris [0.17270, 0.93756] [0.06444, 1.90634] [0.25175, 1.65659]

WDBC [0.03222, 0.87513] [0.62638, 1.93756] [0.25175, 1.96878]

Wine [0.03222, 0.78147] [0.18931, 1.93756] [1.18831, 1.96878]

Henon Map [0.39123, 0.89073] [0.18931, 1.93756] [0.50150, 1.96878]

Logistic Map [0.36002, 0.89073] [0.03322, 1.84391] [0.43906, 1.90634]

Mackey-Glass [0.36002, 0.89073] [0.18931, 1.84391] [0.43906, 1.96878]

Sunspots [0.39123, 0.89073] [0.18931, 1.93756] [0.43906, 1.96878]

TS5 [0.03222, 0.89073] [0.06444, 1.78147] [0.43906, 1.81269]

5.2.3 Adverse Parameter Regions

When considering the parameter configurations that lead to poor generalisation per-

formance, in contrast to the best performing results, clear regions were identified that

applied to all data sets tested. This is best illustrated in Figure 5.3 showing the results
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for all data sets with the bottom 20% results highlighted, as ranked by generalisation

error. ET , EG and ρF were again scaled to the range [0.0, 1.0]. The highlighted area

shows a grouping of results on the lower half (ω < 0.65659) of the inertia axis and a

similar grouping on the low end of the c2 axis (c2 < 0.93856). This is complimentary to

the configurations that lead to the overall best results shown in Table 5.1, where higher

ω and c2 values lead to the most accurate networks. Similar to the best performing

configurations shown previously, the highlighted area contains nearly the entire c1 axis,

further indicating the parameter’s non-dominance in terms of network accuracy. From

this figure it is clear that configurations with both a low inertia and social acceleration

lead to poor generalisation performance across all data sets.

Figure 5.3: Parallel coordinate plot of all data set results, ranked according to EG. Bot-

tom 20% parameter configurations by rank are highlighted. Stippled lines indicate parameter

configurations with absolute highest EG.

Figure 5.3 also shows that the 20% parameter configurations that lead to poor gener-

alisation performance also very clearly corresponded with significantly lower ρF values.

The reason for the reduction can be seen in the training and generalisation errors: both

errors were similarly poor and nearly equal (as illustrated by the straight lines between
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the two error axes) producing a ρF ratio close to one. Whilst ρF ≈ 1.0, the exceptionally

poor errors are in this case indicative of underfitting.

Table 5.5 shows the extent of the parameter regions associated with the bottom 20%

results broken down on a per data set basis. It is very clear from the table that the

observations made in Figure 5.3 hold for all the tested data sets: a ω < 0.65659 coupled

with a c2 < 1.06344 lead to poor FFNN accuracy on all tested data sets.

Table 5.5: Extents of parameter regions associated with the bottom 20% generalisation error

results per data set.

Problem ω c1 c2

Diabetes [0.01661, 0.65659] [0.15809, 1.96878] [0.06444, 0.93856]

Glass [0.01661, 0.56294] [0.15809, 1.96878] [0.09566, 0.93856]

Iris [0.01661, 0.56294] [0.28297, 1.68781] [0.12687, 1.06344]

WDBC [0.01661, 0.65659] [0.15809, 1.96878] [0.06444, 0.93856]

Wine [0.01661, 0.65659] [0.28297, 1.68781] [0.06444, 0.93856]

Henon Map [0.01661, 0.65659] [0.15809, 1.68781] [0.06444, 0.93856]

Logistic Map [0.01661, 0.56294] [0.15809, 1.68781] [0.12687, 1.06344]

Mackey-Glass [0.01661, 0.56294] [0.15809, 1.96878] [0.09566, 0.93856]

Sunspots [0.01661, 0.65659] [0.15809, 1.96878] [0.06444, 0.93856]

TS5 [0.01661, 0.65659] [0.15809, 1.96878] [0.06444, 0.93856]
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5.2.4 Discussion

From the results presented here, a number of observations can be made. It is clear

that c1 is a non-dominant parameter in terms of trained FFNN accuracy. Considering

either the best performing of worst performing configuration results, no specific region

or interaction with other parameters could be identified for c1 that lead to improved

generalisation performance. Optimal c1 values were shown to be specific to each data

set.

In terms of the ω and c2 parameters, neither of the parameters were dominant on their

own, instead it was found that one specific interaction of the two parameters adversely

affected performance. That is, for parameter configurations where ω < 0.5 and c2 < 1.0,

the PSO was unable to effectively optimise the FFNN weights, leading to large training

and generalisation errors. If either parameter fell outside these bounds, that is to say

ω ≥ 0.5 or c2 ≥ 1.0, the PSO was still capable of training the FFNN to an acceptable

error. It was also shown that the absolute lowest generalisation errors (regardless of

overfitting) for each data set were obtained with a ω in the range (0.59, 0.74). However,

similar accuracy with improved overfitting results were obtained with ω values outside

this range in specific cases. The results also showed that a slightly higher ω value lead

to improved accuracy on the regression data sets tested, suggesting that these data sets

benefited from increased exploration.

A ρF > 1 was reported for nearly all parameter configurations on all data sets tested.

While this is indicative of overfitting, it was shown that in the case of parameter config-

urations that lead to extremely poor generalisation, high ρF values were obtained, even

though the FFNNs in these cases instead underfitted the data (as evident from a high

ET ). While the generalisation errors were still much higher than the training errors,

these cases should not be considered as overfitting.

However, in most instances, the ρF measurement was a valid indication of overfitting

and no specific parameter regions or interactions were identified across all data sets

that lead to a reduction in ρF while maintaining good generalisation accuracy. Specific

parameter configurations that obtained good generalisation and overfitting results were

unique to each data set tested. This illustrates that it is both possible and necessary to

optimise the ω, c1 and c2 parameters on a per data set basis to reduce overfitting.
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5.3 Summary

This chapter provided an analysis of the effect of the inertia and acceleration coefficient

control parameters on the accuracy and overfitting behaviour of PSO trained FFNNs.

The experimental methodology and a description of the analytical use of low-discrepancy

sequences and high dimensional visualisation techniques were given in Section 5.1.

Section 5.2 gave the results of the parameter analysis. Optimal and adverse parameter

regions for each data set as well as specific interactions of parameters leading to adverse

performance were identified, concluded by a discussion in Section 5.2.4.

The next chapter analyses the effect on FFNN training of another PSO control pa-

rameter, the particle swarm size.



Chapter 6

PSO Swarm Size

Chapters 4 and 5 investigated the effect of major PSO control parameters on accuracy

and overfitting when training FFNNs, specifically, the effect of maximum velocity, inertia

and the acceleration coefficient control parameters were analysed. This chapter seeks to

similarly determine the effects of the last remaining major control parameter: the swarm

size.

The chapter comprises of the following sections. The methodology used to investigate

the swarm size’s effect is given in Section 6.1, with the experimental configuration and

procedure given in Sections 6.1.3 and 6.1.4 respectively. Section 6.2 gives the results and

a discussion of the experiments performed. The chapter is summarised in Section 6.3.

6.1 Experimental Methodology

This section discusses the methodology used to investigate the effect of the swarm size

(ns) on FFNN accuracy.

6.1.1 Swarm Size Selection

Formally, the objective of this chapter is to determine if a significant difference in FFNN

accuracy exists, both on a training set as measured by the training error and a generali-

sation set via the generalisation error, when trained using particle swarm optimises with

different swarm sizes.

74
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Swarm size, as a PSO control parameter, was discussed in Section 2.3.2. As mentioned

in Section 2.3.2 the work of Malan and Engelbrecht [70] showed that the effect of the

parameter is dependent on the optimisation problem, with larger swarms often having an

advantage in highly multi-modal and high-dimensional search spaces. Many NN training

problems are high-dimensional, and as such it is possible that an increase in swarm

size might benefit training. Furthermore, the paper notes the inversely proportional

relationship that exists between the number of iterations the PSO is executed for and

the swarm size [70]. That is, as the swarm size increases, the iterations the algorithm is

executed for has to decrease in order for the optimises to maintain the same amount of

computational complexity as measured by the number of objective function evaluations.

With larger swarm sizes there is therefore a risk that the particles are not given a sufficient

amount of time (iterations) to adequately explore the search space and converge to an

optimum.

For the experiments in this chapter, similar to those of Malan and Engelbrecht [70],

computational complexity is kept similar between each of the PSOs. As such, PSOs with

larger swarm sizes were limited by the number of iterations, and therefore the number of

objective function evaluations were kept constant. Table 6.1 lists the swarm sizes used

in the experiments to follow.

6.1.2 Data Sets

As with the previous chapters the five classification and five regression data sets as

described in Section 3.2 were used for the experimental work in this chapter. The FFNN

architectures are given in Table 3.1.

6.1.3 PSO Configuration

Due to the findings in Chapter 3, and, for the sake of comparison with previous chapters,

the PSO algorithm used in this experiment was an lbest PSO with a neighbourhood size

of five.

Particles were randomly initialised in the range [ −1√
fanin

, 1√
fanin

], with velocities ini-

tialised to 0 as described in Section 3.3.2.
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Table 6.1: Swarm sizes and corresponding iteration counts used to compare PSOs. Note

that, where the goal number of evaluations was not exactly divisible by the swarm size, that is

ns = 75, ns = 150 and ns = 300, the iterations were rounded up to the nearest integer which

lead to a small additional number of evaluations in those cases.

Swarm Size (ns) Iterations Objective

Evaluations

10 5000 50000

25 2000 50000

50 1000 50000

75 667 50025

100 500 50000

150 334 50100

200 250 50000

300 167 50100

500 100 50000

A Vmax = 1 was used for all data sets. As was shown in Chapter 4, a Vmax = 1 is

appropriate for maintaining exploration and preventing drastic swarm divergence while

training FFNNs. Chapter 4’s experimental work was, however, carried out under the

condition of a swarm size of 25 and the investigation in this chapter will also serve to

determine if the choice of Vmax is appropriate for other swarm sizes.

As shown in Table 6.1, a fixed number of iterations was used as stopping condition for

the algorithm while keeping the objective function evaluations constant at approximately

50000.

The results of the experimental work in Chapter 5 showed that specific values of the

ω, c1 and c2 control parameters improved FFNN accuracy on a per data set basis. In

order to eliminate these parameters as a factor in this experiment, the optimal values

found in Chapter 5 for each of the data sets were used. These values are summarised in

Table 6.2.
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Table 6.2: Optimal values for the ω, c1 and c2 parameters per data set.

Data set ω c1 c2

Diabetes 0.70342 0.22053 0.34541

Glass 0.70342 0.22053 0.34541

Iris 0.85952 1.90634 0.78247

WDBC 0.25075 1.50050 1.50050

Wine 0.59416 1.93756 1.93756

Henon Map 0.71903 0.68881 1.18831

Logistic Map 0.73464 1.15709 1.53172

Mackey-Glass 0.62538 0.25175 1.75025

Sunspot 0.46928 0.18931 1.68781

TS5 0.67220 0.78247 0.65759

6.1.4 Experimental Procedure

For this experiment, the following null and alternative hypotheses were used:

• H0: There is no significant difference in performance between any of the swarm

sizes.

• H1: There is a one-tailed significant difference, lower values in the cases of ET and

EG and higher values in the cases of ρF and Davg, between any of the swarm sizes.

A significance level of α = 0.05 was used for both the Friedman and Wilcoxon rank sum

tests that were performed.

The experimental analysis proceeded as follows. For each of the swarm sizes listed

in Table 6.1 the PSO was executed on all 10 data sets. Each execution on a data set

for a swarm size was repeated 30 times with a unique seed for a Mersenne Twister

PRNG. The results of the 30 executions were aggregated, and the aggregated results are

reported. The results are shown in a matrix of 10 blocks (one row per data set) over the

10 swarm sizes. Four such result matrices were produced, one for each of the algorithm

measurements discussed in Section 6.1.5.
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A Friedman test was then performed on each of the result matrices. If the result of

the Friedman test proved significant, one-tailed, pairwise Wilcoxon rank sum tests were

conducted with the p-values adjusted using the Holm-Bonferroni method to determine

whether a significant difference exists between each of the swarm sizes.

6.1.5 Algorithm Measurements

The measurements described in Section 3.3.3 were used to quantify the performance

of the algorithm execution. That is, the training and generalisation errors, ET and

EG, along with the generalisation factor, ρF . The PSO swarm diversity Davg was also

measured.

6.2 Results

The results and a discussion of the experimental analysis are given in this section. Un-

less otherwise stated, values indicated in tables and figures show the mean over the 30

samples.

6.2.1 Training Accuracy

Table 6.3 shows the training error results for all swarm sizes and data sets. The Friedman

test produced a p-value of 7.327e-9 indicating a significant difference between at least

two swarm sizes over all of the data sets. The results of the Wilcoxon tests, shown in

Table 6.4, revealed that, over all of the data sets, the training error results for swarm

sizes ns ∈ {10, 25, 50, 75} did not differ significantly, although higher training errors

were obtained for most data sets with ns = 10. A swarm size of either ns = 25 or

ns = 50 lead to the lowest training errors, depending on the data set. For ns > 75 the

PSO obtained significantly worse training errors when compared to smaller swarm sizes,

which continued to degrade up until ns = 500.

From the results given above it is clear that the PSO’s swarm size has a significant

impact on the training error when training FFNNs. The ET results show that there

exists a critical value for the swarm size, approximately in the range of (25, 50) for the
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Table 6.3: ET results for classification and regression data sets.

Swarm Size

Data set 10 25 50 75 100 150 200 300 500

Diabetes 0.20314 0.14335 0.13799 0.13995 0.14208 0.14278 0.14441 0.14607 0.14998

Glass 1.70402 0.55411 0.51303 0.51256 0.52097 0.54499 0.55917 0.58564 0.62495

Iris 0.01639 0.01606 0.01855 0.01861 0.01933 0.02066 0.02049 0.02194 0.02348

WDBC 0.10606 0.01674 0.01549 0.01656 0.01691 0.01939 0.02038 0.02252 0.02529

Wine 0.00081 0.00108 0.00208 0.00257 0.00291 0.00459 0.00609 0.01021 0.01674

Henon Map 0.00051 0.00067 0.00092 0.00116 0.00166 0.00195 0.00245 0.00356 0.00527

Logistic Map 0.00063 0.00075 0.00088 0.00100 0.00106 0.00119 0.00126 0.00140 0.00161

Mackey-Glass 0.00055 0.00060 0.00073 0.00085 0.00091 0.00103 0.00112 0.00125 0.00145

Sunspot 163.731 142.298 147.793 160.082 170.101 178.861 185.302 196.209 208.297

TS5 0.00499 0.00233 0.00235 0.00238 0.00246 0.00252 0.00262 0.00277 0.00292

Friedman p-value: 7.327e-9

data sets tested here, for which the best training accuracy was obtained by the networks.

Values smaller or larger than the critical range were shown to lead to significantly worse

training accuracy up to and including ns = 500.

Upon further examination of the ET results it was found that the reason for the

significant degradation in training accuracy is the trade-off that exists between an in-

creased ns and the number of iterations the PSO may execute for due to a bounded

number of objective function evaluations. This is better illustrated in Figure 6.1 which

shows the training error results for ns > 25 for the Glass data set. Similar results were

observed for the other data sets. The figure shows that as the swarm size increases, the

training error initially decreases at a steeper rate when compared to smaller swarm sizes.

The improvement in the optimisation speed of ET is most likely due to the increased

exploration capability of the larger swarm. However, in keeping the fitness evaluations

constant, the PSO finally fails to converge to a solution with a lower final training error

as optimisation is prematurely stopped. It is possible that larger swarm sizes might out-

perform smaller swarms if given the same number of iterations at the cost of significantly

increased computational time. Such a study is left as future research.
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Table 6.4: Holm adjusted p-values for one-tailed Wilcoxon rank sum tests on ET results.

Swarm Size 10 25 50 75 100 150 200 300

25 1 - - - - - - -

50 1 1 - - - - - -

75 1 1 0.209 - - - - -

100 1 1 0.035 0.035 - - - -

150 1 0.961 0.035 0.035 0.035 - - -

200 1 0.035 0.035 0.035 0.035 0.096 - -

300 1 0.035 0.035 0.035 0.044 0.035 0.035 -

500 1 0.035 0.035 0.035 0.035 0.035 0.035 0.035

6.2.2 Generalisation Accuracy

The generalisation error results are given in Table 6.5. Although the generalisation

performance is remarkably similar across all swarm sizes for each of the data sets, the

Friedman test indicated a significant difference exists between some of the swarm sizes.

The Wilcoxon test results shown in Table 6.6 shows that the only significant difference

was for ns = 500 compared against ns = 200, with ns = 500 performing worse in

terms of generalisation. In the case of all other swarm sizes, no significant difference in

generalisation error was found.

The generalisation factor results are given in Table 6.7. The table shows that the

generalisation factors decrease significantly as swarm size increases beyond ns = 25 for

most of the data sets. For an ns = 10 the ρ values are shown to be comparatively low.

The generalisation factor differed significantly between at least two of the swarm sizes as

illustrated by the p-value of the Friedman test. The subsequent Wilcoxon comparisons,

summarised in Table 6.8, show that for an ns > 50 significantly lower generalisation

factors were obtained by the PSOs with larger swarm sizes.

Figure 6.2 shows the generalisation error for the Glass data set for ns > 25 plotted

against the number of iterations. The results for other data sets were similar. Unlike

Figure 6.1 showing the training error, the generalisation error behaviour does not differ
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Figure 6.1: ET results over 1000 iterations for ns > 25 on the Glass data set.

Table 6.5: EG results for classification and regression data sets.

Swarm Size

Data set 10 25 50 75 100 150 200 300 500

Diabetes 0.20260 0.15875 0.16179 0.16010 0.16103 0.15963 0.16111 0.15965 0.16206

Glass 1.82938 0.85734 0.90883 0.92014 0.90707 0.87381 0.89378 0.91873 0.90350

Iris 0.03064 0.02870 0.03005 0.03056 0.02891 0.03215 0.03059 0.03116 0.03201

WDBC 0.10696 0.02777 0.02777 0.02806 0.02744 0.02841 0.02859 0.02918 0.03056

Wine 0.03976 0.03299 0.03775 0.03459 0.03394 0.04218 0.03525 0.03715 0.04396

Henon Map 0.00555 0.00603 0.00835 0.00867 0.01310 0.01015 0.01524 0.01284 0.02262

Logistic Map 0.00137 0.00133 0.00141 0.00143 0.00147 0.00158 0.00166 0.00173 0.00185

Mackey-Glass 0.00130 0.00131 0.00131 0.00137 0.00152 0.00149 0.00154 0.00159 0.00172

Sunspot 235.575 225.509 226.598 228.88 234.247 238.515 236.967 245.344 256.717

TS5 0.00653 0.00453 0.00448 0.00442 0.00429 0.00434 0.00443 0.00434 0.00446

Friedman p-value: 0.00027
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Table 6.6: Holm adjusted p-values for one-tailed Wilcoxon rank sum tests on EG results.

Swarm Size 10 25 50 75 100 150 200 300

25 1 - - - - - - -

50 1 0.303 - - - - - -

75 1 0.146 1 - - - - -

100 1 0.806 1 1 - - - -

150 1 0.094 1 1 1 - - -

200 1 0.068 1 0.806 0.806 1 - -

300 1 0.068 1 1 0.659 1 1 -

500 1 0.068 0.659 0.806 0.52 0.094 0.035 0.806

greatly between the various swarm sizes; for all swarm sizes, the generalisation error

stabilised after approximately 200 to 400 iterations. As stated above, no significant

difference in generalisation was finally obtained by any of the swarm sizes.
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Figure 6.2: EG results over 1000 iterations for ns > 25 on the Glass data set.
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Table 6.7: ρF results for each swarm size and data set.

Swarm Size

Data set 10 25 50 75 100 150 200 300 500

Diabetes 0.99792 1.11162 1.17737 1.14870 1.13693 1.12096 1.11927 1.09632 1.08350

Glass 1.08540 1.62497 1.91648 1.92037 1.84991 1.69007 1.69627 1.66246 1.53798

Iris 2.67587 2.24302 1.97799 1.89886 1.68726 1.76372 1.71207 1.57774 1.50169

WDBC 1.01025 1.75793 1.97068 1.80239 1.69814 1.53647 1.46284 1.34477 1.25176

Wine 105.734 56.5611 28.8316 17.7568 15.9741 10.9412 7.36232 4.29181 2.89652

Henon Map 13.5181 11.6379 10.2124 9.7817 7.26610 5.86085 8.21218 3.73871 5.03158

Logistic Map 2.44848 1.94669 1.77663 1.58415 1.52224 1.46944 1.44815 1.34001 1.23847

Mackey-Glass 2.53481 2.36546 1.90867 1.76864 1.82661 1.59759 1.51535 1.38039 1.29063

Sunspot 1.48232 1.63221 1.56991 1.46373 1.40504 1.36369 1.30899 1.28263 1.25487

TS5 1.38843 1.97498 1.91110 1.89127 1.75970 1.73867 1.71471 1.58349 1.53644

Friedman p-value: 1.111e-7

The results for the generalisation factor can intuitively be explained from the com-

bination of the ET and EG results. That is, as swarm size increases, the generalisation

error remains unchanged but the training error worsens, by definition, this leads to an

increase in ρF .

Due to the stability of the generalisation error, the increase in ρF proportionately to

ns is therefore not an indication of increased overfitting. This is similar to the earlier

result of the effect of Vmax in Section 4.2, where it was also found that the ρF measure

increased, but not as a result of overfitting. These results further show that the use of

ρF in isolation is a poor indicator of any overfitting during training, and indeed other

errors and measurements should be used in conjunction with ρF .

6.2.3 Diversity

The final result set is given in Table 6.9, which shows the diversity results across all

tested swarm sizes. The results of the significance tests in Table 6.10 show that signif-

icant increases in diversity took place as the swarm size increased up to ns = 50, after

which insignificant increases in diversity are still seen. In general, larger diversities were
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Table 6.8: Holm adjusted p-values for one-tailed Wilcoxon rank sum tests on ρF results.

Swarm Size 10 25 50 75 100 150 200 300

25 0.589 - - - - - - -

50 0.589 0.589 - - - - - -

75 0.589 0.317 0.039 - - - - -

100 0.589 0.146 0.035 0.056 - - - -

150 0.589 0.083 0.035 0.035 0.146 - - -

200 0.589 0.083 0.035 0.035 0.58 0.58 - -

300 0.589 0.056 0.035 0.035 0.035 0.035 0.035 -

500 0.589 0.035 0.035 0.035 0.035 0.035 0.035 0.387

obtained for the classification problems as opposed to the regression problems, most

likely due to the larger dimensionality of the classification problems.

Table 6.9: Davg results for each swarm size and data set.

Swarm Size

Data set 10 25 50 75 100 150 200 300 500

Diabetes 0.0 0.2414 2.6767 7.6161 10.437 11.976 12.191 12.256 12.078

Glass 0.0 0.0977 3.0424 7.1546 8.9806 10.318 9.6183 9.8767 9.6471

Iris 3.5309 8.5723 9.1306 9.8292 9.4852 9.4254 9.4436 9.1899 9.0111

WDBC 0.0 0.4434 7.3585 12.107 12.69 12.88 12.948 12.8592 12.42

Wine 0.99 11.291 13.423 13.8 13.987 13.501 13.329 12.8557 12.284

Henon Map 0.0463 3.2054 11.785 12.587 12.559 12.184 11.845 11.733 11.514

Logistic Map 0.2745 7.4001 8.7305 8.5207 8.2762 7.9432 7.8647 7.7442 7.7091

Mackey-Glass 0.0993 1.2201 11.03 10.974 11.052 10.957 10.776 10.641 10.527

Sunspot 0.0434 0.2434 1.9076 8.0335 9.0853 9.3730 9.1294 8.5388 8.0591

TS5 0.0 1.3488 4.5841 4.9437 5.0136 4.8548 4.8107 4.4047 4.1525

Friedman p-value: 8.759e-9

Finally, Figure 6.3 illustrates the Davg results for each of the swarm sizes for the Glass
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Table 6.10: Holm adjusted p-values for one-tailed Wilcoxon rank sum test on Davg results.

Swarm Size 10 25 50 75 100 150 200 300

25 0.035 - - - - - - -

50 0.035 0.035 - - - - - -

75 0.035 0.035 0.103 - - - - -

100 0.035 0.035 0.137 1 - - - -

150 0.035 0.035 0.353 1 1 - - -

200 0.035 0.035 1 1 1 1 - -

300 0.035 0.035 1 1 1 1 1 -

500 0.035 0.035 1 1 1 1 1 1

data set. Davg remained largely unchanged after approximately 500 iterations for the

data set and as a result, and in order to improve readability, only the first 500 iterations

are shown. Results for the other data sets were very similar.
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Figure 6.3: Davg results over 500 iterations on the Glass data set.
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For three of the 10 tested swarm sizes, that is, ns ∈ {10, 25, 50}, a convergent diversity

profile is shown. That is, diversity decreases over time and tends to 0 as the swarm

converges on a solution. However, for ns > 50 the diversity is shown increase over time.

For ns = 75, the diversity does again start to decrease after a number of iterations,

oscillating between convergence and divergence as optimisation continues. However, for

swarm sizes larger than 75, the swarm is shown to diverge completely as optimisation

continues.

This divergent behaviour was previously seen in Chapters 3 and 4, with Chapter

4 specifically investigating whether Vmax could prohibit this behaviour. Previously it

was shown that the lack of a Vmax lead to divergent swarms and that Vmax ∈ (0.0, 1.0]

was required for the swarms to converge. Larger Vmax parameters were ineffective in

preventing divergence. These results assumed a swarm size of 25 and the results of this

chapter show that a Vmax ∈ (0.0, 1.0] only produced non-divergent swarms for ns < 75.

This indicates that the appropriate value of Vmax is relative to the swarm size. Further

analysis of the relationship between Vmax and the swarm size is left as a future work.

As mentioned in Chapter 4 the lack of a Vmax parameter, or indeed a Vmax that is

too large, is not the cause of the divergent behaviour and the use of a small Vmax merely

addresses the symptom of the cause.

Since all other PSO parameters have been investigated in previous chapters and were

optimised on the data sets used for the experimental work in this chapter, it is clear

that some factor independent of the PSO itself and specific to the training of FFNNs

must be the reason for the divergence. In Chapter 4 it was speculated that the specific

activation function used for the FFNNs, which influences the optimisation landscape,

could affect much of the PSO’s behaviour. The next chapter investigates the influence

of the activation function, with specific focus on the swarm’s convergence.

6.3 Summary

This chapter investigated the effect of the swarm size algorithm parameter on the accu-

racy of FFNNs when trained using a PSO. The experimental methodology was given in

Section 6.1.
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The results, given in Section 6.2, showed that the swarm size had a significant impact

on the training error and generalisation factor. Under the condition of an equal number

of objective function evaluations, obtained training accuracy deteriorated as the swarm

size increased whilst the generalisation accuracy was unaffected. Furthermore, it was

shown that swarm divergence occurred and worsened as the swarm size increased; the

use of a Vmax parameter proved ineffective in aiding swarm convergence for larger swarm

sizes.

The next chapter investigates the hypothesis that the cause of the divergence is

related to the activation function used by the FFNN neurons.



Chapter 7

Considering Activation Functions

This chapter investigates the behaviour of the PSO algorithm when training FFNNs

using a number of different activation functions. Due to questions raised in previous

chapters surrounding swarm divergence during optimisation, specific focus is placed on

the swarm’s diversity and convergence. The effect on the FFNN’s accuracy is also anal-

ysed.

The activation functions used are described in Section 7.1. The methodology used

to compare the activation functions’ effect is given in Section 7.2. The results are given

in Section 7.3 followed by a summary of the chapter in Section 7.4.

7.1 Activation Functions

The activation function and its role in the neurons of the FFNN was discussed in Section

2.1.1. This section briefly discusses the three activation functions used in the experimen-

tal work of this chapter: The sigmoid function, the hyperbolic tangent function and the

linear function.

7.1.1 Sigmoid

The sigmoid activation function was first introduced in Section 2.1.1 and has been used

as activation function for the experimental work of previous chapters. The sigmoid

88
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function is defined as:

fsig(net, λ, γ) =
γ

1 + e−λ(net)
(7.1)

where λ controls the steepness of the function and γ the range. For most FFNN appli-

cations λ = γ = 1.

As discussed in Section 2.1.1, the sigmoid function is a non-linear, differentiable and

monotonically increasing function. The sigmoid function is an asymptotically bounded

function, as illustrated in Figure 7.1, yielding an output in (0, 1). During training, it is

therefore necessary to scale the data target values to the range (0, 1).
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Figure 7.1: Sigmoid activation function with λ = γ = 1

A notable consequence of the asymptotically bounded nature of the function is that,

as the absolute magnitude of the input, net, to the function increases, the rate of change

in function output differs insignificantly. That is:

lim
net→±∞

f ′(net) = 0 (7.2)

where f ′(net) is the derivative of the function.

The net input of the function is defined as the sum of the weighted (in the case of

PSO the particle positions represent the weights) input signals to the neuron. Due to
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the limit defined in Equation (7.2) the data set input values are scaled to the range

[−
√

3,
√

3]: its active domain. This range has been shown to correspond to the part

of the function where the input has a large effect on the output of the function [28].

Similarly, the particle positions are initialised to small values, in a range [ −1√
fanin

, 1√
fanin

],

to avoid net input signals that produce output near the bounds of the function. This

methodology was also followed for all experimental work of the previous chapters.

7.1.2 Hyperbolic Tangent

The second activation function used is the hyperbolic tangent function:

ftanh(net) =
eλ(net) − e−λ(net)

eλ(net) + e−λ(net)
(7.3)

where λ controls the steepness of the function.

As shown in Figure 7.2 the hyperbolic tangent function is also an asymptotically

bounded activation function with asymptotes at −1 and 1 and a similar active domain

to the sigmoid function. Target output values therefore also have to be scaled, but to a

larger numerical range, which has the advantage of decreasing training time [28].

Equation (7.2) also holds true for ftanh and as such training is benefited by scaling

input values to the range [−
√

3,
√

3].

7.1.3 Linear

The final activation function is the linear function:

f(net) = λnet. (7.4)

where λ controls the gradient.

Unlike the sigmoid and hyperbolic tangent functions, the linear activation function is

unbounded, avoiding the need for scaling of either input or output data values. However,

due to the function being linear, a FFNN using linear activation functions in the hidden

layer is a less capable approximator of a non-linear target function. Linear FFNNs will

therefore require more hidden units than a FFNN using sigmoid or hyperbolic tangent

functions to achieve the same accuracy on most problem sets.
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Figure 7.2: Hyperbolic Tangent

7.2 Experimental Methodology

This section discusses the methodology used to investigate the behaviour of particle

swarms when training FFNNs using each of the activation functions discussed above.

7.2.1 Data Sets

In keeping with the work of previous chapters, the classification and regression data sets

described in Section 3.2 were used for the experimental work in this chapter. Similarly,

the FFNN architectures given in Table 3.1 were used for all activation functions.

7.2.2 PSO Configuration

The PSO algorithm used for the work in this chapter was an lbest PSO with a neigh-

bourhood size of five and a swarm size of 25. As shown in Chapter 6, a swarm size of

25 lead to greater exploration compared with smaller swarm sizes while still converging

over time.
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As detailed in Section 3.3.2, the particle positions were initialised in the range:

[ −1√
fanin

, 1√
fanin

], where fanin is the number of incoming connections of the corresponding

neuron. Particle velocities were initialised to the zero vector.

In terms of the Vmax control parameter, the results of Chapter 6 have shown that

in order to aid in preventing swarm divergence, the Vmax parameter has to be adjusted

according to the swarm size. Previous results have also shown that Vmax is only instru-

mental in delaying eventual swarm divergence and, if given enough iterations, the swarm

may still diverge. Since part of the objective of this chapter is to investigate the cause of

the divergence, no Vmax parameter was used in the experimental work of this chapter.

Severe swarm divergence was therefore expected to occur.

The per data set optimised values for the ω, c1 and c2 control parameters, as sum-

marised in Table 6.2, were used.

A fixed number of 50000 objective function evaluations was used as stopping condition

for the algorithm, regardless of the activation function used by the FFNN.

7.2.3 Algorithm Measurements

The following measures were used to quantify the performance of the PSO as a training

algorithm for the FFNNs with different activation functions. The training and general-

isation errors, ET and EG and the generalisation factor ρF . The swarm diversity Davg
was also calculated. These measurements were discussed in Section 3.3.3.

7.2.4 Experimental Procedure

The goal of the experimental work of this chapter is two fold: Investigate if there is a sig-

nificant change in swarm convergence when different activation functions are used for the

FFNN. Secondly, is there a significant change in accuracy, generalisation or overfitting

when different activation functions are used. In the case of both objectives, hypothe-

sis testing was performed on the various algorithm measurements using the following

hypothesis:

• H0: There is no significant difference in performance between the FFNNs using

different activation functions.
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• H1: There is a one-tailed significant difference, lower values in the cases of ET and

EG and higher values in the cases of ρF and Davg, between FFNNs using a different

activation function.

With specific reference to the diversity measurement, a significant difference does not

necessarily indicate decreased or increased divergence, merely a more contracted or ex-

panded swarm and as such, any tests using Davg is accompanied by further analysis of

the diversity over time.

The experiment proceeded as follows. For each of the activation functions, the FFNN

was configured such that the neurons in both the hidden and output layers of the network

used the function.

In the case of the sigmoid function, as with previous chapters, the target values

were scaled to [0.1, 0.9]. For the hyperbolic tangent function networks the target values

were scaled to [−0.9, 0.9]. These ranges were chosen to be well within the bounds of

the functions. Although not strictly necessary, the target values for the linear function

networks were also scaled to [−0.9, 0.9].

The PSO algorithm was then used to to train the FFNNs on each of the 10 data set.

Each execution on a data set was repeated 30 times using a unique seed, per sample,

for a Mersenne Twister PRNG. The measurements discussed above were taken for each

execution of the algorithm and the aggregated results for all 30 samples are reported.

A Friedman test at a significance level of α = 0.05 was performed per algorithm

measurement to determine if a significant difference exists between any of the activation

functions for that measurement across all of the data sets. If successful, pairwise one-

tailed Wilcoxon rank sum tests were performed, also at a significance level of α = 0.05

with p-values adjusted using the Holm-Bonferroni method.

7.3 Results

The results and a discussion of the experimental work is given in this section. The results

are divided into three subsections: the training accuracy, generalisation and overfitting,

and finally the swarm diversity and convergence behaviour.
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7.3.1 Training Accuracy

The means and standard deviations of the training errors for each of the activation

functions for all 10 data sets are given in Table 7.1. The result of the Friedman test

yielded a significant result of 0.0005. The subsequent Wilcoxon rank sum test are shown

in Table 7.2. The Wilcoxon tests indicate a significant difference between the linear

FFNN training errors compared with the other activation functions. This is an expected

result since, as discussed in Section 7.1, the linear function is less powerful than its

non-linear counterparts, and it would require many more hidden units to approximate

the target function as effectively. Since the same FFNN architectures were used for all

activation functions, it was expected that the linear FFNNs would perform worse.

Table 7.1: Training error mean and standard deviations for each of the activation functions.

Linear Sigmoid Tanh

Data Set µ σ µ σ µ σ

Diabetes 0.15735 0.00469 0.14315 0.00566 0.14254 0.00571

Glass 0.76000 0.08914 0.54763 0.07882 0.53611 0.10636

Iris 0.04727 0.00443 0.02917 0.00760 0.03065 0.00658

WDBC 0.05720 0.00361 0.01679 0.00371 0.01306 0.00540

Wine 0.05759 0.00550 0.00480 0.00268 0.00481 0.00237

Henon Map 0.34961 0.03722 0.00059 0.00030 0.00143 0.00064

Logistics Map 0.00130 0.00032 0.00078 0.00016 0.00085 0.00018

Mackey-Glass 0.00130 0.00032 0.00062 0.00015 0.00067 0.00011

Sunspot 268.882 18.2997 136.973 14.3489 140.304 12.0938

TS5 0.00256 0.00012 0.00232 0.00043 0.00225 0.00020

Friedman p-value: 0.0005

The Wilcoxon test comparing the sigmoid function results with that of the hyper-

bolic tangent function yielded a p-value of 0.5771, indicating no significant difference in

training performance.

Examining the training errors over time on a per sample bases revealed a significant

difference in the optimisation behaviour between the different FFNNs. Graphs showing

the log scaled training error per iteration for each of the activation function FFNNs on
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Table 7.2: Wilcoxon rank sum test p-values for training error results across all data sets.

Activation Function Linear Sigmoid

Sigmoid 0.0029 -

Hyperbolic Tan 0.0029 0.5771

the Henon Map data set are given in Figures 7.3, 7.4 and 7.5 respectively. Results were

similar for the other data sets.
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Figure 7.3: Training errors (log scaled) per iteration for linear FFNN samples on the Henon

Map data set.

As seen in the figures, the sigmoid and hyperbolic tangent FFNNs have very similar

training profiles, with the PSO continuously optimising the problem for the duration

of the run. The linear FFNN, however, shows a much different graph: for all samples,

there was a large decrease in training error in the first few iterations after which the error

remains constant, indicating the swarm failed in finding any optima with a lower training

error. In these cases, it is possible that the swarm became stuck in a local optimum,
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Figure 7.4: Training errors (log scaled) per iteration for sigmoid FFNN samples on the Henon

Map data set.
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Figure 7.5: Training errors (log scaled) per iteration for hyperbolic tangent FFNN samples

on the Henon Map data set.
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and fails to escape the optimum over time. If this is true, the diversity of the swarms

should tend to 0 as the optimum is exploited. Or alternatively, the linear FFNNs are

simply incapable of accurately modelling the data and no better solution exists. This is

analysed in further detail with the diversity results in Section 7.3.3.

7.3.2 Generalisation Accuracy

The generalisation error results for each of the activation functions are given in Table

7.3. All FFNNs obtained very similar generalisation errors, regardless of the activation

function. The result of the Friedman test is a p-value of 0.05807, showing that there was

no significant difference in generalisation accuracy across all of the data sets. This is a

surprising result, as the linear FFNNs were clearly outperformed on the training data.

Table 7.3: Generalisation error mean and standard deviations for each of the activation

functions.

Linear Sigmoid Tanh

Data Set µ σ µ σ µ σ

Diabetes 0.16389 0.01012 0.15836 0.00980 0.15942 0.01118

Glass 0.96249 0.21472 0.87905 0.24763 0.91431 0.26952

Iris 0.04956 0.01201 0.03709 0.01474 0.03930 0.01677

WDBC 0.06467 0.00765 0.02917 0.00694 0.02892 0.00785

Wine 0.07981 0.01374 0.04828 0.02095 0.05372 0.02615

Henon Map 0.42944 0.08615 0.01067 0.01681 0.02427 0.03896

Logistics Map 0.00137 0.00067 0.00139 0.00068 0.00138 0.00055

Mackey-Glass 0.00137 0.00067 0.00124 0.00049 0.00137 0.00054

Sunspot 285.49304 36.37461 236.70343 46.41062 236.82422 45.73935

TS5 0.00346 0.00118 0.00452 0.00108 0.00388 0.00077

Friedman p-value: 0.05807

When looking at the generalisation errors over time, Figures 7.6 and 7.7 show the

generalisation error of sigmoid FFNNs for each sample on the Henon Map data set. The

graphs are similar in nature to the training errors for the sigmoid and hyperbolic tangent

networks, though, with much larger variation between samples. This can also be noted
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from the larger standard deviations in Table 7.3 compared to those for the training error

results. Very similar generalisation behaviour was observed on the other data sets.
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Figure 7.6: Generalisation errors (log scaled) per iteration for sigmoid FFNN samples on the

Henon Map data set.

It can also be observed that for many of the sigmoid and hyperbolic tangent samples,

there was an increase in the generalisation error as optimisation continued, characteristic

of overfitting. However, the mean results do not reflect the increases over time, since

it did not occur on all samples. The fact that overfitting only occurred for some of the

samples, is an indication that the overfitting was dependent on the stochastic behaviour

of the swarm.

Similar to the training results, the linear FFNNs showed very different behaviour from

the other activation functions. Figure 7.8 shows the per sample generalisation errors for

linear FFNNs on the Henon Map data set. Some fluctuation in the generalisation error

occurred within the first 200 iterations, after which optimisation stagnated. Due to the

stagnation, no overfitting is seen to occur as was the case with the sigmoid and hyperbolic

tangent networks.

The overfitting in the non-linear FFNNs explains their poor generalisation accuracy
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Figure 7.7: Generalisation errors (log scaled) per iteration for hyperbolic tangent FFNN

samples on the Henon Map data set.

and why there was no significant difference in their generalisation performance compared

with the linear FFNNs.

Table 7.4 summarises the means and standard deviations of the generalisation factor

results. A Friedman test comparing the results returned a significant p-value of 0.00037,

the results of the pair wise Wilcoxon tests are shown in Table 7.5. The significance tests

show that worse generalisation factors were obtained by the sigmoid and hyperbolic

tangent FFNNs compared with the linear FFNNs across all data sets. However, the

generalisation factor did not differ significantly between the sigmoid and hyperbolic

tangent FFNNs. The significantly higher generalisation factors validate the overfitting

shown in the generalisation error results. The magnitude with which ρF differs between

the linear and other networks is however compounded due to the linear FFNN’s poor

training performance.

This high, per sample, variation of the generalisation error and factor suggests that

for the sigmoid and hyperbolic tangent FFNN, the stochastic nature of the algorithm

itself has a significant effect on the generalisation and overfitting. Besides the activation
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Figure 7.8: Generalisation errors (log scaled) per iteration for linear FFNN samples on the

Henon Map data set.

Table 7.4: Generalisation factor mean and standard deviations for each of the activation

functions.

Linear Sigmoid Tanh

Data Set µ σ µ σ µ σ

Diabetes 1.04426 0.09540 1.11003 0.10690 1.12260 0.11850

Glass 1.31634 0.45454 1.70208 0.74202 1.83511 0.85932

Iris 1.08019 0.37082 1.50652 1.09819 1.40890 0.83086

WDBC 1.13680 0.16669 1.84170 0.68848 2.62311 1.29353

Wine 1.41143 0.33855 15.10526 16.06418 13.62793 11.12940

Henon Map 1.26817 0.39660 16.8779 19.6601 14.9836 18.56449

Logistics Map 1.27605 0.96850 2.02382 1.55622 1.80276 1.03876

Mackey-Glass 1.27605 0.96850 2.25601 1.25912 2.18496 1.04314

Sunspot 1.07595 0.21891 1.76883 0.50394 1.72003 0.44527

TS5 1.35967 0.47621 1.99415 0.54696 1.73540 0.37774

Friedman p-value: 0.0003707
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Table 7.5: Wilcoxon rank sum test p-values for generalisation factor results across all data

sets.

Activation Function Linear Sigmoid

Sigmoid 0.0029 -

Hyperbolic Tan 0.0029 0.29

function, worse overfitting occurred on certain data sets, specifically the the Iris, Wine,

Henon-Map and Logistic Map data sets. This phenomenon was not observed for the

linear FFNNs, likely due to the early stagnation of the illustrated in Figures 7.3 and 7.8.

7.3.3 Diversity and Convergence

The swarm diversity results for all three activation functions are discussed in this section.

The diversity means and standard deviations for each of the data sets and FFNNs are

shown in Table 7.6. Immediately noticeable is the extremely large standard deviations

obtained for some data sets, especially in the case of the sigmoid and hyperbolic tangent

FFNNs. This is indicative of outliers in the diversity data and as such the mean is not

necessarily a good indicator of central tendency, the median is therefore also shown in

the table.

With a p-value of 0.4066, the result of the Friedman test indicates no significant

difference exists when comparing the final diversity values across all of the data sets.

Since Davg has an absolute lower bound of 0 (negative diversities are not possible),

the large standard deviations could only have been obtained if some swarms obtained ex-

cessively large final diversities, characteristic of severe divergence (i.e. swarm explosion).

As mentioned earlier, this was expected, since no Vmax parameter was used.

However, the divergence phenomenon did not occur on all data sets. Using the cri-

terion of ¯Davg > 1.0 for all activation functions, divergence was said to have occurred

on all data sets except the Diabetes, Glass and Sunspot data sets. Using only the re-

sults for the remaining seven data sets, a second Friedman test was performed which

obtained a p-value of 0.01193. This indicates that, for data sets where swarm divergence
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Table 7.6: Swarm diversity mean, median and standard deviations for each of the activation

functions.

Linear Sigmoid Tanh

Data Set µ ˜Davg σ µ ˜Davg σ µ ˜Davg σ

Diabetes 0.71202 0.00155 0.94522 0.19723 0.12176 0.30356 0.30739 0.05128 0.82733

Glass 0.46935 0.16004 0.56920 0.12093 0.06787 0.18220 0.23769 0.04528 0.53634

Iris 743.109 198.678 1753.74 13726.8 2472 33115.8 5568.39 713.912 19927.1

WDBC 1.26690 1.05795 1.20240 1.31676 0.09986 2.68156 0.93136 0.12864 1.79627

Wine 17.1774 15.6 6.80043 15189.8 938.451 34209.6 218.438 91.2404 562.018

Henon Map 1.71339 1.72276 0.29838 140.868 6.72582 416.798 12.903 4.01229 36.0592

Logistic Map 2.94217 2.85352 0.41764 296.487 13.549 1516.2 6.93903 5.5107 6.78715

Mackey-Glass 2.76173 2.91764 0.80287 5.00045 1.42606 8.03390 15.2508 0.54958 70.1036

Sunspot 0.43416 0.00006 0.62378 0.42717 0.16483 0.69912 0.39433 0.07465 1.08090

TS5 2.83100 0.80964 10.6835 952.203 1.53622 4136.96 28867.2 0.63965 158035

Friedman p-value: 0.4066

occurred, a significant difference in diversity exists between FFNNs using different ac-

tivation functions. The subsequent Wilcoxon rank sum tests, the results of which are

shown in Table 8.2, showed that the linear FFNNs obtained significantly smaller diver-

sities when compared against the sigmoid and hyperbolic tangent FFNNs. The Wine

data set is an example where this is clearly evident, the linear FFNN obtained a ˜Davg
of 15.6 compared with the sigmoid and hyperbolic tangent FFNNs which obtained ˜Davg
values of 938.451 and 91.2404 respectively.

Table 7.7: Wilcoxon rank sum test p-values for diversity results on data sets with Davg > 1.0

for all activation functions.

Activation Function Linear Sigmoid

Sigmoid 0.023 -

Hyperbolic Tan 0.032 0.812

From the above results it is clear that the activation function has a significant impact
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on the swarm diversity and convergence. In particular, on data sets where swarm diver-

gence occurred, the diversity was significantly reduced when a linear activation function

was used.

The difference in swarm behaviour is better illustrated when looking at the swarm

diversities on a per sample basis. Graphs showing the diversity of each sample for all

three activation functions on the Henon Map data set are shown in Figures 7.9, 7.10 and

7.11. Similar results were obtained for other data sets.
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Figure 7.9: Diversity (log scaled) per iteration for linear FFNN samples on the Henon Map

data set.

Even with the absence of a Vmax parameter, the linear FFNN samples, shown in

Figure 7.9, exhibited behaviour consistent with the PSO model: diversity decreases over

time as the swarm converges to a solution. Samples are also shown to form a reasonably

tight cluster around the median.

Although the PSO exhibited convergent behaviour when training linear FFNNs with

a high degree of exploration, the training errors shown previously for the linear FFNNs

indicate that the FFNNs were ineffective at modelling the training data, likely due to

an insufficient number of hidden units. Further investigation is required to ascertain the
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Figure 7.10: Diversity (log scaled) per iteration for sigmoid FFNN samples on the Henon

Map data set.
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Figure 7.11: Diversity (log scaled) per iteration for hyperbolic tangent FFNN samples on the

Henon Map data set.
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behaviour of larger FFNNs using the linear activation function.

The sigmoid and hyperbolic tangent FFNNs, shown in Figures 7.10 and 7.11 shows

distinctly different behaviour. Although some samples are shown to converge, for most

samples, the diversity is erratic over time and, in many cases, is shown to increase as

the optimisation progresses. This effect is more pronounced for the sigmoid FFNNs.

The lack of swarm convergence did not however seem to affect either the training

or generalisation errors. As shown earlier, none of the Henon Map sigmoid or hyper-

bolic tangent FFNN samples were shown to have either stagnating or increasing errors.

Similarly, no indication of any affect on either error was observed for any other data

set where the swarms diverged. This disconnect between particle movement and the

obtained optima is very irregular PSO behaviour.

Activation Function Bounds

As discussed in Section 7.1, one of the primary differences between the sigmoid and

hyperbolic tangent functions compared with the linear function is the bounded nature of

the functions described with Equation (7.2).

Considering a single neuron, a large net input would be a direct consequence of large

particle positions in one or more dimensions, since the particle positions weigh the input

values. However, due to the function asymptotes, significant increases in the magnitude

of the net input signal would not significantly affect the output of the activation function

as per Equation (7.2). Neighbourhood best particles could therefore potentially make

large positional changes in one ore more dimensions with either extremely small changes,

or no changes whatsoever, occurring in objective function evaluation.

Changes in the particle positions are determined by the velocities. As particles con-

tinue to drift to positions that lead to activations closer to the bounds of the function

(with small changes in neuron activation), velocities increase without bound (assum-

ing no Vmax parameter). It therefore becomes increasingly difficult for the particles to

change direction: the momentum term of the velocity update equation (Equation (2.10))

dominates the velocity calculation due to the size of previous velocities. As the veloc-

ities increase, the swarm diverges drastically and becomes unable to effectively exploit

optima.
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This hypothesis would explain the behaviour observed previously where large particle

positions, as observed through large swarm diversities, were seen to have very little or

no effect on the training and generalisation errors.

Further, the sigmoid function has a steeper gradient compared against the hyperbolic

tangent function. Considering Equation (7.2), in the case of the sigmoid function, the

limit tends to zero faster as the net input signal increases due to the steeper gradient.

A PSO training a FFNN using sigmoid activation functions would therefore be more

susceptible to divergence as an indirect result of the activation function bounds, and

indeed, this was observed in the results.

The hypothesis is also consistent with observations from Chapter 4 where it was

shown that, although an appropriate Vmax value greatly aids the swarm’s convergence,

it only served to delay eventual divergence in some cases. This follows intuitive from the

theory: if a Vmax parameter is used, particles may still continue to move towards the

bounds of the function, but will move much slower under a constrained velocity, thereby

delaying divergence from the centre of the swarm.

However, severe swarm divergence did not occur for all runs of the algorithm, nor on

all data sets, showing that the swarm diversity, and subsequently any swarm divergence,

is also significantly influenced by both the data set and the stochastic conditions. This

too is reflected in the results of Chapter 4 where a higher Vmax value was found to be

optimal on certain data sets.

Avoiding Swarm Divergence

Assuming the bounded activation function hypothesis holds true, there are a number of

methods that could improve the PSO performance.

The simplest method is the use of an appropriate Vmax parameter, relative to the

swarm size, as shown in Chapters 4 and 6. However, the Vmax parameter would have to

be exceptionally small in order to effectively constrain particle velocities, which will have

the unwanted side-effect of increasing the required training time. Further, the effect of

the velocity equation in controlling the optimisation process is mitigated if all particles

simply have a step size equal to Vmax .

As shown above, the hyperbolic tangent FFNNs had better convergence, hypotheti-
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cally due to the hyperbolic tangent function’s reduced slope. Using the function param-

eter λ (as in Equations (7.1) and (7.3)), the steepness of the function can be reduced

by decreasing the value of λ. Changing the function’s slope will increase the correla-

tion between the net input signal and the activation value, but reduce the function’s

non-linearity.

Using sigmoid or hyperbolic tangent activation functions with varying degrees of gra-

dient adjustments may also be used to further validate the bounded activation hypothesis

made in this chapter. This is investigated further in the next chapter.

7.4 Summary

This chapter investigated the behaviour of particles swarms, in particular swarm conver-

gence, when training FFNNs using a number of different activation functions. Section

7.1 described each of the functions, followed by the experimental methodology in Section

7.2.

The results of the chapter was given in Section 7.3. It was shown that the two,

non-linear activation functions outperformed their linear counterpart on training data.

However, no statistically significant difference in performance was found between the

activation functions on the generalisation data across all tested data sets. This was

prescribed to the overfitting that was shown to occur for the sigmoid and hyperbolic

tangent networks on the data sets.

The results also showed that the generalisation accuracy differed significantly on a

per sample basis, indicating that the stochastic conditions during optimisation has a

significant impact on the overfitting of the network.

Finally, the diversity results showed that very different swarm behaviour was ob-

served when comparing the unbounded linear function FFNN against the asymptotically

bounded sigmoid and hyperbolic tangent function FFNNs. Based on the results, an hy-

pothesis was made stating that the bounded nature of the functions leads to the swarm

divergence observed in this and previous chapters. A number of methods to avoid such

divergence was also discussed.

The next chapter further develops the idea of activation function adjustment by
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adding the function parameters to the search space of the algorithm, thereby allowing

the PSO to adapt both the FFNN weights and activation function to the data sets.



Chapter 8

Adaptive Activation Functions

The previous chapter investigated the PSO’s behaviour when training FFNNs using

various activation functions. A hypothesis was made about the use of asymptotically

bounded activation functions: due to the asymptotic nature of the function, particles

continued to move toward the asymptote without significantly affecting the accuracy of

the FFNN. The unbounded acceleration of particles toward the asymptotes then lead to

divergent swarms, preventing the effective exploitation of optima.

The purpose of this chapter is two-fold: firstly, to further investigate the hypothesis

made in the previous chapter by analysing the convergence of swarms when adaptations

to the activation function are made. Specifically, adaptations to the gradient and range

of the functions are investigated. Secondly, to investigate the feasibility of the PSO as a

training algorithm when using self-adaptive activation functions, that is, parameters of

the activation functions are optimised alongside the network weights.

The remainder of the chapter is set out as follows: Section 8.1 discusses how the

sigmoid function may be adapted to further analyse the effect of asymptotic activation

function bounds on the PSO. This is followed by a brief review of previous work on

self-adaptive activation functions for FFNN training in Section 8.2. The experimental

methodology used to conduct the investigations is given in Section 8.3. This is followed

by the results and summary in Sections 8.4 and 8.5 respectively.

109
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8.1 Sigmoid Adaptation

The general form of the sigmoid function, as given by Equation (7.1), has two parameters

which control the shape of the function, i.e. λ and γ. The derivative of the function is

given by:

f ′sig(net, λ, γ) =
γλeλnet

(eλnet + 1)2
(8.1)

As illustrated by the function’s derivative, both λ and γ affect the gradient of the func-

tion. As an activation function, adjusting the gradient allows control over the active

domain of the function, and as such allows better accommodation of net input signals

that do not correspond with the active domain of (−
√

3,
√

3) when λ = γ = 1. The γ

parameter additionally controls the function’s output range, which is defined as (0, γ) if

γ > 0 and (γ, 0) if γ < 0.

Considering the results of Chapter 7, adjustment of the gradient of the sigmoid

function, and thus the proximity of the asymptotic bounds to 0, also potentially affects

the convergence and thus the FFNN training potential of the PSO.

Furthermore, appropriate adjustment of the function parameters of each activation

function in a FFNN theoretically allows the network to model completely unscaled data.

Besides the obvious benefit of eliminating the overhead associated with data scaling,

the capability of learning from unscaled data also allows for incremental training of a

network. With incremental training not all data patterns are known beforehand, and it is

therefore very difficult or in some cases impossible to obtain values such as the maximum,

minimum, mean, median or other descriptive statistics that would be required to scale

the data [28].

Furthermore, in the context of back-propagation training, it has been shown that

scaling the data into numerically smaller ranges necessitates longer training times of the

FFNN to obtain a required accuracy on the unscaled data [28].

In the case of the sigmoid function, a notable restriction to any unscaled data is that

if a data set or function has both positive and negative target output values, which is the

case with many regression problems, a single sigmoid output neuron would not be able

to accommodate all output targets, as the output range is always exclusively positive or

negative, as shown above.
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Although perhaps feasible for the output neuron, manually adapting each activation

function for all of the hidden neurons is an intractable problem, especially since optimal

values for the functions’ parameters are dependent both on the input data and network

weights. As such, a more feasible strategy is to algorithmically optimise the activation

function parameters alongside the weights of the network using a technique such as the

lambda-gamma learning rule [121].

8.2 Lambda-Gamma Learning

This section briefly discusses previous work on the adaptation of the sigmoid function

during training. The modification to the PSO FFNN training algorithm to accomplish

the same is given in Section 8.2.2.

8.2.1 Generalised lambda-gamma Learning

Zurada developed the generalised lambda learning algorithm for layered networks as an

extension of the error back-propagation (BP) algorithm to allow for the learning of the λ

values for each of the activation functions in addition to the network weights [121]. The

addition of a lamba learning rule proved effective and the lambda learning algorithm has

been shown to outperform the standard BP algorithm in certain cases.

The generalised lamba-gamma learning algorithm was later developed by Engelbrecht

et al. to include a gamma learning rule [28]. The addition of a gamma rule allowed for

self-scaling neurons in the network, theoretically enabling learning from unscaled data.

The generalised lambda-gamma algorithm was shown to require fewer training cycles to

achieve a desired accuracy when compared against the standard BP algorithm learning

from scaled data [28].

8.2.2 PSO lambda-gamma Learning

As discussed above, self-adaptive FFNNs have many potential advantages, the most

interesting of which in the context of this work is the possibility of improving the con-

vergence of the swarm.
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In order for the PSO algorithm to optimise the FFNN weights and the function

parameters of each neuron, the following approach was taken. The particle position

(candidate solution) is augmented with the λ and γ parameters:

x = (x0, x1, ..., xn, λ0, λ1, ..., λJ+K , γ0, γ1, ..., γJ+K) (8.2)

where n is the number of network weights and biases, J is the number of hidden units

and K is the number of output units. The appropriate function parameters are then used

when calculating a feedforward pass through the network. For the parametric sigmoid

activation f(net, λ, γ) as given in Equation (7.1) and an input pattern zp:

yj,p = fyj(
I+1∑
i=1

wjizi,p, λj, γj), ∀ j ∈ {1, ..., J} (8.3)

ok,p = fok(
J+1∑
j=1

w(J+k)jyj,p, λJ+k, γJ+k), ∀ k ∈ {1, ..., K} (8.4)

Appropriate strategies are required for the initialisation of the λ and γ vectors for

each particle. Considering the λ parameter, one potential strategy is to initialise λ

uniformly in the range (0.0, 2.0] allowing exploration of both gradual gradients less than

1 and much steeper gradients larger than 1.

Since the γ parameter controls the possible output range of the function, an appro-

priate initialisation strategy is uniform initialisation in the range (0.0,max(t)], where

max(t) is the maximum target output value across all patterns and dimensions for the

data set.

These strategies were used in the experimental work of this chapter, although a

number of other initialisation strategies for both the λ and γ parameters may exist, and

can be developed for future research.

The addition of the lambda-gamma parameters significantly increases the optimisa-

tion complexity in two distinct ways. The first is an increase in the dimensionality of

the search space, which is now defined as the number of weights plus double the number

of hidden and output units. The second complexity is the interaction of the λ and γ

parameters as illustrated by Equation (8.1). That is, both variables affect the gradient of

the function and are said to be non-linearly separable from each other, as seen through
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Equation (8.1). Non-linear separability of parameters in the solution (position) vector

is known as epistasis in the context of genetic algorithms (GA) and has been shown to

significantly increase the hardness of the problem, particularly in the case of GAs, but

also the PSO [70, 91].

The PSO algorithm has, however, been found to be an effective optimisation algo-

rithm in both high-dimensional environments and environments with large degrees of

variable inter-dependency [103]. As such, it is a good candidate as a training algorithm

for the lambda-gamma augmented networks.

The approach described in this section to train lambda-gamma augmented networks

using a PSO is referred to as the PSO Lambda-Gamma (PSO-LG) algorithm for the

remainder of this study.

8.3 Experimental Methodology

This section discusses the methodology used in this chapter’s experimental work. Two

experiments are performed. The first, described in Section 8.3.4 involves predictable,

static adaptations to the activation functions to investigate their effect on the PSO

algorithm in an attempt to investigate the bounded activation function hypothesis.

The second experiment investigates and compares PSO lambda-gamma learning on a

number of scaled and unscaled data sets in terms of training and generalisation accuracy

and overfitting as detailed in Section 8.3.4.

8.3.1 Data Sets

The data sets given in Section 3.2 were used for all experimental work in this chapter.

However, preparation for each of the data sets differed as follows.

For the experimental work that required scaled data sets, the scaling as described in

Section 3.2 was used with the input values scaled to the range [−2, 2] and the output

values scaled to [0.1, 0.9].

Where unscaled data was required, neither the input nor the output values of the

data sets were scaled, regardless of size, with the exception of the Henon Map and TS5

data sets. The Henon Map and TS5 data sets have negative output values for some data
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patterns, and due to the limitations of the sigmoid function discussed above, output

scaling was always applied for these data sets to the range [0.1, 0.9].

8.3.2 PSO Configuration

As in Chapter 7 an lbest PSO with a neighbourhood size of five and a swarm size of

25 was used for both experiments. Particle velocities were initialised to 0 as described

in Section 3.3.2. Where static activation functions were used, particle positions were

initialised to the range [ −1√
fanin

, 1√
fanin

]. In the case of adaptive functions, the weight

sub-vectors of the position vector was initialised in [ −1√
fanin

, 1√
fanin

] with the λ and γ

sub-vectors each initialised as discussed in Section 8.2.2.

The per data set optimised ω, c1 and c2 control parameters as given in Table 6.2 were

used for both experiments. Although these values were optimised for training standard

FFNNs, they serve as a good starting point for training with the additional lambda and

gamma parameters.

The algorithm execution was limited to 50000 objective function evaluations for both

experiments.

8.3.3 Algorithm Measurements

The measurements given in Section 3.3.3 were used to quantify performance of the al-

gorithm and NNs. As described in Section 3.3.3 the training and generalisation errors

were calculated on the re-scaled data, that is, data that has been scaled to their original

values (if applicable) before calculating the error. Error measurements on scaled and

unscaled data sets are therefore comparable.

8.3.4 Experimental Procedure

The experimental procedure for both experiments are given in this section.

Static Activation Functions

Chapter 7 stated the hypothesis that the use of bounded activation functions within

FFNNs that are trained by a PSO caused severe swarm divergence due to particles
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moving towards the bounds of the function without it necessarily having a significant

impact on the output of the FFNN (and thus the objective function evaluation). This

was attributed to the flat gradient of the function at the function’s asymptotic ends.

This hypothesis is supported by results shown in Chapter 7 where swarm divergence

did not occur for the unbounded linear activation function. A feasible course of analysis

is therefore to adapt the sigmoid function to be more linear in nature and analysing of

swarm trained using such sigmoid functions.

Using the λ parameter, the gradient of the sigmoid function can be adapted, such that

the function resembles the linear function, y = x. A λ < 1 reduces the gradient of the

sigmoid function thereby expanding the active domain and creating a more gradual slope

approaching the function asymptotes. Conversely, with a λ > 1 the gradient steepens

and the active domain contracts as the function resembles the step function.

Both steeper and more gradual gradients and their effect on the PSO as FFNN train-

ing algorithm were tested. A FFNN was configured using a specific λ value for all acti-

vation functions in the hidden and output layers. Scaling was applied to all data sets as

described in Section 8.3.1 and the PSO algorithm was used to train the FFNN on each of

the data sets. Each execution on a data set was repeated for 30 samples, where each sam-

ple used an unique seed for a Mersenne Twister PRNG, and the performance recorded.

This procedure was repeated for each λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, 1.7, 1.9}.
Results for each of the λ values were compared across all data sets using a Friedman

test with α = 0.05. The following hypothesis was evaluated:

• H0: There is no significant difference in performance between any of the λ values.

• H1: There is an one-tailed significant difference, lower values in the cases of ET

and EG and higher values in the cases of ρF and Davg, between at least one pair of

λ values.

If the Friedman test resulted in the acceptance of H1, the pairwise Wilcoxon rank

sum tests were performed comparing pairs of λ values.

As the purpose of the experiment is to investigate the divergence hypothesis with

regards to the use of bounded activation functions, no Vmax parameter was used for this
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experiment, making the diversity results directly comparable with the results of Chapter

7.

Adaptive Activation Functions

The purpose of the second experiment is to investigate the capability of the PSO algo-

rithm and the performance of the FFNNs when trained using the lambda-gamma training

technique described in Section 8.2.2. Additionally, training on unscaled data is also in-

vestigated.

The PSO was configured with the lambda-gamma particle presentation and then used

to train a FFNN on all data sets discussed in Section 8.3.1 with data scaling applied.

Each execution of the algorithm on a data set was repeated 30 times with each sample

using a unique seed for a Mersenne Twister PRNG.

This procedure was then repeated for unscaled data as described in Section 8.3.1.

The results of the adaptive FFNNs, for both scaled and unscaled data, were then

compared against standard FFNNs trained on scaled data sets using the following hy-

pothesis:

• H0: There is no significant difference in performance between any of the algorithms.

• H1: There is an one-tailed significant difference, lower values in the cases of ET

and EG and higher values in the cases of ρF and Davg, between the algorithms.

A Friedman test with α = 0.05 was performed to compare the algorithms across all data

sets. If significant, pairwise Wilcoxon rank sum tests were performed, with α = 0.05,

comparing each algorithm against the other.

8.4 Results

The results of the experimental work of this chapter is given and discussed in this section.

Section 8.4.1 discusses the results of the static activation function experiments. This is

followed by the adaptive activation function experimental work in Section 8.4.2.
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8.4.1 Static Activation Functions

The results of the static activation function experiment are given and discussed here.

The results are divided into two sections: the diversity and convergence results followed

by the training and generalisation accuracy results.

Diversity and Convergence

Table 8.1 presents the swarm diversity results for each of the sigmoid λ values tested.

Similar to the results of Chapter 7, large standard deviations were obtained due to

swarm divergence that occurred for most samples which in turn lead to outlying diversity

values; the median result is therefore also given. Due to the magnitude of the outliers,

the Friedman and Wilcoxon rank sum tests were also performed on the median diversity

results.

A Friedman test produced a p-value of 2.181e-9, indicating a significant difference

between at least two λ values across all data sets. The subsequent Wilcoxon rank sum

test results are given in Table 8.2. The pairwise tests show that, with the exception of the

λ = 0.3 vs. λ = 0.5 tests, as λ was increased from 0.1, the diversity decreased significantly

up to λ = 0.3. Diversity continued to decrease for λ > 0.3, though insignificantly so.

Chapter 7 showed that when using the linear activation function, significantly lower

final diversity were obtained by the swarms than when using sigmoid FFNNs. Further, no

severe swarm divergence was seen to occur with linear activation functions. As explained

in Section 8.3.4, it was expected that diversities should similarly decrease when using

sigmoid functions with λ < 1. Indeed, the opposite is observed here: diversity and severe

swarm divergence is shown to increase as λ decreases i.e. as the gradient of the sigmoid

function decreases.

Section 8.3.4 made the statement that a sigmoid function with a small λ parameter

becomes more linear in nature, shifting the bounds away from the origin. Figure 8.1

shows the derivative of five different activation functions: the linear function, hyperbolic

tangent function and the sigmoid function for λ ∈ 0.5, 1.0, 1.5. The figure illustrates

that, although for λ = 0.5 the derivative of the sigmoid function is shown to be flat in

nature, similar to the linear function, the magnitude of the gradient is also significantly

decreased.
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Table 8.2: Wilcoxon rank sum test p-values for swarm diversity results when training FFNNs

using static sigmoid functions with indicated λ values.

λ 0.1 0.3 0.5 0.7 0.9 1.0 1.1 1.3 1.5 1.7

0.3 0.019 - - - - - - - - -

0.5 0.019 0.188 - - - - - - - -

0.7 0.019 0.019 0.271 - - - - - - -

0.9 0.031 0.562 0.416 1.000 - - - - - -

1.0 0.019 0.069 0.150 1.000 0.228 - - - - -

1.1 0.019 0.031 0.112 0.562 0.228 0.188 - - - -

1.3 0.019 0.019 0.112 1.000 0.271 1.000 1.000 - - -

1.5 0.019 0.019 0.019 0.753 0.342 1.000 1.000 1.000 - -

1.7 0.019 0.069 0.870 1.000 0.753 1.000 1.000 1.000 1.000 -

1.9 0.019 0.031 0.112 0.562 0.112 1.000 1.000 0.753 0.562 0.271

0

0.5

1

1.5

2

-4 -2 0 2 4

f ′lin
f ′sig,λ=0.5

f ′sig,λ=1.0

f ′sig,λ=1.5

f ′tanh

Figure 8.1: Activation function gradients.
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Gradient Hypothesis

Chapter 7 hypothesised that the bounds of the activation functions were leading to

divergent swarms. However, from the results given in Table 8.1 it can be concluded

that, instead of the asymptotic bounds, the change in magnitude of the gradient, i.e.

the steepness of the activation function significantly affects the swarm diversity when

training FFNNs: shallower activation function gradients lead to swarm divergence.

From a theoretical point of view, the influence of the gradient on swarm convergence

could be explained as follows: considering a single neuron, with weights defined by

particle position x. In minimising the error, a particle seeks to find a position x∗ such that

fsig(net∗x, zk) = tp where tp is the target output for input pattern zp. The distance and

direction the particle needs to move in the search space is then defined as ∆x∗ = x∗−x.

Algorithmically, this is achieved through the velocity update. The social and personal

best positions approximate x∗ over the course of optimisation: that is, the personal best

position, y, approaches the neighbourhood best position, ŷi, which ideally approaches

the solution vector, x∗, and serve as attractors for other particles. The basis of the

velocity update equation (Equation (2.10)) is defined by the difference to the attractor

positions: ∆xy = y − x and ∆xŷ = ŷi − x.

The gradient of the activation function, by definition, relates any changes in function

output, that is, the activations of the neurons in the network, to the change in input,

i.e. the weighted sum of the particle position with the input pattern. Additionally, the

change in function input is inversely proportional to the gradient. For a neuron, for

which ŷi defines the neighbourhood best position, consider the distance to the current

position: ∆xŷ = ŷi − x. For an activation function with a steep gradient, the distance

∆xŷ is smaller compared against the ∆xŷ for an activation function with a shallow

gradient if the functions have the same output.

This effect is illustrated in Figure 8.2 for a function with a shallow gradient, fsig,λ=0.5,

and a function with a steep gradient, fsig,λ=1.5. The figure shows that the distance

|∆x∗| = |x∗ − x| required to change the activation from value fsig(netx, zp) to value tp

is significantly larger when λ = 0.5 compared to λ = 1.5.

The increased distance due to the activation function gradient directly leads to in-

creases in the magnitude of ∆xy and ∆xŷ used in the velocity update of particles, which
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-0.5

0

0.5

1

1.5

2

-4 -2 0 2 4 6

xλ=1.5 xλ=0.5

x∗λ=1.5 x∗λ=0.5

tp

fsig(netx, zp)

fsig,λ=1.5

fsig,λ=0.5

Figure 8.2: Gradient function input and output to activation functions with shallower (λ =

0.5) and steeper (λ = 1.5) gradients for a single input pattern.

in turn increases the size of the velocity of particles. Large velocities, in the absence of a

Vmax parameter, are known to cause divergent swarms, as illustrated through extremely

large swarm diversities [15]. This is observed in the results: as the steepness of the

gradient decreases, the diversity is shown to increase.

Results obtained in Chapter 7 also showed decreased swarm divergence for the lin-

ear and hyperbolic tangent activation functions. This is consistent with the gradient

hypothesis: both functions have significantly larger gradients than the sigmoid function

for the active range as seen in Figure 8.1.

Finally, the hypothesis that shallower gradients cause divergence in swarms when

training FFNNs can naturally be extended to the bounds of the function: As particles

move closer to the bounds, the steepness of the function decreases further, thereby further

increasing distances from particle positions to neighbourhood and personal best positions

in the velocity update.
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Training and Generalisation Accuracy

The training error results are given in Table 8.3. For most data sets a non-strict decrease

in training error can be seen with an increase in the λ value. However, the Friedman test

produced a p-value of 0.2227 showing that the decrease in training error is not significant

across all data sets.

Since swarm divergence decreases with an increase in λ, the swarm becomes more

capable of exploitation with steeper gradients. Therefore, it is expected that the training

accuracy of the FFNNs would increase as λ increased, even if the improvement was

insignificant. It is possible that larger λ values could significantly improve the training

accuracy.

The generalisation results are given in Table 8.4. A Friedman test of the generalisation

results yielded a p-value of 0.8983, indicating that the λ parameters and changes in

swarm diversity did not have a significant impact on the generalisation accuracy of

the FFNN. This is consistent with the findings of earlier chapters, where variation in

factors affecting diversity, e.g. the swarm size, was also shown to have little effect on

generalisation accuracy.

Summary

The results given here clearly show that the activation function gradient is and should

be a significant consideration when using the PSO as a training algorithm for FFNNs.

Appropriate gradients that lessen swarm divergence should be investigated on a per

problem basis. Optimal gradients for the activation functions do not, however, guaran-

tee convergence and has to be used in conjunction with appropriate choices for other

control parameters, specifically Vmax. It is reasonable to assume that optimal values for

Vmax and other control parameters will also depend on the activation function gradients,

though, such a study is left as future work. Further, the effect of the gradient on other

types of FFNNs, such as product-unit neural networks [18], should also be investigated

when using PSO as a training algorithm.
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8.4.2 Adaptive Activation Functions

The results for the adaptive activation function experiment are given in this section. As

described in Section 8.3.4, the PSO lambda-gamma training technique was applied to

both scaled and unscaled data. Both result sets are given in this section and compared

with PSO training of standard FFNNs on scaled data.

Training Accuracy

The training error results are given in Table 8.5. On scaled data sets the PSO-LG

algorithm performed comparable to the PSO algorithm in spite of the much greater

complexity and dimensionality of the problem; for some data sets a lower training error

was obtained by the PSO-LG algorithm. For all data sets, the algorithm obtained

larger training errors when the data was unscaled. The result of the Friedman test, p =

0.007447, shows that a significant difference exists between the three approaches.

Table 8.5: Training error results for PSO lambda-gamma trained neural networks for scaled

and unscaled data sets.

PSO-LG scaled PSO-LG unscaled PSO scaled

Data Set µ σ µ σ µ σ

Diabetes 0.14454 0.00512 0.19412 0.01041 0.14335 0.00618

Glass 0.56890 0.09440 0.81191 0.34170 0.55411 0.07292

Iris 0.01983 0.00761 0.02584 0.00721 0.01606 0.00521

WDBC 0.01505 0.00429 0.03992 0.01649 0.01674 0.00365

Wine 0.00049 0.00099 0.02951 0.01406 0.00108 0.00067

Henon Map 0.00703 0.02247 0.01870 0.04045 0.00067 0.00052

Logistic Map 0.00080 0.00021 0.00089 0.00020 0.00075 0.00015

Mackey-Glass 0.00063 0.00015 0.00070 0.00018 0.00060 0.00011

Sunspot 136.93798 16.41584 202.37518 164.09695 142.29804 16.38328

TS5 0.00227 0.00028 0.00223 0.00017 0.00233 0.00041

Friedman p-value: 0.007447

Wilcoxon rank sum tests, shown in Table 8.6, indicated that training on unscaled data

yielded significantly worse training errors compared with either PSO-LG or standard
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PSO training on scaled data. No significant difference in training performance between

the PSO-LG and standard PSO training was found on scaled data.

On the much harder problem of unscaled data, the PSO-LG still performed well. The

algorithm was capable of successfully training the FFNN, but could not achieve the same

degree of accuracy as with scaled data. However, no attempt was made to optimise the

parameters of the algorithm for this task, nor was the algorithm allowed more execution

time on the harder problem, and it is possible that training accuracy may be further

improved if the networks are trained for longer.

Table 8.6: Wilcoxon rank sum test p-values for training error results of PSO-LG trained

networks.

Algorithm PSO-LG scaled PSO scaled

PSO scaled 1.0000 -

PSO-LG unscaled 0.0081 00081

Generalisation Accuracy

Table 8.7 presents the generalisation results for the PSO-LG trained networks, again

comparing against standard FFNNs on scaled data. Results similar to the training error

are seen: the PSO-LG algorithm achieved similar accuracy to the PSO algorithm on

scaled data. On unscaled data, the PSO-LG obtained higher generalisation errors than

either of the other approaches. A Friedman test revealed that a significant difference

exists between the three result sets, with a p-value of 0.003346.

The pairwise Wilcoxon rank sum tests, summarised in Table 8.8, indicate no sig-

nificant difference in generalisation performance exists between the standard PSO and

PSO-LG algorithms on scaled data, but significantly worse generalisation resulted from

training on unscaled data.

Although the increased generalisation error could also, at least partially, be prescribed

to the increased difficulty of the problem, better insight is gained when looking at the

generalisation factor results given in Table 8.9. All the training methods obtained gen-

eralisation factors larger than one on all the data sets, regardless of scaling, indicative



Chapter 8. Adaptive Activation Functions 127

Table 8.7: Generalisation error results for PSO lambda-gamma trained neural networks for

scaled and unscaled data sets.

PSO-LG scaled PSO-LG unscaled PSO scaled

Data Set µ σ µ σ µ σ

Diabetes 0.16316 0.01151 0.2083 0.01136 0.15875 0.00928

Glass 0.88728 0.22642 1.02902 0.42767 0.85734 0.22522

Iris 0.03311 0.01456 0.03242 0.01257 0.0287 0.01291

WDBC 0.0326 0.01021 0.04979 0.01854 0.02777 0.00689

Wine 0.04229 0.0284 0.07557 0.03486 0.03299 0.01603

Henon Map 0.02973 0.05732 0.03755 0.06567 0.00603 0.00675

Logistic Map 0.00142 0.00062 0.00151 0.00076 0.00133 0.00054

Mackey-Glass 0.00138 0.00058 0.00153 0.00088 0.00131 0.00054

Sunspot 254.97422 51.77698 383.26526 186.5984 225.50895 42.37241

TS5 0.00449 0.00114 0.00438 0.00098 0.00453 0.00116

Friedman p-value: 0.003346

of overfitting. However, the result of a Friedman test yielded a significant p-value of

0.005517, indicating that the overfitting differed significantly between training methods.

The PSO-LG algorithm on unscaled data obtained the lowest generalisation factor

per data set, indicating the least severe overfitting. The results of the pairwise Wilcoxon

tests, given in Table 8.10, show that the standard PSO achieved insignificantly larger

generalisation factors compared with training on unscaled data.

Significantly worse overfitting occurred for the PSO-LG training method on scaled

data, especially on the Iris, Wine and Henon Map data sets.

From a theoretical perspective, the λ and γ parameters are additional free parameters

in the FFNN model, similar to network weights. Although this makes the network a more

powerful approximator, the additional free parameters can also be used to overfit on the

training data given enough training time to do so, similar to when a network has too

many hidden units

From the training results it is clear that the PSO-LG algorithm is very capable of

training FFNNs augmented with λ and γ parameters. However, from the results given
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Table 8.8: Wilcoxon rank sum test p-values for generalisation error results of PSO-LG trained

networks.

Algorithm PSO-LG scaled PSO scaled

PSO scaled 1.0000 -

PSO-LG unscaled 0.0038 0.011

Table 8.9: Generalisation factor results for PSO lambda-gamma trained neural networks for

scaled and unscaled data sets.

PSO-LG scaled PSO-LG unscaled PSO scaled

Data Set µ σ µ σ µ σ

Diabetes 1.13188 0.10941 1.07556 0.07519 1.11162 0.10724

Glass 1.6656 0.73292 1.34103 0.50048 1.62497 0.65538

Iris 5.20826 16.79141 1.35296 0.66201 2.24302 1.72054

WDBC 2.4965 1.49538 1.33351 0.45612 1.75793 0.66297

Wine 1638.20816 5150.65671 3.19061 1.88684 56.56108 71.60725

Henon Map 11.28004 17.16726 8.47548 9.1472 11.63785 12.39576

Logistic Map 2.03988 1.22738 1.88118 1.16858 1.94669 1.07973

Mackey-Glass 2.49672 1.54969 2.44093 1.59815 2.36546 1.24339

Sunspot 1.91989 0.59257 2.17027 0.75092 1.63221 0.48084

TS5 2.00486 0.5568 1.98663 0.5166 1.97498 0.5298

Friedman p-value: 0.005517

Table 8.10: Wilcoxon rank sum test p-values for generalisation factor results of PSO-LG

trained networks.

Algorithm PSO-LG scaled PSO scaled

PSO scaled 0.056 -

PSO-LG unscaled 0.029 0.196
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here, it seems that the PSO-LG algorithm is indeed using the increased capability of the

FFNN to more accurately model the training data, at the cost of generalisation when

training on scaled data.

However, the same degree of overfitting was not witnessed on unscaled data. Training

on unscaled data is however a much harder problem for the network to approximate.

With unscaled data the additional parameters, especially γ, have to be used to adapt to

the data set, specifically, the bounds of the target outputs. The more powerful lambda-

gamma augmented network can be seen as more appropriate to the problem of unscaled

data, and therefore overfitting is reduced.

Summary

The PSO-LG algorithm has been shown as a capable training algorithm for the lambda-

gamma parametrised FFNNs, with performance that does not differ significantly to that

of PSO trained FFNNs on scaled data. The PSO-LG was also successful in training

FFNNs on unscaled data at the cost of accuracy. There remains, however, a number of

aspects that may still improve performance: optimisation of algorithm parameters, the

use of other activation functions, more sophisticated initialisation strategies of the λ and

γ parameters and the handling of constraints imposed onto the parameters, to name but

a few. These topics are left as future work.

8.5 Summary

This chapter presented two experiments investigating adaptation of the activation func-

tion of FFNNs and the effect thereof on the FFNN and PSO as training algorithm.

Using fixed adaptations to the λ parameter of the sigmoid function, Section 8.4.1

further investigated the hypothesis that the asymptotic bounds of the activation func-

tions lead to divergence of the particle swarm as stated in Chapter 7. However, the

results showed that the activation function gradient has a significant effect on swarm

convergence. This effect is more pronounced at the bounds of the function where the

gradient is shallowest. A theoretical analysis of the effect was given.

Self-adapting activation functions, in the form of lambda-gamma adjusted sigmoid
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functions, were investigated in Section 8.4.2. The PSO Lambda-Gamma algorithm for

the training of lambda-gamma parametrised FFNNs was described. The PSO-LG algo-

rithm was then compared with PSO training of standard FFNNs on both scaled and

unscaled data. The PSO-LG algorithm was shown to be a capable training algorithm

on both scaled and unscaled data sets. Significant overfitting was shown to occur with

the PSO-LG algorithm on scaled data. However, on unscaled data, the overfitting was

reduced. The dissertation is concluded in the next chapter.



Chapter 9

Conclusions

This chapter presents a summary of the work done in this thesis including all important

findings and derivations. A number of possible future research avenues are also discussed.

Section 9.1 summarises the conclusions reached throughout the study and Section

9.2 provides topics for future research.

9.1 Summary of Conclusions

This section summarises the major findings made during the pursuit of the primary

objective of this thesis: an empirical analysis of the effect of the PSO algorithm and its

parameters on FFNN accuracy and overfitting.

NNs and in particular FFNNs were discussed with background being provided into

their training. The phenomenon of overfitting was reviewed along with existing methods

that exist to attempt to prevent overfitting during training. A review of the PSO algo-

rithm, its components and parameters was presented. A discussion of existing literature

on PSO FFNN training was also given.

An empirical comparison, in terms of FFNN accuracy, of two widely publicised PSO

algorithms, the lbest PSO and the GCPSO, was given. A discussion of overfitting that

occurred for both PSO algorithms was given and it was shown that overfitting occurred

early in the optimisation process, no later than 200 iterations with a swarm size of

25. Empirical analysis showed no significant difference in terms of FFNN performance

131
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and overfitting between the PSO and GCPSO trained FFNNs. Analysis of the diversity

results also showed severe swarm divergence occurring during optimisation of the FFNNs.

The Vmax parameter and its effect on FFNN training and the observed swarm diver-

gence was analysed. It was found that a lack of the Vmax parameter was not the cause

of divergence, but that swarm convergence may be aided with the use of a Vmax < 1

for the data sets used in this study. It was further shown that a smaller Vmax value

benefited the training accuracy of the networks, likely due to the decreased swarm di-

vergence. Generalisation accuracy and overfitting was mostly unaffected by the choice

of Vmax parameters.

An analysis of the inertia and social and cognitive acceleration coefficients was given.

Beneficial and adverse ranges were identified for each parameter that improved FFNN

accuracy. It was shown that, although specific parameter values could be identified that

resulted in both good FFNN training and generalisation accuracy and reduced overfit-

ting, that these values were specific to each data set. Additionally, specific parameter

interactions were identified that should be avoided when training FFNN due to the

adverse effect on accuracy.

It was also observed that the stochastic elements of the PSO algorithm also had a sig-

nificant effect on FFNN training, with certain samples performing significantly different

from each other under the same conditions and parameters.

The swarm size and its effect was investigated. It was found that, under the condition

of a constant number of objective function evaluations, larger swarm sizes resulted in

significantly decreased training accuracy while generalisation accuracy and overfitting

were unaffected. Swarm divergence shown in previous chapters was shown to worsen as

swarm size increased and it was concluded that optimal values for Vmax are specific to

the swarm size used.

Due to the divergence shown to occur during FFNN training for all parameters tested,

it was hypothesised that the FFNN activation function, which determines the optimisa-

tion search space, might be the indirect cause of the divergence. An analysis was given of

three activation functions: the sigmoid, hyperbolic tangent and linear functions. It was

found that the non-linear functions outperformed the linear function in terms of training

accuracy. No significant difference was found in terms of generalisation accuracy due to
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overfitting that was shown to occur for the non-linear functions.

It was further shown that swarm divergence only occurred for the sigmoid and hy-

perbolic tangent functions and it was hypothesised that this is due to the asymptotic

bounds of the functions. This hypothesis was tested using adaptations to the sigmoid

function that changed the nature of the function. It was found that instead of the asymp-

totic bounds, the gradient of the function significantly affects swarm convergence during

FFNN training. Steeper gradients was shown to lead to convergent swarms and lower

training errors on some data sets.

Finally, due to the findings that specific activation function gradients improved FFNN

training, an investigation was made into self-adaptive activation functions using lambda-

gamma adjusted sigmoid functions. The PSO Lambda-Gamma (PSO-LG) algorithm was

given. The PGO-LG algorithm was shown to overfit significantly on scaled data sets,

however, the algorithm was also shown to be capable of training FFNNs on completely

unscaled data with reduced training accuracy but improved overfitting.

9.2 Future Work

This section presents and discusses a number of possible future research topics.

Constrained Optimisation

An alternative to adaptive activation functions is to add constraints to the optimisation

problem in order to avoid regions outside the active domain of the activation function.

A number of techniques have been developed to enhance the PSO to handle constrained

optimisation problems [24, 48, 76, 109, 110]. In particular, the method described by

Venter and Sobieszczanski-Sobieski aims to repair infeasible particles by resetting the

particles’ velocities to 0 and modifying the velocity update equation for those particle to

exclude the momentum term while the position remains infeasible. In this way, infeasible

particles are drawn back to a feasible region. This approach seems especially well suited

to the bounded activation function problem.
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Investigating Swarm Size

The findings in this study have shown that the optimal value of the Vmax parameter is

specific to the swarm size used. Investigation is required into the correlation between

Vmax and swarm size. Further, it was shown that larger swarms performed poorly against

smaller swarms under the restriction of constant computational effort. Investigation

should be done on the use of larger swarms at an increase of computational effort and

whether this approach improves training and worsens overfitting.

Other Particle Swarm Optimisers

Although a comparison was made to the GCPSO, the effect on FFNN training of other

PSO algorithms may also be investigated. Cooperative PSO algorithms, which have

been successfully used to train FFNNs [103, 104], is one such example. Another notable

candidate is the Constriction PSO, a PSO model which includes a constriction coefficient

as an alternative to the use of a Vmax parameter [14, 15].

Other Population Based Algorithms

Some aspects of the PSO, notably the size of the population and the restriction of

candidate solutions also apply to other population and evolutionary based algorithms for

NN training. Investigation is required into whether the findings of this study, primarily

the swarm size and the stochastic nature of the algorithm extends to FFNN training by

other algorithms.

Extension of Adaptive Neural Networks

The PSO Lambda-Gamma algorithm has shown promise as a training algorithm in this

study on both scaled and unscaled data sets. Additional investigation is required on

potentially improving the performance of the PSO-LG algorithm: optimisation of the

control parameters, alternative initialisation strategies for lamba and gamma parameters

and constrained optimisation are but a few possibilities.
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Other Neural Networks

Overfitting and accuracy analysis of PSO training of other NNs, for example product

unit NNs [52, 53, 105] or convolution NNs [66], require further investigation.
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[62] I. Kusçu and C. Thornton. Design of artificial neural networks using genetic al-

gorithms: Review and prospect. Cognitive and Computing Sciences, University of

Sussex, 1994.

[63] T. Y. Kwok and D. Y. Yeung. Constructive feedforward neural networks for regres-

sion problems: A survey. Department of Computer Science, Hong Kong University

of Science and Technology, Technical Report, 1995.

[64] S. Lawrence and C. L. Giles. Overfitting and Neural Networks: Conjugate Gradi-

ent and Backpropagation. In International Joint Conference on Neural Networks,

volume 1, page 1114, Los Alamitos, CA, USA, 2000. IEEE Computer Society.

[65] Y. Le Cun, J. S. Denker, and S. A. Solla. Optimal Brain Damage. Advances in

Neural Information Processing Systems, 2:598–605, 1990.

[66] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time

series. The Handbook of Brain Theory and Neural Networks, 3361, 1995.

[67] L. Leerink, C. L. Giles, B. G. Horne, and M. A. Jabri. Learning with product

units. Advances in Neural Information Processing Systems, pages 537–544, 1995.

[68] C. L. Lin, S. T. Hsieh, T. Y. Sun, and C. C. Liu. Cluster distance factor searching

by particle swarm optimization for self-growing radial basis function neural net-

work. In International Joint Conference on Neural Networks, pages 4825–4830,

2006.



Bibliography 143

[69] H. B. Liu, Y. Y. Tang, J. Meng, and Y. Ji. Neural networks learning using vbest

model particle swarm optimisation. In Proceedings of International Conference on

Machine Learning and Cybernetics, volume 5, 2004.

[70] K. M. Malan and A. P. Engelbrecht. Algorithm comparisons and the significance

of population size. In Proceedings of the Congress on Evolutionary Computation

(IEEE World Congress on Computational Intelligence), pages 914–920, 2008.

[71] H. B. Mann and D. R. Whitney. On a test of whether one of two random vari-

ables is stochastically larger than the other. The annals of mathematical statistics,

18(1):50–60, 1947.

[72] R. Mendes, P. Cortez, M. Rocha, and J. Neves. Particle swarms for feedforward

neural network training. In Proceedings of the International Joint Conference on

Neural Networks, pages 1895–1899, 2002.

[73] S. Naka, T. Genji, T. Yura, and Y. Fukuyama. Practical distribution state estima-

tion using hybrid particle swarmoptimization. In IEEE Power Engineering Society

Winter Meeting, volume 2, 2001.

[74] National Geophysical Data Center. NGDC/WDC STP, Boulder-Sunspot Num-

ber Data via FTP from NGDC. http://www.ngdc.noaa.gov/stp/SOLAR/

ftpsunspotnumber.html, November 2009. Accessed 4/11/2009 18:06 SAST.

[75] O. Olorunda and A. P. Engelbrecht. Measuring exploration/exploitation in particle

swarms using swarm diversity. In Proceedings of the Congress on Evolutionary

Computation (IEEE World Congress on Computational Intelligence), pages 1128–

1134, 2008.

[76] K. E. Parsopoulos and M. N. Vrahatis. Particle swarm optimization method for

constrained optimization problems. Intelligent Technologies–Theory and Applica-

tion: New Trends in Intelligent Technologies, 76:214–220, 2002.

[77] D. W. Patterson. Artificial Neural Networks: Theory and Applications. Prentice-

Hall Series in Advanced Communications. Prentice Hall, 1996.

http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html
http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html


Bibliography 144

[78] E. S. Peer, F. van den Bergh, and A. P. Engelbrecht. Using neighbourhoods with

the guaranteed convergence PSO. In Proceedings of the IEEE Swarm Intelligence

Symposium, pages 235–242, 2003.

[79] J. Platt. A Resource-Allocating Network for Function Interpolation. Neural Com-

putation, 3(2):213–225, June 1991.

[80] R. Poli. Analysis of the publications on the applications of particle swarm optimi-

sation. Journal of Artificial Evolution and Applications, 2008.

[81] L. Prechelt. Adaptive parameter pruning in neural networks. International Com-

puter Science Institute, Technical Report, 1995.

[82] A. Ratnaweera, S. K. Halgamuge, and H. Watson. Particle swarm optimization

with self-adaptive acceleration coefficients. In Proceedings of the First International

Conference on Fuzzy Systems and Knowledge Discovery, pages 264–268, 2003.

[83] R. Reed. Pruning algorithms: a survey. IEEE Transactions on Neural Networks,

4(5):740–747, 1993.

[84] Z. Ren and Y. San. Designing for rbf networks based on particle swarm optimiza-

tion and regularized orthogonal least squares. In The Sixth World Congress on

Intelligent Control and Automation, volume 1, 2006.

[85] H. W. Ressom, Y. Zhang, J. Xuan, Y. Wang, and R. Clarke. Inferring network

interactions using recurrent neural networks and swarm intelligence. In Confer-

ence proceedings: Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, volume 1, page 4241, 2006.

[86] M. Riedmiller. Supervised learning in multilayer perceptrons-from backpropagation

to adaptive learning techniques. Computer Standards and Interfaces, 16, 1994.

[87] J. Riget and J. S. Vesterstrø m. A diversity-guided particle swarm optimizer-

the ARPSO. Department of Computer Science, University of Aarhus, Aarhus,

Denmark, Techical Report, 2:2002, 2002.



Bibliography 145
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Appendix A

Acronyms

A list of acronyms used throughout the text is given in this appendix.

ANN Artificial Neural Network

BP Backpropagation

CG Conjugate Gradient

CI Computational Intelligence

EA Evolutionary Algorithm

EP Evolutionary Programming

FFNN Feedforward Neural Network

GA Genetic Algorithm

GCPSO Guaranteed Convergence Particle Swarm Optimisation

GD Gradient Descent Backpropagation Training Algorithm

LDS Low-Discrepancy Sequence

MLP Multi-Layer Perceptron

MSE Mean Squared Error

149



Appendix A. Acronyms 150

NN Neural Network

PRNG pseudo-random number generator

PSO Particle Swarm Optimisation



Appendix B

Symbols

This appendix lists the mathematical symbols used throughout this thesis accompanied

by their definitions. Each section lists the symbols used per chapter, with only newly

introduced symbols for the chapter being shown. Symbols in bold text indicate vectors.

B.1 Chapter 2: Background

D A data set.

DT A training data set.

DG A generalisation data set.

p A data set pattern.

tp Pattern target vector.

z Neural network input layer.

I Neural network input layer size.

J Neural network hidden layer size.

K Neural network output layer size.

yp Hidden layer activation vector for pattern p.

op Output layer activation vector for pattern p.

K Neural network output layer size.

P Data set pattern size.
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PT Training data set pattern size.

PG Generalisation data set pattern size.

tp Target vector for pattern p.

f(net) Neuron activation function.

fsig(net) Sigmoid activation function.

net Input signal for a neuron activation function.

λ Gradient parameter for the sigmoid function.

E Neural network error.

ET Neural network training error.

EG Neural network generalisation error.

w Neuron weight vector.

fanin Number of incoming weights for a neuron.

ρF Röbel generalisation factor.

MSET Mean squared training error.

MSEG Mean squared generalisation error.

Ω Regularisation penalty term.

GLα Generalisation loss criterion.

x Particle position.

v Particle velocity.

y Particle personal best position.

ŷ Particle neighbourhood best position.

ω PSO inertia parameter.

c1 PSO cognitive acceleration coefficient.

c2 PSO social acceleration coefficient.

r Stochastic variable for particle velocity calculation.

ns PSO swarm size.

Davg Average distance around swarm centre measurement.

ρ GCPSO hypercube search size control parameter.
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sc GCPSO hypercube search success count.

fc GCPSO hypercube search failure count.

B.2 Chapter 3: Comparing PSO and GCPSO

n PSO search space dimensionality.

ET Training error measurement.

EG Generalisation error measurement.

B.3 Chapter 7: Considering Activation Functions

γ Sigmoid range parameter.

ftanh(net) Hyperbolic tangent activation function.

flin(net) Linear activation function.

B.4 Chapter 8: Adaptive Activation Functions

x∗ Search space global optimum.



Appendix C

Derived Publications

A list of derived publications is given in this appendix.

• Andrich B van Wyk and A. P. Engelbrecht. Overfitting by PSO trained feedforward

neural networks. In Evolutionary Computation (CEC), 2010 IEEE Congress on

(pp. 18). doi:10.1109/CEC.2010.5586333

• Andrich B van Wyk and A. P. Engelbrecht. Lambda-gamma learning with feed-

forward neural networks using particle swarm optimization. In Swarm Intelligence

(SIS), 2011 IEEE Symposium on, pages 18, 2011.
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