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Chapter 1

Introduction

The aim of this thesis is to investigate the second- order phase transitions

(S.Or.Ph.Tr.) in magnetic and non magnetic ZnO.

A crystal can undergo several phases from higher to lower, and from lower

to higher symmetries when temperature and pressure change.

When ZnO is doped with magnetic elements such as Co, Mg, Mn etc, dur-

ing synthesis, a layer of the magnetic elements place themselves between

two sublattices of ZnO and Co, Mg or Mn (Zn-Co-O, Zn-Mg-O, Zn-Mn-O),

and the whole crystal becomes magnetic. Consequently, the symmetry of

ZnO (C4
6v;P63mc; number 186 (CDML)[1]; enumeration of 230 space groups)

changes because the symmetry operators ( which reverse the magnetic mo-

ments of dopants ) are added to the symmetry operators of C4
6v(P63mc)

resulting in magnetic space groups. The irreducible representations of the

magnetic groups are called corepresentations (coreps). The states of particles

and quasi particles in non magnetic and magnetic crystals are classified ac-

cording to irreducible representations (irreps) and corepresentations (coreps)

respectively.
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The important application of coreps theory is the phenomenon of second-

order phase transition (S.Or.Ph.Tr) in magnetic crystals.

The theory of S.Or.Ph.Tr for non magnetic crystals has been developed by

Landau- Lifshitz [2] and Lyubarskii [3](LLL). The LLL theory of S.Or.Ph.Tr.

in non magnetic crystals is well known and has been applied to many com-

pounds like V3Si and β- Wolfram crystals [4]. Many magnetic crystals ex-

perience S.Or.Ph.Tr. due to the change of temperature and pressure.

In terms of coreps we have determined symmetrized and anti-symmetrized

squares and cubes of coreps needed for determination of S.Or.Ph.Tr.

To our best knowledge this kind of calculations have been not yet investig-

ated.

In this thesis we have investigated the S.Or.Ph.Tr for non-magnetic and mag-

netic ZnO by means of group theoretical techniques. We have also studied

Raman spectroscopy experimental technique for the appropriate identifica-

tions for magnetic crystal symmetry before and after transitions. .

The scope of the thesis is as follows:

In section 1 we have introduced the thesis with an overview of group theory

and of S.Or.Ph.Tr. according to LLL theory of magnetic and non magnetic

crystals.

In the section 2 we discuss the basic algebra of unitary groups for non mag-

netic groups.

In section 3 we recall the LLL theory of S.Or.Ph.Tr. for non magnetic space

groups in order to extend it to magnetic space groups in section 7.

In section 4 we discuss the basic algebra of antiunitary groups for magnetic

groups.

In section 5 we use the theory of Bradley and Davies [5] to build the magnetic

space groups originating from the subgroups of P63mc.
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In section 6 we use the Wigner theory of coreps [8] that has been discussed

by Bradley and Davies [5] to calculate the coreps of magnetic groups origin-

ating from ZnO. In Appendix E we have calculated and tabulated all coreps

of magnetic space groups originating from the subgroups of P63mc.

In section 7 we discuss LLL theory of S.Or.Ph.Tr. in magnetic crystals and

we tabulate the coreps that are involved in the S.Or.Ph.Tr.of magnetic crys-

tals originating from ZnO.

In section 8 we tabulate and discuss the experimental Raman spectra of ZnO

magnetic

The section 9 concludes the thesis with a brief summary, followed by the

reference list and the Appendices.
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Chapter 2

The basics of unitary Group

Theory related to second-order

phase transitions in non

magnetic groups

2.1 Unitary Operators

The operator u is called a unitary operator if :

(ux, uy) = (x, y) (2.1)

for all x,y. This means that the scalar product of the image vector x′ =

ux, y′ = uy is the same as the scalar product of x, y for all vectors x, y.
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The matrix of u is a unitary matrix satisfying the following equation.

u†u = uu† = 1 (2.2)

where u† is the conjugate transpose of u.

- The composition of two unitary transformations u and v is also unitary.

(uv)† = u†v† = v−1u−1 = (uv)−1 (2.3)

For unitary group G of a crystal the Hamiltonian: Ĥψi = Eψi is invariant

with respect to û ∈ G:

ûH = Hû (2.4)

û−1Ĥû = Ĥ (2.5)

and its eigenfunctions satisfy

û(Ĥψi) = û(Eψi) (2.6)

Ĥ(ûψi) = E(ûψi) (2.7)

where

ûψi =
∑
u

ψjDji(u) (2.8)

where Dji are unitary matrix elements of unitary irreducible representations

D.

The above equations have the following meaning:

1. The Hamiltonian H is invariant with respect to û
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2. New eigenfunctions ψi are also the eigenfunctions of H, but expressed

as a linear combination of ψj.

3. The coefficients Dji(u) are matrix elements of representation D of the

space group G to which operators belong: û ∈ G

4. The number of ψj determines the dimension of representation D and

the degeneracy of states of energy.

5. Therefore the energy levels E of states ψi are classified according to

irreducible representations of D of G.

The generating matrices D and their characters for 230 space groups are

tabulated in ( CDML)[1].

This thesis is concerned with magnetic ZnO originating from the subgroups

C6
6 , C

4
3v, C

1
3v, C

4
3 and C1

3 of non magnetic ZnO C4
6v(p63mc, 186) space group

(CDML). The space group of non magnetic ZnO (C4
6v(p63mc, 186)) consists

of symmetry operators:

C4
6v : E(1), (C+

6 |001
2)(2.1), C+

3 (3), (C2|001
2)(4.1), C−3 (5), (C1

6 |001
2)(6.1),

σv1(19), (σd2|001
2)(20.1), σv3(21), (σd1|001

2)(22.1),

σv2(23), (σd3|001
2)(24.1)

where 1 = (001
2)π

a
are non primitive translations associated with rotational

parts of operators and a is a lattice constant.

The first six operators form a subgroup C6
6(P63; 173) of C4

6v space group. The

number 173 denotes the number of a group. We have tabulated in Appendix

B the Sconflies and international notations of hexagonal and trigonal ordinary

space groups (CDML).
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The calculated irreps of all high symmetry points: Γ, A, H, K, L and M

of space group symmetries: GkΓ , GkA , GkH , GkK , GkL and GkM are listed in

Appendix D.

The theory of S.Or.Ph.Tr. requires the Kronecker product (KP) of irreps

and coreps for non magnetic and magnetic crystals, respectively.

in particular the antisymmetrized squares and symmetrized cubes are of most

importance in the determination of active irreps and coreps those may cause

transitions.

For ordinary irreps the KPs of two irreps are:

Di ⊗Dj =
∑
k

cij,kD
k (2.9)

Where the Clebsch-Gordan coefficients series cij,k are known:

cij,k = 1
G

∑
u∈G

χi(u)χj(u)χk∗(u) (2.10)

where χi, χi and χk are the characters of Γi,Γj and Γk; respectively and G

is any unitary crystallographic point or space group.

The KP decomposition of ordinary irreps for 32 crystallographic unitary

point groups and 230 ordinary unitary space groups are calculated and

tabulated in (CDML) tables. Some results of the decomposition of KP

at Γ point of the Brillouin zone (BZ) for the subgroups of P63mc earlier

mentioned are tabulated in the Table 2.1.

Any KP of two irreps can be decomposed into symmetrized and antisym-

metrized parts [9].

Di ⊗Dj =
[
Di ⊗Dj

]
+
{
Di ⊗Dj

}
(2.11)
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Table 2.1: The Reduction of the Kronecker products of the representations
for various space groups at Γ point of the Brillouin zone (CDML).

(a) C6
6

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1

Γ1 Γ4 Γ3 Γ6 Γ5 Γ2

Γ5 Γ6 Γ1 Γ2 Γ3

Γ5 Γ2 Γ1 Γ4

Γ3 Γ4 Γ5

Γ3 Γ6

(b) C4
3v

Γ1 Γ2 Γ3

Γ1 Γ2 Γ3 Γ1

Γ1 Γ3 Γ2

Γ1+Γ2+Γ3 Γ3

(c) C1
3v

Γ1 Γ2 Γ3

Γ1 Γ2 Γ3 Γ1

Γ1 Γ3 Γ2

Γ1+Γ2+Γ3 Γ3

(d) C4
3

Γ1 Γ2 Γ3

Γ1 Γ2 Γ3 Γ1

Γ3 Γ1 Γ2

Γ2 Γ3

(e) C1
3

Γ1 Γ2 Γ3

Γ1 Γ2 Γ3 Γ1

Γ3 Γ1 Γ2

Γ2 Γ3
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Similarly, the triple KP

D = Di ×Dj ×Dk (2.12)

can be decomposed into symmetrized and antisymmetrized parts.

The characters of any element u of G in the representations [Di]2 and {Di}2

are:

χ = 1
2
[
(χ(u))2 + χ(u2)

]
(2.13)

and

χ = 1
2
{

(χ(u))2 − χ(u2)
}

(2.14)

respectively.

The symmetrized and antisymmetrized squares and cubes are calculated and

tabulated in (CDML). In Appendix C we have tabulated the symmetrized

and antisymmetrized squares for ZnO non magnetic without taking into ac-

count time reversal symmetry.

9



Chapter 3

The second-order phase

transitions in non magnetic

ZnO

3.1 Landau’s Theory of second-order phase

transitions

The basic theory of symmetry changes of crystals at continuous phase trans-

ition has been formulated by Landau (1937)[2]. A well known exposition of

that theory is given in the book on statistical physics by Landau and Lifshitz.

The next presentation of that theory is due to Lyubarskii (1960)[3]. It has

been followed by the review articles of Birman [4] and the exposition in the

book by Cracknell [6].

An extension of Landau’s theory to magnetic crystals has been presented by

Cracknell [7].
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The Second-order phase transitions (S.Or.Ph.Tr) occur when a new state

of reduced symmetry develops continuously from the disorder (high tem-

perature) phase. The order phase has the lower symmetry. This means

that a crystal structure changes continuously through the Curie temperature

(transition point) where infinitesimal displacements of atomic positions can

occur. Such a transition is usually reversible, and this can be investigated

with X-ray diffraction, neutron diffraction, cold neutron scattering, Raman

spectroscopy, as well as with I-V measurement. In our case we use the rigid

theoretical method in the framework of Landau-Lifshitz [2] and Lybarskii [3]

theory, which strictly resolves the symmetry of a crystal after transitions and

predicts correctly the phonon modes involved in transitions. See Table 3.3.

The thermodynamical state of a crystal is characterized by the thermody-

namical potential ψ = E - TS + pV, where E is the energy, S is the entropy,

p is the pressure and V is the volume. In equilibrium state, the ψ must have

a minimum value ψ′(p, T, ρ).

The state of a crystal can be characterized by the density function ρ0(x, y, z),

which describes the probability of finding a particle in a given volume

ψ′(p, T, ρ)dv [3].

The density function can be determined from the minimum of the thermo-

dynamic potential ψ′(p, T, ρ) at equilibrium with the change of p and T.

At the equilibrium state (p0, T0) the density state ρ0 (x,y,z) corresponds to

highest symmetry group G0 and at the state (p,T), the density state corres-

ponds to the lower symmetry group G of the crystal. The density state can

be written as

ρ(x, y, z) = ρ0(x, y, z) + δρ(x, y, z) (3.1)

where δρ → 0 when p,T → p0, T0. The δρ0 term denotes a small change of

density ρ0 due to the transition, which is invariant with respect to g ∈ G of

11



the crystal. The δρ0 term can be expressed as a linear combination of the

basis wave-functions φi written as δρ0 = ∑
i ciφi, and so gδρ0 ⇒

∑
ψmDmn

and transform according to irreps of G after the S.Or.Ph.Tr. takes place.

The low symmetry group G must be a subgroup of higher symmetry group

G0.

According to Landau-Lifshitz-Lyubarskii (LLL) theory, the ψ(p, T, ρ) can be

expended in a series of polynomials up to the fifth order and can be expressed

as

ψ = ψ0 + ψ2(ci, p, T ) + ψ4(ci, p, T ) (3.2)

The aim is to find all possible symmetries of G after S.Or.Ph.Tr.

3.2 The selection of Active Irreps of ZnO

space group with C4
6v symmetry

According to the LLL theory, only active irreps can cause S.Or.Ph.Tr. The

labelling used here for symmetry operators, irreps and Kronecker products

follow from CDML tables. There are several criteria that are involved for a

given irreps to be active, and these are outlined here.

1. The lower space symmetry group G after transition must necessarily

be a space subgroup of higher initial space group G0 before transition.

The inspection of CDML tables yields the space subgroups of C4
6v listed

in the Table 3.1.

2. The irreps of G0 must be real, and must satisfy the "reality test" men-

tioned in Table 3.2.

12



Table 3.1: Subgroups H of C4
6v and their symmetry operators.

c4
6v(P63mc, 186) 1 2.1 3 4.1 5 6.1 19 20.1 21 22.1 23 24.1
C6

6(P63; 173) 1 2.1 3 4.1 5 6.1

C4
3v(P31c; 159) 1 3 5 20.1 22.1 24.1

C1
3v(P3m1; 156) 1 3 5 19 21 23

C4
3(R3; 146) 1 3 5

C1
3(P3; 143) 1 3 5

Table 3.2: Criteria for real and complex irreps [12]: here σ represents the
number of cosets of G0, g is the order of the group, k1 is the first wave-vector
of G0, and χ is the character of irreps.

1, case (a)D is real

(σ/|g|)Σg∈k1χ(g|τg)2 = 0,case (b)D is complex

-1, case (c) D is complex

3. The anti-symmetrized square {Dl}2 of an irreducible representation

must not contain any component of the polar vector (x,y,z). The

{Dl}2 can be determined by using CDML tables.

4. The symmetrized cube
[
Dl
]

3
must not contain the identity irrep (

usually denoted by Γ1,Γ1+ or A1g). The
[
Dl
]

3
can be determined by

using CDML

5. Dl must be compatible with the induced full representations (IFRs) of

the small groups of G0. Some IFRs are tabulated in Appendix D.
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The above criteria are concerned with unitary space group and their unitary

irreps. Regarding magnetic compounds of magnetic space groups, the pre-

vious criteria must be adjusted to antiunitary space group and their coreps.

The space subgroups of C4
6v are given in Table 3.1. The hexagonal Brillouin

zone (BZ) of C4
6v is illustrated in Figure 3.1 to show the coordinates of Γ, A,

H, M and K high symmetry points.

Applying the reality test on irreps of GkΓ , GkA , GkH , GkK , GkL and GkM

according to criterion 2, it was found that all the irreps are real (CDML).

The vector representation (VR) of C4
6v was found to be Γ1(z) + Γ6(x, y) [13],

and so {Dl}2 must not contain one or both of these irreps. We have tab-

ulated in Appendix A all vector representations of hexagonal and trigonal

point groups. The decompositions of the KPs of {Dl}2 and of the KPs of[
Dl
]

3
according to criterion 3 and 4; respectively have been calculated and

tabulated.

From Table D.10 of Appendix D, it follows that the irreps Γ3,Γ4,Γ5, and Γ6

are complex. The LLL theory for S.Or.Ph.Tr. requires real and active irreps.

The real irreps of Γ can be constructed in the following way:

Γ3 ⊕ Γ∗3 = Γ3 ⊕ Γ5 = Γ3,5.

Γ4 ⊕ Γ∗4 = Γ4 ⊕ Γ6 = Γ4,6.

It means that Γ3,5 and Γ4,6 become two dimensions. From this irreps we have

constructed the coreps of the magnetic space group C4
6v(C6

6). See the Table

E.1 of Appendix E.

The active irreps responsible for the S.Or.Ph.Trs. to the space subgroups of

C4
6v are summarized in Table 3.3, where the irreps of points Γ, A, H, K, M,

and L are obtained from Appendix D.
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Figure 3.1: Brillouin zone of the hexagonal w-ZnO and their relative positions
of high symmetry points. The coordinates of high symmetry points are:
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3 ,

1
3 ,

1
2), kK(1

3 ,
1
3 , 0), kL(1

2 , 0,
1
2) and kM(1

2 , 0, 0)
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Decompositions of {Dl}2 for the selection of

active irreps of P63mc

Γ1 ⊗ Γ1 = Γ2 ⊗ Γ2 = Γ3 ⊗ Γ3 = Γ4 ⊗ Γ4 ⇒ {}2 + [Γ1]2
Γ5 ⊗ Γ5 = Γ6 ⊗ Γ6 ⇒ {Γ2}2 + [Γ1,Γ5]2
(A1 ⊕ A4)⊗ (A1 ⊕ A4) = (A2 ⊕ A3)⊗ (A2 ⊕ A3)⇒ {}2 + [2Γ4]2 ⊕ 2Γ1

(A5 ⊕ A6)⊗ (A5 ⊕ A5)⇒ {2Γ3}2 + [Γ4, 2Γ6]2 + 2Γ1 + 2Γ2 + 2Γ5

K1 ⊗K1 = K2 ⊗K2 ⇒ {Γ3}2 + [Γ1]2
K3 ⊗K3 ⇒ {Γ2,Γ3,Γ6}2 + [Γ1,Γ4,Γ5]2
(H1 ⊕H2)⊗ (H1 ⊕H2)⇒ [2Γ4]2 + {2Γ2}2 + 2Γ3

(L1⊕L4)⊗ (L1⊕L4) = (L2⊕L3)⊗ (L2⊕L3)⇒ [2Γ4, 2Γ6] + {}+ 2Γ1 + 2Γ5

M1 ⊗M1 = M2 ⊗M2 = M3 ⊗M3 = M4 ⊗M4 ⇒ {}2 + [Γ1,Γ5]2
We see that the antisymmetrized squares of Γ1,2,3,4,5,6, K1, A1,4, A2,3, A5,6,

H1,2, L1,4 and M1,2,3,4 do not contain any component of the polar vector.

Decompositions of
[
Dl

]
3 for the selection of act-

ive irreps of P63mc

Γ1 ⊗ Γ1 ⊗ Γ1 ⇒ [Γ1]3 + {}3

Γ2 ⊗ Γ2 ⊗ Γ2 ⇒ [Γ2]3 + {}3

Γ3 ⊗ Γ3 ⊗ Γ3 ⇒ [Γ3]3 + {}3

Γ4 ⊗ Γ4 ⊗ Γ4 ⇒ [Γ4]3 + {}3

Γ5 ⊗ Γ5 ⊗ Γ5 ⇒ [Γ1,Γ2,Γ5]3 + {}3

K1 ⊗K1 ⊗K1 ⇒ [Γ1,Γ3]3 + {}3

K2 ⊗K2 ⊗K2 ⇒ [Γ2,Γ4]3 + {}3
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K3 ⊗K3 ⊗K3 ⇒ [Γ1,Γ2,Γ3,Γ4,Γ5,Γ6]3 + {}3

[A1,4 ⊗ A1,4 ⊗ A1,4]3 does not contain the identity irrep.

[A2,3 ⊗ A2,3 ⊗ A2,3]3 does not contain the identity irrep.

[A5,6 ⊗ A5,6 ⊗ A5,6]3 does not contain the identity irrep.

M1 ⊗M1 ⊗M1 ⇒ [Γ1]3 + {Γ2}3

M2 ⊗M2 ⊗M2 ⇒ [Γ2]3 + {Γ1}3

M3 ⊗M3 ⊗M3 ⇒ [Γ3]3 + {Γ4}3

M4 ⊗M4 ⊗M4 ⇒ [Γ4]3 + {Γ3}3

It follows that the antisymmetrized cubes of Γ2,3,4,6, K2,

A1,4, A2,3, A5,6, H1,2, L1,4 and M2,3,4 do not contain the identity irrep.

From the results of the decompositions of the symmetrized squares and anti-

symmetrized cubes of irreps, we conclude that Γ2,3,4,6, K2, A1⊕A∗1(A1,4), A2⊕

A∗2(A2,3), A5 ⊕ A∗5(A5,6), H1 ⊕H∗1 (H1,2),

L1 ⊕ L∗1(L1,4) and M2,3,4 are only active irreps and, consequently, they are

involved in the second-order phase transitions. The results are tabulated in

the Table 3.3.
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Table 3.3: Active Irreducible Representations of initial space group (G0 =
C4

6v) that may cause S.Or.Ph.Trs by active modes of Γ, A, K, H, M and L.
to lower space group symmetry G1.

Symmetry operators of the group Subgroups of the group of
of high symmetry: G0 high symmetry: G

C4
6v(Γ : 1, 2.1, 3, 4.1, 5, 6.1, 19, 20.1, 21, 22.1, 23., 24.1) C4

6v
Γ2−→ C6

6(1,3,4.1,5,6.1)

C4
6v

Γ2,3,4−−−→ C1
3 and C4

3(1, 3, 5)

C4
6v

Γ3−→ C4
3V (1,3,5,20.1,22.1,24.1)

C4
6v

Γ4−→ C1
3V (1,3,5,19,21,23)

C4
6v(A : 1, 2.1, 3, 4.1, 5, 6.1, 19, 20.1, 21, 22.1, 23., 24.1) C4

6v
A1⊕A∗1−−−−→ C1

3v(1,3,5,19,21,23)

C4
6v

A2⊕A∗2−−−−→ C1
3 and C4

3(1, 3, 5)

C4
6v

A5⊕A∗5−−−−→ C1
3 and C4

3(1, 3, 5)

C4
6v(K : 1, 3, 5, 20.1, 22.1, 24.1) C4

6v
K2−→ C1

3 and C4
3(1, 3, 5)

C4
6v(H : 1, 3, 5, 20.1, 22.1, 24.1) C4

6v
H1⊕H∗1−−−−→ C1

3 and C4
3(1, 3, 5)

C4
6v(L : 1, 4.1, 20.1, 23) C4

6v
L1⊕L∗1−−−−→ C1

3v(1, 23)

C4
6v(M : 1, 4.1, 20.1, 23) C4

6v
M2−−→ C6

6(1, 4.1)

C4
6v

M3−−→ C4
3v(1, 20.1)

C4
6v

M4−−→ C1
3v(1, 23)

The phase change in non magnetic crystals can be tested by Raman spec-

troscopy and I-V measurements. In the following section we will develop the

theory of determining the Raman active modes involved in S.Or.Ph.Tr. from

the ordinary space group of higher symmetry C4
6v to C1

3v of lower symmetry.

1From the Table 3.3 it is seen that for example Γ2 causes S.Or.Ph.Tr and brings ZnO
crystal to the subgroup C6

6
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3.3 Raman scattering processes in non mag-

netic ZnO

3.3.1 Raman tensors

The general mechanism of Raman scattering (RS) is discussed here, followed

by analysis of experimentally obtained data of Raman-active modes (RAMs).

In the study of elastic and inelastic scattering of light by quasiparticles in

solids, it is useful to introduce a scattering tensor which relates the Cartesian

components (x,y,z) of the scattered radiation field to that of the incident field.

If the unit polarization vector of the incident radiations is ēiβ (β = x,y,z),

and the unit polarization vector of the scattered radiation is ēρα (α = x,y,z)

polarized in the α-direction, then we can relate the intensity of the scattered

light by:

I = C|eραPαβeiβ|2 (3.3)

where Pαβ is the scattering tensor (ST) and C is a coefficient that modulates

the intensity.

Depending upon the physical process under consideration, the ST can be

further specified by giving the individual contributions from various sub-

channels, each of which contributes to the total scattering and can be written

as C ′|eραP (1)
αβ eiβ|2, C”|eραP (2)

αβ eiβ|2, etc. The P (1)
αβ term represents the first-

order (one-excitation) ST, and the term P
(2)
αβ term represents the second-

order (two-excitations) ST and so on. The incident and scattered electric

fields of the photon are given by:

Ēq(r, t) = Ēq0 ēqexp(ik̄qr̄ − ωqt) (3.4)
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where q = i,s represents the incident and the scattered wave, respectively,

ēq is the unit polarization vector which is transverse to k̄q (the propagation

vector), and ωq is the photon frequency. The total intensity was represented

in Eq. (3.3). The operator Pαβ also depends on the ion position R̄ : Pαβ(R̄).

The operator Pαβ(R̄) can be expended in a Taylor series in the ion displace-

ments from the equilibrium R̄ = R̄0 + u, where ū is the displacement vector

from the equilibrium R̄0. Instead of the individual ū for each ion, the normal

coordinate Qj
σ can be used, and so Taylor series is [15]:

Pαβ(R̄) = P (0)αβ(R̄0) +
∑
jσ

P
(1)
αβ (R̄0, jσ)Qj

σ + (3.5)
∑
jj′

∑
σσ′

P (2)αβ(R̄0, jσ, j′σ′)Qj
σQ

j′

σ′ + ...

which expresses several orders of STs.

We consider only the first-order ST , P (1)
αβ , and its transformation properties

which is the most suitable for the study of Raman spectra in this work

C ′|eραP (1)
αβ eiβ|2. It consists of two Cartesian vectors eρα and eiβ that transform

as ordinary vector r̄.

ḡ


x

y

z

 =

 V R

matrix



x

y

z

 =


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz




x

y

z

 (3.6)

The vector representations are readily obtainable from CDML tables and

are tabulated in Appendix A. Since eρα and eiβ transform according to the

VR, their product (Eq.(3.6)), transforms according to the KP of the VR,

V R × V R. Microscopic theory indicates that usually for ωj (frequency of

incident laser light) away from resonance, the ST for phonons is symmetric

Pαβ = Pβα, which can also be confirmed by Raman spectra. Therefore, Pαβ
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should be written as :

Pαβ =
∑
λµ

(VαλVβµ + VαµVβλ) (3.7)

Regarding the first-order term of the Taylor series in Eq.(3.5) written as∑
jσ P

(1)
αβ (R̄0, jσ)Qj

σ, we now consider the transformation property of normal

coordinates Qj
σ given by gQj

σ = Qf ′
σ = ∑

γ D
(j)gQj

γ.

The j indicates the irrep of G0. Consequently, the RAMs are contained in

symmetrized square of the VR ([V R]2.

3.3.2 Raman-active modes of C4
6v and C1

3v

In order to find the Raman active modes at point Γ we have to decompose

the symmetrized square vector representation [V ⊕ V ]2 onto irreps of C4
6V .

Only representations contained in the symmetrized square of the vector rep-

resentation are Raman actives.

In the case of ZnO, and in terms of CDML labelling, we have Γ1 ⊕ Γ6 for

vector representation with basis (z) for Γ1 and (x,y) for Γ6. Our rigid calcu-

lations on the decomposition of the [(Γ1 ⊕ Γ6)⊗ (Γ1 ⊕ Γ6)]2 onto irreps yield

RAMs for ZnO with C4
6v symmetry: 2Γ1 ⊕ Γ5 ⊕ Γ6.

In the case of C1
3v and in terms of CDML labelling, we have Γ1⊕Γ3 for vector

representation with basis (z) for Γ1 and (x,y) for Γ3. Our rigid calculations

on the decomposition of the [(Γ1 ⊕ Γ3)⊗ (Γ1 ⊕ Γ3)]2 onto irreps yields RAMs

for crystals with C1
3v symmetry: 2Γ1 ⊕ Γ2 ⊕ Γ3.
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Figure 3.2: Second order Raman transitions from GaN

Figure 3.3: First and second order Raman transitions from ZnO
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Figure 3.4: Third order Raman transitions from ZnO annealed

3.4 Discussions of the Raman spectra

The first order Raman spectra yield the well known six symmetry that

allowed Raman active modes[16].

It follows that only Γ1, Γ5, and Γ6 phonons are Raman active in all

compounds with C4
6v space group and the same number of atoms in the

unit cell. For example, in bulk GaN, for Γ1 we have two modes A1(TO-533

cm−1) and A1(LO-735 cm−1), for Γ5: E1(TO-561 cm−1 ), E1(LO-742 cm−1),

and for Γ6: E2(low-144 cm−1), E2(high-570 cm−1). According to the group

theoretical results, the Raman spectroscopy reveals all the six Raman active

modes as well as their symmetry allowed overtones and combinations.

The Figure 3.2 displays the second-Raman spectrum from GaN/Saphire

. Several symmetries allowed overtons and combinations of the first order

modes are observed [17, 18]. For example, the mode at 1478 cm−1 is overton

of the A1(Γ1)-739 cm−1, and the mode at 1283cm−1 may result from three
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phonon processes; 2E2(2Γ6)-high 2× 570cm−1 and E1(Γ5)-low 144cm−1. We

also observe several second order vibrational modes from Saphire - Al2O3

(space group D6
3v). These are overtons and combinations of the first order

phonons [19]. The assignment of the phonons on Figure 3.2 follows from the

complete reduction of the squares and cubes (KP) of the first order species

(irrps-of the GaN) and of Siphire, respectively.

The Figure 3.3 exhibits the first and second order Raman active modes in

ZnO for which the Raman selection rules are identical to those for GaN. The

Figure 3.4 presents the Raman spectrum in the region 1000 cm−1-1800 cm−1

from ZnO annealed at 800 C. This region may correspond to the third order

Raman transitions. The modes at 1340 cm−1 and 1595 cm−1 may result

from three phonon processes (2× 380 + 577) cm−1 and (438 + 577 + 580)

cm−1, respectively. For these possible three phonon processes, the selection

rules and third order Raman scattering tensors are to be established.

The Raman spectroscopy is able to identify to which subgroup ZnO non

magnetic goes after transitions by analysing the Raman active modes of the

Raman spectra of the subgroups. Here we mean that the Raman phonon

modes of ZnO Raman spectra responsible for S.Or.Ph.Tr must be found in

the Raman spectra of the subgroup.

In the forth-coming sections we discuss the properties of the magnetic

crystals regarding to the coreps and S.Or.Ph.Tr. after a briefly view on the

basic of antiunitary group theory.
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Chapter 4

The basic of antiunitary group

theory related to second-order

phase transitions in magnetic

groups

4.1 Antiunitary operators

In this section we briefly recall the antiunitary operator definitions and their

properties.

The antiunitary operator A is an antilinear operator satisfying [29]

〈Aφ,Aψ〉 = 〈φ|ψ〉∗ = 〈ψ|φ〉 (4.1)

where φ and ψ are describing a possible state of a physical system and the

quantity |(φ, ψ)|2 is interpreted as a transition probability from the state ψ
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to the state φ.

- The antiunitary operator A obeys [30]

A(φα + ψβ) = (Aφ)α∗ + (Aψ)β∗ (4.2)

- The product of two antiunitary operators is a unitary operator

- The product of antiunitary and unitary operators is an antiunitary operator.

The special antiunitary operator is the time reversal symmetry θ.

The stationary state of a particle in a crystal, is described by equation :

Hψ = (− }2

2m∇
2 + V (r))ψ = Eψ (4.3)

When the spin-orbit coupling is neglected and no magnetic field is present,

The H is real and the Schrodinger equation:

Hψ = i}
∂ψ

∂t
(4.4)

is invariant under time reversal symmetry.

Taking t→ −t and taking complex conjugates we have :

Hψ∗ = i}
∂ψ∗

∂t
(4.5)

The above equations show that the operation of time reversal symmetry, θ,

takes the function ψ into a new function:

θψ(r, t) = ψ∗(r,−t) (4.6)

θψ(t) = θ
∑
k

ak(t)ψk =
∑
k

a∗(−t)θψk (4.7)
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This shows that ψ∗(r,−t) satisfies the same equation as ψ(r, t) when the

Hamiltonian is real and consequently is also a solution of the Schroedinger

equation if ψ(r, t) is. It means that ψ is a basis for D and ψ∗ is basis for D∗.

When an irrep is complex then D and D∗ must be joint; D⊕D∗ ⇒ DPhy.irrep

yielding to so-called physically irreducible representations (DPhy.irrep). The

dimensions of irreps built up on (ψ, ψ∗) becomes doubled. Consequently,

an extra degeneracy of the states can arise [28]. The inclusion of the time

reversal symmetry does not change the existing optical selection rules but

increases the new states of same symmetries. In [20, 21, 22, 23, 24, 25], they

have investigated the optical properties by means of optical selection rules for

Si, Ge, wurtzite and rocksalt ZnO non magnetic in the absence and presence

of time reversal symmetry.
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Chapter 5

The structure of magnetic

groups

In this section, we discuss the theory of magnetic groups before building

their coreps. The magnetic group M consists of half of unitary and half of

antiunitary operators. The group M can be expressed as:

M = H + AH (5.1)

Where H is any unitary subgroup of an unitary space group Gk from

which M originates [5]. The AH is a coset of M consisting only antiunitary

operators a ∈ AH, and A = θu0. Where u0 is one of the unitary elements of

the G. There are five magnetic space groups originating from C4
6v:

M(P63m
′c′)⇒ C4

6v(C6
6); M(P63′m

′c)⇒ C4
6v(C4

3v); M(P63′mc
′)⇒ C4

6v(C1
3v);

C4
6v(C4

3);C4
6v(C1

3) where C6
6 , C

4
3v, C

1
3v, C

4
3 and C1

3 are subgroups of C4
6v.

Here we have considered the magnetic groups M originating from H =

C6
6 , C

4
3v, C

1
3v, C

4
3 and C1

3 , space subgroups of C4
6v see Table 3.1.
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As an example of generating the magnetic space groups let us focus on M

originating from H = C6
6 and C4

3v

Regarding the antiunitary operator A in Eq.(5.1), we choose A = θσv1 = θ19.

The numbers in brackets follow CDML labelling of operators. We have tabu-

lated the irreducible representations of C4
6v in appendix D for high symmetry

points of the hexagonal Brillouin zone. The meaning of θ (time reversal op-

erator) is explained in the section 4.

Therefore AH : θ19(1, 2.1, 4.1, 5, 6.1)⇒

⇒ θ19, (θ19)2.1, (θ19)3, (θ19)4.1, (θ19)5, (θ19)6.1⇒ θ19, θ24.1,

⇒ θ23, θ22.1, θ21, θ20.1

The last six antiunitary operators belong to θ19(C6
6).

Therefore the magnetic space group M(P63m
′c′) with subgroup H = C6

6 is:

M = {E(1), C6|1(2.1), C2
6(3), C3

6 |1(4.1), C4
6(5), C5

6 |1(6.1),

θσv1(19), θσd3|1(20.1), θσv2(21), θσd1|1(22.1), θσv3(23), θσd2|1(24.1)}.

For the magnetic space group M = C4
6v(C4

3v):

H = (C4
3v) = 1,3,5, 20.1, 22.1, 24.1

AG = θ19(1, 3, 5, 20.1, 22.1, 24.1) = θ19, θ23, θ21, θ6.1, θ4.1, θ2.1.

M = {1, 3, 5, 20.1, 22.1, 24.1, θ19, θ23, θ21, θ6.1, θ4.1, θ2.1} where A = θ19.

The first six operators belong to subgroup H of which the irreps are known.

The other six are antiunitary belonging to AH.

Before constructing coreps, we have to determine their type. We have cal-

culated all the coreps originating from all subgroups of C4
6v and these are

tabulated in Appendix E.
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Chapter 6

Corepresentations

In this section we focus on the theory of the coreps of the magnetic space

groups M originating from C4
6v and their three types.

6.1 Basis functions of corepresentations

As we have shown previously our magnetic group M consists of twelve sym-

metry operators .

For the unitary operator u, the unitary basis functions of D(u) are:

〈ψ1, ψ2, ..., ψn| ≡ 〈ψ| (6.1)

And uψ = ∑
ψjDij(u) where Dij(u) are unitary matrix elements of irreps

D(u) and are tabulated in Appendix D.

In general we write :

u〈ψ| = 〈ψ|D (6.2)
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To create the basis for antiunitary operators we act antiunitary operators A

on unitary basis:

A〈ψ1, ψ2, ...ψn| = A〈ψi| ≡ 〈φj| (6.3)

Therefore the total set of wave functions of M is:

〈f | = 〈ψ1, ψ2, ...ψn, φ1, φ2, ...φn| = 〈ψφ| (6.4)

We also need the effect of u operator on 〈φ| and we obtain :

u〈φ| = uA〈ψ| (6.5)

= A(A−1uA)〈ψ|

= A〈ψ|D(A−1uA)

= 〈φ|D∗(A−1uA) (6.6)

(6.7)

The general notation of the above equation is:

uφp =
∑

φqCD
∗(A−1uA)qp (6.8)

The complex conjugate (denoted by an asterisk) appears because A is

antilinear.

The coreps are defined by u and θu0. Therefore we have u(A〈ψ|) =

A(A−1uA)〈ψ| = A〈ψ|D∗(A−1uA).

Since A is antiunitary operator the D(A−1uA) must be complex conjugate.

And
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a〈φ| = a(A〈ψ|) = 〈ψ|D(aA),

a〈ψ| = aA−1〈φ| = 〈φ|D∗(A−1a).

Again, since A is antiunitary, the D(A−1a) must be complex. These deriva-

tion can be summarized as:

CD(u) =

u 0

0 u


〈ψ| 0

0 〈φ|

 =

D(u) 0

0 D∗(A−1uA)

 (6.9)

CD(a) =

0 a

a 0


〈ψ| 0

0 〈φ|

 =

 0 D(aA)

D∗(A−1a) 0

 (6.10)

Cleary, the coreps CD(u) and CD(a) defined in Eqs.(6.9) and (6.10) are

built up from ordinary irreps because A−1uA, aA and A−1a are unitary

operators. The group M is antiunitary because it consists of unitary and

antiunitary operators ui and Aui = ai, respectively.

The above coreps might be reducible . From the theory of irreps and coreps

the irreducibility yields three cases (a, b and c). Koster et al. [26] have

tabulated all irreps and coreps unitary and antiunitary point groups.

The set of matrices that we have constructed from the matrix representatives

of irreps of unitary operators form what is called coreps of M. From what

has been said so far their properties may depend on the choice of A.

When a group consists of unitary and antiunitary operators the following

relations must be satisfied.
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D(u)D(u′) = D(uu′)

D(u)D(a) = D(ua)

D(a)D∗(u) = D(au) (6.11)

D(a)D∗(a′) = D(aa′)

(6.12)

where u and u′ are in G and a and a′ are in AG. Such coreps may be either

reducible or irreducible. The complex conjugate that appears in above equa-

tions in general prevent D from being a homomorphism of M.

6.2 The three types of irreducible corepres-

entations.

The three cases of coreps can be summarised as follows (Wigner) [8](Nobel

prize in 1963):

• Case(a) or type I

D(u) = PD∗(A−1uA)P−1, (6.13)

PP ∗ = D(A2),

CD(u) = D(u),

CD(a) = ±D(aA−1)P
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where P is unitary matrix.

The corep with the plus sign is equivalent to the corep with the minus

sign.

• Case(b) or type II

D(u) = PD∗(A−1uA)P−1

PP ∗ = −D(A2)

CD(u) =

D(u) 0

0 D(u)

 (6.14)

and

CD(a) =

 0 −D(aA−1)P

D(aA−1)P 0

 (6.15)

• Case(c) or type III

D(u) is not equivalent to D∗(u) = D∗(A−1uA)

CD(u) =

D(u) 0

0 D∗(u)

 (6.16)

and

CD(a) =

 0 D(aA)

D∗(aA−1) 0

 (6.17)

As we can see, it is very important to recognize the appropriate case of ir-

reps of H in order to build the coreps. For example, taking the case of the

Table D.10 of Appendix D, from the relation ( 1
|H|)

∑
u χ(u)2 for Γ1−6 of C6

6

we obtain Γ1,2(a), Γ3,4,5,6(c) and for physically irreps we have Γ1,2(a), Γ3,5 (c)

and Γ4,6(c).
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Correspondingly, we use Eqs.(6.13) for coreps originating from Γ1,2 and

Eqs.(6.16, 6.17) for Γ3,5 and Γ4,6. The irreps and coreps of M = C4
6v(C6

6)

are listed in Appendix E. The set of matrices are of 4 × 4 dimensions for

CΓ3,5 and CΓ4,6

The coreps listed in Appendix E are used for the classification of states and

selection rules (SRs) for ZnO magnetic.

Regarding the coreps, their KPs are:

CDi ⊗ CDj =
∑
k

dij,kCD
k (6.18)

where dij,k indicates the number of times of CDk contained in the KP.

The problem which rises here is to reduce the above KP and to see if there is

a simple relationship between the Clebsch-Gordan coefficient series dij,k and

the Clebsch-Gordan coefficient series cij,k. According to Karavaev [27] dij,k
are of the form:

dij,k = 1
G

∑
u∈G

χi(u)χj(u)χk∗/1
g

∑
u∈G

χk(u)χk∗(u) (6.19)

In Table 6.1 the dij,k coefficients are defined in terms of cij,k for all possible

KPs of different kind of coreps (a, b, c).

It should be noted that the dij,k are symmetrical with respect to the inter-

change of i and j.

dij,k = dji,k (6.20)

However, the decomposition of KPs for magnetic space groups has not yet

been tabulated. In Table 6.2, we calculated and tabulated the reduction of

KPs of the coreps of the magnetic space group M = P63m
′c′ at the Γ point

of the Brillouin zone. The results tabulated in Table 6.2 will be used in the
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Table 6.1: Clesch-Gordan coefficinet series for Kronecker products of irredu-
cible corepresentations.

CDi CDj CDk dij,k

a a a cij,k

a a b 1
2cij,k

a a c cij,k

a b a 2cij,k
a b b cij,k

a b c 2cij,k
a c a cij,k + cij′,k

a c b 1
2cij,k + 1

2cij′,k

a c c cij,k + cij′,k

b b a 4cij,k
b b b 2cji,k
b b c 4cji,k
b c a 2cij,k + 2cij′,k
b c b cij,k + cij′,k

b c c 2cij,k + 2cij′,k
c c a cij,k + cij′,k + ci′j,k + ci′j′,k

c c b 1
2cij,k + 1

2cij′,k + 1
2ci′j,k + 1

2ci′j′,k

c c c cij,k + cij′,k + ci′j,k + ci′j′,k
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Table 6.2: The reduction of KPs of the coreps of magnetic space group M =
P63m

′c′ at the Γ point of the Brilouin Zone

CΓ1 CΓ2 CΓ3,5 CΓ4,6

CΓ1 CΓ2 CΓ3,5 CΓ4,6 CΓ1

CΓ1 CΓ4,6 CΓ3,5 CΓ2

2CΓ1 + CΓ3,5 2CΓ2 + CΓ4,6 CΓ3,5

2CΓ1 + CΓ3,5 CΓ4,6

analysis of S.Or.Ph.Tr. in magnetic ZnO.

6.3 Symmetrized and antisymmetrized

power of corepresentations of the mag-

netic groups

In the section 2, we have showed that any KP of ordinary irreps Di⊗Di can

be decomposed into two parts:

Di ⊗Di =
[
Di ⊗Di

]
⊕
{
Di ⊗Di

}
(6.21)

where the [Di ⊗Di], or [Di]2 are symmetrized squares (SQ) and {Di ⊗Di}

or {Di}2 are antisymmetrized squares (ASQ).

Similarly, for KPs of coreps:

CDi ⊗ CDi =
∑
k

dii,kCD
k (6.22)

where the Clebsch-Gordan coefficients series for the KPs of coreps dii,k are

given in [6] see Table 6.1.
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If we separate the KP Di ⊗ Di into [Di]2 and {Di}2, for symmetrized and

antisymmetrized products we have:

[
Di
]2

=
∑
k

cs2i,kD
k (6.23)

similarly for the antisymmetrized product:

{
Di
}2

=
∑
k

ca2i,kD
k (6.24)

The next question is to determine the coefficients ds2i,k and da2i,k in terms of

cs2i,k and ca2i,k, respectively in the following reductions:

[
CDi

]2
=
∑
k

ds2i,kCD
k (6.25)

and

{
CDi

}2
=
∑
k

da2i,kCD
k (6.26)

If the irrep Dk accurs only in {Di}2 or only in [Di]2 then the ca2i,k and cs2i,k are

immediately available (CDML). Therefore da2i,k and ds2ik are obtained directly

by using the Table 6.1. However, if the irrep Dk occurs both in [Di]2 and

{Di}2 the procedure for determining da2i,k and ds2i,k is different [6].

Now let us suppose that (CDi) ↓ H denotes the representation of H, the

unitary subgroup of M, obtained by taking the matrices of CDi for the ele-

ments of H.

We can identify the irreps of the unitary subgroup H which lead to those

coreps of M that are present {CDi}2 by reducing {(CDi) ↓ H}2.
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Let us now let for example a2i,k be the number of times that Dk occurs in

{(CDi) ↓ H}2 {
(CDi) ↓ H

}2
=
∑
k

a2i,kD
k (6.27)

- If CDi belongs to case (a)[6]

{
(CDi) ↓ H

}2
= {Di}2 (6.28)

- while if CDi belongs to case (b) or (c)[6]

{
(CDi) ↓ H

}2
= {Di}2 ⊕ {D̄i}2 ⊕Di ⊗ D̄i (6.29)

If CDi belongs to case (b) Eq.(6.29) can be simplified because D̄i ≡ Di so

that {
(CDi) ↓ H

}2
= 2{Di}2 ⊕Di ⊗Di (6.30)

Therefore, if CDi belongs to case (a), the coefficient a2i,k is identical to c2i,k

of Eq.(6.28) while if CDi belongs to case (b) or (c), the coefficients a2i,k can

be determined by inspection using Eqs. (6.30) or (6.29), respectively.

Having found the coefficients a2i,k, the coefficients da2i,k can be obtained by

using the rules given in the last column of Table 6.3. The coefficients ds2i,k in

Table 6.3: The reduction of the antisymmetrized square {CDi}2 at the Γ
point

CΓi ∑
k a2i,kΓk da2i,k

Case (a) {Γi}2 a2i,k

Case (b) 2{Γi}2 ⊕ Γi ⊗ Γi 1
2a2i,k

Case (c) {Γi}2 ⊕ {Γ̄i}2 ⊕ Γi ⊗ Γ̄i a2i,k

the reduction of the symmetrized square can be determined when da2i,k has
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been already determined.

ds2i,k + da2i,k = dii,k (6.31)

The problem of the reduction of the symmetrized cube [CDi
i]

3 and the

antisymmetrized cube {CDi}3 can be approached in very similar way to the

reduction of the square [6]. Thus for case (a), case (b) and case (c) we obtain:

[
(CDi) ↓ H

]3
=
[
Di
]3

(6.32)

for case (a) [
(CDi) ↓ H

]3
= 2

[
Di
]3
⊕ 2

[
Di
]2
⊗Di (6.33)

for case (b)

[
(CDi) ↓ H

]3
=
[
Di
]3
⊕
[
D̄i
]3
⊕
[
Di
]2
⊗ D̄i ⊕

[
D̄i
]2
⊗Di (6.34)

for case (c).

The summary of the above prescriptions are found in Table 6.4 for the re-

duction of [CDi]3 where :

[
(CDi) ↓ H

]3
=
∑
k

s3i,kD
k (6.35)

[
CDi

]3
=
∑
k

ds3i,kCD
k (6.36)

In the following section, we will use the theory of antiunitary groups dis-

cussed in section 4 to investigate the S.Or.Ph.Tr. in magnetic compounds.

The theory of LLL of S.Or.Ph.Tr. in magnetic crystals involves coreps.
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Table 6.4: The reduction of the symmetrized cube of [CΓi]3 at the point Γ

CΓi
∑
k s3i,kΓk d3i,k

Case (a) [Γi]3 s3i,k

Case (b) 2 [Γi]3 ⊕ 2 [Γi]2 ⊗ Γi 1
2s3i,k

Case (c) [Γi]3 ⊕
[
Γ̄i
]3
⊕ [Γi]2 ⊗ Γ̄i ⊕

[
Γ̄i
]2
⊗ Γi s3i,k
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Chapter 7

The second-Order phase

transitions in magnetic ZnO

In this section we turn to the question of the adaptation of Landau’s theory

to the particular case of magnetic phase transitions.

For a magnetic transition we use M(r), the magnetization, as the order

parameter. The sign of M(r) is changed by θ, the operation of time-reversal

symmetry, whereas G(p,T,η), the Gibbs function, is unaffected by the

operation of time- reversal.

It was argued by Landau that in the expansion of G(p,T,η) in power of

M(r) all terms with odd powers of M(r) should be identically zero and

therefore all transitions between paramagnetic phase and magnetically

ordered phase with the same crystallographic structure have the possibility

of being continuous transitions.

The thermodynamical results which were summarized in group theoretical

terms in case of non-magnetic crystal and which have been used to predict

whether or not a given phase transition can be continuous, can be adapted
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to the case of transitions between two different magnetically ordered phases

[6].

To emphasize that we are now concerned with non unitary magnetic groups,

Let us replace G0 and G1 by symbols M0 and M1 and Dl by CDl, the

irreducible corepresentations of M0 to which the order parameter η belongs.

It is then possible to rewrite conditions for second-order phase transitions in

a form appropriate to magnetic phase transitions [2]

1. M1 must be a subgroup of M0.

2.
[
CDl

]
3
must not contain CDl

1 of M0.

3.
{
CDl

}
2
must not contain the corepresentation to which a polar vector

belongs.

These conditions involve the reduction of the antisymmetrized square{
CDl

}
2
and the symmetrized cube

[
CDl

]
3
of an irreducible corepresenta-

tion CDl
i developed in section 6 (see Tables 6.3 and 6.4). The Table 7.1

summarizes the coreps that are involved in the S.Or.Ph.Tr to the lower mag-

netic space group symmetries.

2From the Table 7.1 it is seen that for example corep CΓ2 causes S.O.Ph.Tr and
bring ZnO magnetic crystal with C4

6v(C6
6 )(P63m′c′) symmetry to the magnetic subgroup

C1
3v(C1

3 )(P3m′1). It means that soft modes of symmetry CΓ2 with very low momentum
~k̄ ∼= 0 with the change of applied temperature, change their equilibrium position from
Ck̄Γ of P63m′c′ to Ck̄Γ of P3m′1.
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Table 7.1: Active irreducible corepresentations of initial magnetic space
groups: M0 ≡ C4

6v(C6
6)(P63m

′c′), C4
6v(C4

3v)(P6′3m′c), C4
6v(C1

3v)(P6′3mc′) that
may cause S.Or.Ph.Trs by active modes of CΓ, CA, to lower magnetic space
group symmetry M2.

Symmetry operators of the mag-
netic group of high symmetry: M0

Subgroups of the magnetic group of high symmetry:
M1

C4
6v(C6

6):P63m
′c′ (1, 2.1, 3, 4.1, 5,

6.1, θ19, θ20.1, θ21, θ22.1, θ23,
θ24.1)

P63m
′c′

CΓ2,CA2−−−−−→ C1
3v(C1

3):P3m′1(1, 3, 5, θ19, θ21, θ23)

C4
6v(C4

3v):P6′3m′c(1, 3, 5, 20.1, 22.1,
24.1, θ2.1, θ4.1, θ6.1, θ19, θ21, θ23)

P6′3m′c
CΓ2,CA2−−−−−→ C6

6(C1
3):P63′(1, 3, 5, θ2.1, θ4.1, θ6.1)

C4
6v(C4

3v):P6′3mc′(1, 3, 5, 19, 21,
23,θ2.1, θ4.1, θ6.1, θ20.1, θ22.1,
θ24.1)

P6′3mc′
CΓ2,CA2−−−−−→ C6

6(C1
3):P63′(1, 3, 5, θ2.1, θ4.1, θ6.1)

7.1 The theory of Raman scattering in mag-

netic materials

In the section, we develop the theory of Raman scattering adapted to mag-

netic crystals and use it to interpret different intensities of the picks of the

Raman spectra of ZnO magnetic (see Table 7.2).

Let Ii and Is be the intensity of the incident and the scattered radiation re-

spectively, and êi and ês be the electric field unit vectors of the incident and

scattered radiation respectively and X̃ be the Raman tensor of the excitation

under consideration. Then the scattered intensity Is is given by

Is = C0Ii|êsX̃êi|2 (7.1)

where C0 is a constant related to the frequencies of the incident and scattered

radiations and the power spectrum of the excitation involved. A magnetic
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materials usually has strong absorption it is desirable to study the Raman

spectra in a back-scattering arrangement. The incident and scattered radi-

ations travel along the ±Z axis and the material occupy Z sup 0 space. Then

the incident intensity at a position Z is given by

Ii(Z) = Ii(0)e−αZ (7.2)

where Ii(0) is the intensity of the incident radiation at the material surface

and α is the material absorption coefficient. In the presence of the mag-

netic field Faraday rotation takes place and the polarization of the incident

radiation at the position Z is given by

êi(Z) = T̃F êi(0) (7.3)

where êi(Z) and êi(0) are electric field unit vectors at a position Z and

the material surface, and T̃F is the transformation tensor which rotates the

electric field vector to a direction θ given by

θ = θFZ (7.4)

where θF is the specific Faraday rotation defined as the angle of rotation of the

material of unit length. The total intensity of the back-scattered radiation

is given by

Is =
∫ ∞

0
C0Ii (0) |ês (0) T̃F X̃T̃F êi (0) |2e−2αZdZ (7.5)

The exponential e−2αZ appears due to the fact that the radiation travels

twice the distance Z in the back-scattering arrangement.
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The symbols êi(0), ês(0), T̃F and X̃ have the following matrix:

êi(0) =


α1

α2

0

 , ês =
[
β1 β2 0

]
, T̃F =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 , X̃ =


a b e

c d g

f h i

 ,
(7.6)

If we introduce these expressions in Eq.(7.5) and integrating it one obtains

the following expressions:

Is = C0Ii(0)
2α

[
A2 +B2 + 2C2

2 + B2 − A2

2(1 + 16Q2) + 2BC
(1 + 4Q2)+ (7.7)

+ 4QCA
(1 + 4Q2) + 4QAB

(1 + 16Q2)

]

where Q = θF

2α is called figure of merit and is a characteristic property of the

material and A, B and C are constant given by:

A = 1
2 [a(α2β1 − α1β2)− b(α1β1 + α2β2) + c(α1β1 + α2β2) (7.8)

+ d(α2β1 − α1β2)]

B = 1
2 [a(α1β1 + α2β2) + b(α2β1 − α1β2) + c(α1β2 − α2β1) (7.9)

+ d(α2β2 + α1β1)]

C = 1
2 [a(α1β1 − α2β2) + b(α2β1 + α1β2) + c(α1β2 + α2β1) (7.10)

+ d(α2β2 − α1β1)]
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In the absence of Faraday rotation Q = 0 and Eq.(7.7) becomes:

I ′s = C0Ii(0)
2α (B + C) (7.11)

For non-absorbing crystals, α = 0 and therefore, Q is no longer a well-defined

property of the material. Under such conditions, the intensity of the scattered

radiation is given by,

Is = C0Ii(0)
[
U2

∫
cos4(θFZ)dZ + V 2

∫
sin4(θFZ)dZ+ (7.12)

+ W 2
∫
sin2(θFZ)cos2(θFZ)dZ + 2UV

∫
sin2(θFZ)cos2(θFZ)dZ+

+ 2VW
∫
sin3(θFZ)dZ + 2UW

∫
sin(θFZ)cos3dZ

]

where, U = B + C, V = C - B and W = 2A

If we assume that the thickness (L) of the sample is finite along the Z direction

the Eq.(7.12) becomes:

Is = C0Ii(0)
θF

[
U2

(
12θFL+ 8sin2θFL+ sin4θFL

32

)
+ (7.13)

+ V 2
(

12θFL− 8sin4θFL
32

)
+ (2UV +W 2)×

× (4θFL− sin4θFL
32

)
+ 2VWsin4θFL

4 + 2UW (1− cos4θFL)
4

If θFL = 2nπ where n is an integer the Eq.(7.13) becomes:

Is = C0Ii(0)L
[
C2 + 1

2(A2 +B2)
]

(7.14)

Further, in the absence of the Faraday rotation, (θF = 0) Eq.(7.13) gives the

scattered intensity as zero. It is understandable because the only mechanism

for back-scattering in this formulation is the Faraday rotation.
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Thus, from Eqs (7.7) and (7.12) it is clear that the intensity of the scattered

rotation depends on θF irrespective of whether the material is absorbing or

not. Using the formulas developed in this part we have found the intensities

of scattered light for C4
4v . The adjusting intensities that we have got from

the Table 7.2 are in good agreement with our Raman spectra in magnetic

ZnO of section 8.

Table 7.2: Calculated intensities
where IA = C0Ii(0)a2

2α , IE = C0Ii(0)b2
2α , Ir = C0Ii(0)d2

2α

〈100〉⊥ 〈100〉‖ 〈110〉⊥ 〈110〉‖ 〈100〉450

Phonon mode I ′s Is I ′s Is I ′s Is I ′s Is I ′s Is

Γ1 0 IA
8Q2

1+16Q2 IA IA
1+8Q2

1+16Q2 0 IA
8Q2

1+16Q2 IA IA
1+8Q2

1+16Q2
IA

2
IA

2 (1 + 4Q
1+16Q2 )

Γ2 0 0 IE IE IE IE 0 0 IE

2
IE

2

Γ3 0 IE

3
8Q2

1+16Q2
IE

3
IE

3
1+8Q2

1+16Q2 0 IE

3
8Q2

1+16Q2
IE

3
IE

3
1+8Q2

1+16Q2
IE

6
IE

6 (1 + 4Q
1+16Q2 )

Γ4 Ir Ir 0 0 0 0 Ir Ir
Ir

2
Ir

2
Γ5 0 0 0 0 0 0 0 0 0 0
Γ6 0 0 0 0 0 0 0 0 0 0
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Chapter 8

Raman experimental spectra of

magnetic ZnO and discussions

8.1 Discussions

The Raman active modes in magnetic crystals are obtained by the decom-

position of the KP of the vector corepresentation.

The corerepresentations in the symmetrized KP are Raman active modes.

We have six Raman active modes at the Zone center of the BZ:

[(CΓ1 ⊕ CΓ4,6)(CΓ1 ⊕ CΓ4,6)] = 2CΓ1 ⊕ CΓ3,5 ⊕ CΓ4,6 because the vector

representation of ZnO non magnetic is the same as in ZnO magnetic.

The Figure 8.2 shows the room temperature Raman spectra of pure and Mn-

doped ZnO (magnetic) bulk crystal.

Five modes are observed in both the two Raman spectra in the region 100

cm−1 - 900 cm−1[31]:
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Figure 8.1: Raman spectra of the Co-doped ZnO [33]

Figure 8.2: Room-temperature Raman spectra of pure and Mn-doped ZnO
single crystal [31]
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- For pure ZnO: we see several lines at 99, 331, 377, 412, and 437 cm−1.

These lines correspond to the symmetry allowed modes: E2-low, A1-TO ,

E1- TO and E2-high , respectively.

- For Mn-doped ZnO: we see several lines at 99, 331, 437, 524, and 572 cm−1

These lines correspond to the symmetry allowed modes: E2(CΓ4,6)-low,

E2(CΓ4,6)-high, Mn feature [32], and A1(CΓ1)-LO, respectively.

From the Figure 8.1 in the region 300 cm−1- 1200 cm−1, we see for Co-doped

Zno several lines at 383, 410, 438, 540 and 584cm−1 [33].

The lines correspond to A1(CΓ1) (TO), E1(CΓ3,5) (TO), E2(CΓ4,6), A1(CΓ1)

(LO) and E1(CΓ3,5) (LO) Raman modes respectively. The other lines are as-

signed to be overtones and combinations [33]. The first-order Raman active

modes are observed in both ZnO non and magnetic. By Analysing the Ra-

man spectra of both Zno magnetic and non magnetic we observe the change

in Raman activity in magnetic ZnO due to the lowering of the crystal sym-

metry. Such lowering of the crystal symmetry would result in the observation

of more Raman frequencies.

Peng-Xiang (1983) has traced the origin of these additional frequencies to the

effect of Faraday rotation on the phonon Raman scattering causing intensity

anomalies. Using our group theoretical techniques, we explain the additional

picks by the number of degeneracy of the phonons due to the increase in di-

mensions of the corepresentations describing the phonons symmetries. The

Raman spectroscopy is able to identify to which subgroup ZnO magnetic

goes after transitions by analysing the Raman active modes of the Raman

spectra of the subgroups. Here we mean that the Raman phonon modes of

ZnO magnetic Raman spectra responsible for S.Or.Ph.Tr must be found in

the Raman spectra of the subgroup.
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Chapter 9

Conclusion

The calculation of irreps and coreps using theoretical techniques are in gen-

eral tedious, lengthy and complex.

The ordinary Landau-Lifschitz theory for non-magnetic crystals has been re-

formulated and expanded to magnetic crystals. In this context, the thesis

for the first provides the novel conceptual framework for magnetic structural

phase transitions. The group-subgroup relation in magnetic crystals as well

as their coreps have been derived in the framework of Wigner theory.

In addition, the exact symmetries of phonons involved in S.Or.Ph.Tr. were

determined. A comparison of non magnetic and magnetic crystals yielding

the phonon degeneracies were determined. These findings are supported by

the experimental Raman spectra of Cobalt and manganese doped ZnO.

It is crucial to take into account the hidden time reversal symmetry in mag-

netic crystals described by antiunitary operator such as time reversal sym-

metry. This is a clear evidence of the effect of time reversal symmetry on the

coreps of phonons inducing structural phase transitions.

Therefore, this thesis opened up the investigation of elementary excitations
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in magnetic crystals and their further applications.

Also the symmetrized and antisymmetrized Konecker products are still to be

considered. They play a role in understanding the interactions like spin-spin,

spin lattice, pressure and temperature induced phase transitions.

The special selection rules in magnetic crystals for optical and structural

transitions need to be considered.
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Appendix A

Vector representations for

hexagonal crystallographic

point groups
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Table A.1: Vector representations for Hexagonal crystallographic point
groups

M & L B & C M & L B & C

1 E x, y, z

1 0 0
0 1 0
0 0 1

 13 I −x,−y,−z

−1 0 0
0 −1 0
0 0 −1



2 C+
6 x-y,x,z

1 −1 0
1 0 0
0 0 1

 14 S−3 -x+y,-x,-z

−1 1 0
−1 0 0
0 0 −1



3 C+
3 -y,x-y,z

0 −1 0
1 −1 0
0 0 1

 15 S−6 y,-x+y,-z

 0 1 0
−1 1 0
0 0 −1



4 C2 -x,-y,z

−1 0 0
0 −1 0
0 0 1

 16 σh x,y,-z

1 0 0
0 1 0
0 0 −1



5 C−3 -x+y,-x,z

−1 +1 0
−1 0 0
0 0 1

 17 S+
6 x-y,x,-z

1 −1 0
1 0 0
0 0 −1



6 C−6 y,-x+y,z

 0 1 0
−1 1 0
0 0 1

 18 S+
3 -y,x-y,-z

0 −1 0
1 −1 0
0 0 −1



7 C
′′
21 x-y,-y,-z

1 −1 0
0 −1 0
0 0 −1

 19 σv1 -x+y,y,z

−1 1 0
0 1 0
0 0 1



8 C ′22 x,x-y,-z

1 0 0
1 −1 0
0 0 −1

 20 σd2 -x,-x+y,z

−1 0 0
−1 1 0
0 0 1



9 C
′′
23 y,x,-z

0 1 0
1 0 0
0 0 −1

 21 σv3 -y,-x,z

 0 −1 0
−1 0 0
0 0 1



10 C ′21 -x+y,y,-z

−1 1 0
1 0 0
0 0 −1

 22 σd1 x-y,-y,z

 1 −1 0
−1 0 0
0 0 1



11 C
′′
22 -x,-x+y,-z

−1 0 0
−1 1 0
0 0 −1

 23 σv2 x,x-y,z

1 0 0
1 −1 0
0 0 1



12 C ′23 -y,-x,-z

 0 −1 0
−1 0 0
0 0 −1

 24 σd3 y,x,z

0 1 0
1 0 0
0 0 1


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Appendix B

Table of hexagonal and trigonal

ordinary space groups in 3

dimensions (CDML)

Table B.1: Crystal system:Trigonal (25)

Group number Schonflies notation International notation

143-146 C3 P3,P31,P32,R3

147-148 S6 P3,R3

149-155 D3 P312,P312,P3112,P3121,P3212,P3221,R32

156-161 C3v P3m1,P31m,P3c1,P31c,R3m,R3c

162-167 D3d P31m,P31c,P3m1,P3c1,R3m,R3c
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m
cc
,P

6 3
/m

cm
,P

6 3
/m

m
c

59



Appendix C

Symmetrized and

antisymmetrized squares of

irreps for ZnO at Γ, A, H, K, L,

and M points and lines in the

BZ

Γ	 Γ = Γ

Channel 1: (1)kΓ + (1)kΓ = kΓ

Γ1 ⊗ Γ1 = Γ2 ⊗ Γ2 = Γ3 ⊗ Γ3 = Γ4 ⊗ Γ4 = [Γ1]⊕ {}

Γ5 ⊗ Γ5 = Γ6 ⊗ Γ6 = [Γ1 ⊕ Γ5]⊕ {Γ2}

Γ7 ⊗ Γ7 = Γ8 ⊗ Γ8 = [Γ2 ⊕ Γ6]⊕ {Γ1}

Γ9 ⊗ Γ9 = [Γ2 ⊕ Γ3 ⊕ Γ4]⊕ {Γ1}
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A⊗ A = Γ

Channel 1: (1)kA + (1)kA = kΓ

A1 ⊗ A1 = A2 ⊗ A2 = A3 ⊗ A3 = A4 ⊗ A4 = [Γ4]⊕ {}

A5 ⊗ A5 = A6 ⊗ A6 = [Γ4 ⊕ Γ6]⊕ {Γ3}

A7 ⊗ A7 = A8 ⊗ A8 = [Γ3 ⊕ Γ5]⊕ {Γ4}

A9 ⊗ A9 = [Γ1 ⊕ Γ2 ⊕ Γ3]⊕ {Γ4}

H ⊗H = Γ⊕K

Channel 1: (1)kH + (2)kH = kΓ Channel 2: (2)kH + (2)kH = kK

H1 ⊗H1 = H2 ⊗H2 = []⊕ {} [K2]⊕ {}

H3 ⊗H3 = [Γ4]⊕ {Γ2} [K2 ⊕K3]⊕ {K1}

H4 ⊗H4 = H5 ⊗H5 = [Γ2]⊕ {Γ4} [K1]⊕ {}

H6 ⊗H6 = [Γ2 ⊕ Γ3 ⊕ Γ5]⊕ {Γ1 ⊕ Γ4 ⊕ Γ6} [K1 ⊕K3]⊕ {K2}

K ⊗K = Γ⊕K

Channel 1: (1)kK + (1)kK = kΓ Channel 2: (2)kK + (2)kK = kK

K1 ⊗K1 = K2 ⊗K2 = [Γ1]⊕ {Γ3} [K1]⊕ {}

K3 ⊗K3 = [Γ1 ⊕ Γ4 ⊕ Γ5]⊕ {Γ2 ⊕ Γ3 ⊕ Γ6} [K1 ⊕K3]⊕ {K1}

K4 ⊗K4 = K5 ⊗K5 = [Γ3]⊕ {Γ1} [K2]⊕ {}

K6 ⊗K6 = [Γ2 ⊕ Γ3 ⊕ Γ6]⊕ {Γ1 ⊕ Γ4 ⊕ Γ5} [K2 ⊕K3]⊕ {K1}
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L⊗ L = Γ⊕M

Channel 1: (1)kL + (1)kL = kΓ

L1 ⊗ L1 = L2 ⊗ L2 = L3 ⊗ L3 = L4 ⊗ L4 = [Γ4 ⊕ Γ6]⊕ {}

L5 ⊗ L5 = [Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ 2Γ5 ⊕ Γ6]⊕ {Γ4 ⊕ Γ6}

Channel 2: (2)kL + (3)kL = kM

[M4]⊕ {M3}

[M1 ⊕M2 ⊕ 3M3]⊕ {M1 ⊕M2 ⊕ 2M4}

M ⊗M = Γ⊕M

Channel 1: (1)kM + (1)kM = kΓ

M1 ⊗M1 = M2 ⊗M2 = M3 ⊗M3 = M4 ⊗M4 = [Γ1 ⊕ Γ5]⊕ {}

M5 ⊗M5 = [Γ1 ⊕ Γ3 ⊕ Γ4 ⊕ Γ5 ⊕ 2Γ6]⊕ {Γ1 ⊕ Γ5}

Channel 2: (2)kM + (3)kM = kM

[M1]⊕ {M2}

[2M2 ⊕M3 ⊕M4]⊕ {2M1 ⊕M3 ⊕M4}
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Appendix D

Irreps of C4
6v, C

6
6 , C

4
3v and C1

3v at

Γ, A, H, K, L and M point of

Brillouin zone (BZ); with

w = −1
2 +
√

3
2 i
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Table D.1: Irreducible representations of C4
6v for GkΓ

1 2.1 3 4.1 5 6.1

Γ1 1 1 1 1 1 1

Γ2 1 1 1 1 1 1

Γ3 1 -1 1 -1 1 -1

Γ4 1 -1 1 -1 1 -1

Γ5

(
1 0
0 1

) (
w∗ 0
0 w

) (
w 0
0 w∗

) (
1 0
0 1

) (
w 0
0 w

) (
w 0
0 w∗

)

Γ6

(
1 0
0 1

) (
−w∗ 0

0 −w

) (
w 0
0 w∗

) (
−1 0
0 −1

) (
w∗ 0
0 w

) (
−w 0
0 −w∗

)

Continued.Irreducible representations of C4
6v for GkΓ

19 20.1 21 22.1 23 24.1

Γ1 1 1 1 1 1 1

Γ2 -1 -1 -1 -1 -1 -1

Γ3 -1 1 -1 1 -1 1

Γ4 1 -1 1 -1 1 -1

Γ5

(
0 1
1 0

) (
0 w∗

w 0

) (
0 w
w∗ 0

) (
0 1
1 0

) (
0 w∗

w 0

) (
0 w
w∗ 0

)

Γ6

(
0 −1
−1 0

) (
0 w∗

w 0

) (
0 −w
−w∗ 0

) (
0 1
1 0

) (
0 −w∗
−w 0

) (
0 w
w∗ 0

)
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Table D.2: Irreducible representations of C4
6v for GkA

1 2.1 3 4.1 5 6.1

A1 1 i 1 i 1 i

A2 1 i 1 i 1 i

A3 1 -i 1 -i 1 -i

A4 1 -i 1 -i 1 -i

A5

(
1 0
0 1

) (
w∗i 0
0 wi

) (
w 0
0 w∗

) (
i 0
0 i

) (
w∗ 0
0 w

) (
wi 0
0 w∗i

)

A6

(
1 0
0 1

) (
−wi 0

0 −w∗i

) (
w∗ 0
0 w

) (
−i 0
0 −i

) (
w 0
0 w∗

) (
−w∗i 0

0 −wi

)

Continued.Irreducible representations of C4
6v for GkA

19 20.1 21 22.1 23 24.1

A1 1 i 1 i 1 i

A2 -1 -i -1 -i -1 -i

A3 -1 i -1 i -1 i

A4 1 -i 1 -i 1 -i

A5

(
0− i
i 0

) (
0 −w∗
w 0

) (
0 −wi
w∗i 0

) (
0 −i
i 0

) (
0 −w∗i
wi 0

) (
0 −w
w∗ 0

)

A6

(
0 i
−i 0

) (
0 −w
w∗ 0

) (
0 w∗i
−wi 0

) (
0 i
−i 0

) (
0 wi
−w∗i 0

) (
0 −w∗
w 0

)
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Table D.4: Irreducible representations of C4
6v for GkK

1 3 5 20.1 22.1 24.1

K1 1 1 1 1 1 1

K2 1 1 1 -1 -1 -1

K3

(
1 0
0 1

) (
w 0
0 w∗

) (
w∗ 0
0 w

) (
0 w∗

w 0

) (
0 1
1 0

) (
0 w
w∗ 0

)

Table D.5: Irreducible representations of C4
6v for GkL and GkM

GkL GkM

1 4.1 20.1 23 1 4.1 20.1 23
L1 1 i i 1 M1 1 1 1 1

L2 1 i -i -1 M2 1 1 -1 -1

L3 1 -i i -1 M3 1 -1 1 -1

L4 1 -i -i 1 M4 1 -1 -1 1
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Continued.Physically irreducible representations of C4
6v for GkA

19 20.1 21 22.1 23 24.1

A1 ⊕ A4

(
1 0
0 1

) (
i 0
0 −i

) (
1 0
0 1

) (
i 0
0 −i

) (
1 0
0 1

) (
i 0
0 −i

)

A2 ⊕ A3

(
−1 0
0 −1

) (
−i 0
0 i

) (
−1 0
0 −1

) (
−i 0
0 i

) (
−1 0
0 −1

) (
−i 0
0 i

)

A5 ⊕ A6

(
J 0
0 J∗

) (
Q∗ 0
0 Q∗

) (
Qi 0
0 Q∗i

) (
j 0
0 J∗

) (
iQ∗ 0
0 −Pi

) (
Q 0
0 Q∗

)

Table D.7: Physically irreducible representations of C4
6v for GkL

1 4.1 20.1 23

L1 ⊕ L4

(
1 0
0 1

) (
i 0
0 −i

) (
i 0
0 −i

) (
1 0
0 1

)

L2 ⊕ L3

(
1 0
0 1

) (
i 0
0 −i

) (
−i 0
0 i

) (
−1 0
0 −1

)
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Table D.8: Induced full representations C4
6v at M point

1 2.1 3 4.1

M2

1 0 0
0 1 0
0 0 1


0 0 1

1 0 0
0 1 0


0 1 0

0 0 1
1 0 0


1 0 0

0 1 0
0 0 1



M3

1 0 0
0 1 0
0 0 1


0 0 −1

1 0 0
0 1 0


0 −1 0

0 0 −1
1 0 0


−1 0 0

0 −1 0
0 0 −1



M4

1 0 0
0 1 0
0 0 1


0 0 −1

1 0 0
0 1 0


0 −1 0

0 0 −1
1 0 0


−1 0 0

0 −1 0
0 0 −1


5 6.1 19 20.1

M2

0 0 1
1 0 0
0 1 0


0 1 0

0 0 1
1 0 0


 0 0 −1

0 −1 0
−1 0 0


−1 0 0

0 0 −1
0 −1 0



M3

 0 0 1
−1 0 0
0 −1 0


 0 1 0

0 0 1
−1 0 0


 0 0 −1

0 −1 0
−1 0 0


1 0 0

0 0 −1
0 −1 0



M4

 0 0 1
−1 0 0
0 −1 0


 0 1 0

0 0 1
−1 0 0


0 0 1

0 1 0
1 0 0


−1 0 0

0 0 1
0 1 0


21 22.1 23 24

M2

 0 −1 0
−1 0 0
0 0 −1


 0 0 −1

0 −1 0
−1 0 0


−1 0 0

0 0 −1
0 −1 0


 0 −1 0
−1 0 0
0 0 −1



M3

0 1 0
1 0 0
0 0 −1


0 0 1

0 1 0
1 0 0


−1 0 0

0 0 1
0 1 0


 0 −1 0
−1 0 0
0 0 1



M4

 0 −1 0
−1 0 0
0 0 1


 0 0 −1

0 −1 0
−1 0 0


1 0 0

0 0 −1
0 −1 0


0 0 1

1 0 0
0 0 −1


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Table D.9: Induced full representations of C4
6v at K point

1 2.1 3 4.1 5 6.1

K1

(
1 0
0 1

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
1 0

)

K2

(
1 0
0 1

) (
0 1
1 0

) (
0 1
1 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
0 1

)

Table D.10: Irreducible representations of C6
6(P63) space group for GkΓ

C6
6 1 2.1 3 4.1 5 6.1

Γ1 1 1 1 1 1 1

Γ2 1 -1 1 -1 1 -1

Γ3 1 w∗ w 1 w∗ w

Γ4 1 −w∗ w -1 w∗ -w

Γ5 1 w w∗ 1 w w∗

Γ6 1 -w w∗ -1 w −w∗

Table D.11: Physically Irreducible representations of C6
6(P63) space group

at point Γ where Γ3 ⊕ Γ∗3 = Γ3,5 and Γ4 ⊕ Γ∗4 = Γ4,6

C6
6 1 2.1 3 4.1 5 6.1

Γ1 1 1 1 1 1 1

Γ2 1 -1 1 -1 1 -1

Γ3,5

(
1 0
0 1

) (
w∗ 0
0 w

) (
w 0
0 w∗

) (
1 0
0 1

) (
w∗ 0
0 w

) (
w 0
0 w∗

)

Γ4,6

(
1 0
0 1

)(
−w∗ 0

0 −w

)(
w 0
0 w∗

)(
−1 0
0 −1

)(
w∗ 0
0 w

)(
−w 0
0 −w∗

)
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Table D.12: Irreducible representations of C6
6(P63) for GkA

1 2.1 3 4.1 5 6.1

A11 i 1 i 1 i

A21 -i 1 -i 1 -i

A31 u∗ w i w∗ -u

A41−u∗ w -i w∗ u

A51 -u w∗ i w u∗

A61 u w∗ -i w−u∗

Table D.13: Irreducible representations of C6
6(P63) for GkH , GkK , GkL and

GkM

GkH GkK GkL GkM

1 3 5 1 3 5 1 4.1 1 4.1
H1 1 1 1 K1 1 1 1 L1 1 i M1 1 1

H2 1 w w∗ K2 1 w w∗ L2 1 -i M2 1 -1

H3 1 w∗ w K3 1 w∗ w

Table D.14: Irreducible representations of C4
3v for GkΓ

1 3 5 20.1 22.1 24.1

Γ1 1 1 1 1 1 1

Γ2 1 1 1 -1 -1 -1

Γ3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 w∗

w 0

)(
0 1
1 0

)(
0 w
w∗ 0

)
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Table D.16: Irreducible representations of C4
3v for GkH

1 3 5 20.1 22.1 24.1

H1 1 1 1 i i i

H2 1 1 1 -i -i -i

H3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 −w∗
w 0

)(
0 −1
1 0

)(
0 −w
w∗ 0

)

Table D.17: Irreducible representations of C1
3v for GkΓ

1 3 5 19 21 23

Γ1 1 1 1 1 1 1

Γ2 1 1 1 -1 -1 -1

Γ3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 1
1 0

)(
0 w
w∗ 0

)(
0 w∗

w 0

)
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Table D.18: Irreducible representations of C1
3v for GkA

1 3 5 19 21 23

A1 1 1 1 1 1 1

A2 1 1 1 -1 -1 -1

A3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 1
1 0

)(
0 w
w∗ 0

)(
0 w∗

w 0

)

Table D.19: Irreducible representations of C1
3v for GkH , GkK , GkL and GkM

GkH GkK GkL GkM

1 3 5 1 3 5 1 4.1 1 4.1
H1 1 1 1 K1 1 1 1 L1 1 1 M1 1 1

H2 1 w w∗ K2 1 w w∗ L2 1 -1 M2 1 -1

H3 1 w∗ w K3 1 w∗ w
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Appendix E

Corepresentations of the

magnetic space groups:C4
6v(C6

6),

C4
6v(C4

3v) and C4
6v(C1

3v),

originating from C4
6v non

magnetic.
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Table E.1: Corepresentations for C4
6v(C6

6) magnetic space group at point Γ

where (
1 0
0 1

)
= E, and

(
w 0
0 w∗

)
= P.

1 2.1 3 4.1 5 6.1
CΓ1 1 1 1 1 1 1

CΓ2 1 -1 1 -1 1 -1

CΓ3,5

(
E 0
0 E

) (
P ∗ 0
0 P ∗

) (
P 0
0 P

) (
E 0
0 E

) (
P ∗ 0
0 P ∗

) (
P 0
0 P

)

CΓ4,6

(
E 0
0 E

)(
−P ∗ 0

0 −P

)(
P 0
0 P

)(
−E 0
0 −E

)(
P ∗ 0
0 P ∗

)(
−P 0
0 −P

)

(Continued): Corepresentations for C4
6v(C6

6) magnetic space group at point
Γ

θ19 θ20.1 θ21 θ22.1 θ23 θ24.1
CΓ1 1 1 1 1 1 1

CΓ2 1 -1 1 -1 1 -1

CΓ3,5

(
0 E
E 0

) (
0 P ∗

P 0

) (
0 P
P ∗ 0

) (
0 E
E 0

) (
0 P ∗

P 0

) (
0 P
P ∗ 0

)

CΓ4,6

(
0 E
E 0

)(
0 −P ∗
−P 0

)(
0 P
P ∗ 0

)(
0 −E
−E 0

)(
0 P ∗

P 0

)(
0 −P
−P ∗ 0

)
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Table E.2: Corepresentations for C4
6v(C6

6) magnetic space group at point A

where(
1 0
0 1

)
= E,

(
w 0
0 w∗

)
= P

(
i 0

0− i

)
= Iand

(
u 0
0 u∗

)
= U

1 2.1 3 4.1 5 6.1
CA1 1 i 1 i 1 i

CA2 1 -i 1 -i 1 -i

CA3,6

(
E 0
0 E

) (
U∗ 0
0 U∗

) (
P 0
0 P

) (
I 0
0 I

) (
P ∗ 0
0 P ∗

)(
−U 0
0 −U

)

CA4,5

(
E 0
0 E

)(
−U∗ 0

0 −U∗
)(

P 0
0 P

)(
−I 0
0 −I

)(
P ∗ 0
0 P ∗

)(
−U 0
0 −U

)

(Continued): Corepresentations for C4
6v(C6

6) magnetic space group at point
A

θ19 θ20.1 θ21 θ22.1 θ23 θ24.1
CA1 1 i 1 i 1 i

CA2 1 -i 1 -i 1 -i

CA3,6

(
0 E
E 0

)(
0 −U∗
−U∗ 0

)(
0 P ∗

P 0

) (
0 I
I∗ 0

) (
0 P
P ∗ 0

) (
0 U∗

U 0

)

CA4,5

(
0 E
E 0

) (
0 U∗

U∗ 0

) (
0 P ∗

P 0

)(
0 −I
−I∗ 0

)(
0 P
P ∗ 0

)(
0 −U∗
−U 0

)
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Table E.3: Corepresentations for C4
6v(C6

6) magnetic space group at point H

where(
1 0
0 1

)
= E,

(
w 0
0 w∗

)
= P

(
i 0

0− i

)
= Iand

(
u 0
0 u∗

)
= U

1 3 5 θ20.1 θ22.1 θ24.1

CH1 1 1 1 1 1 1

CH2,3

(
E 0
0 E

)(
P 0
0 P

)(
P ∗ 0
0 P ∗

)(
0 1
1 0

)(
0 P ∗

p 0

)(
0 P
P 0

)

Table E.4: Corepresentations for C4
6v(C6

6) magnetic space group at point K

where(
1 0
0 1

)
= E,

(
w 0
0 w∗

)
= P

(
i 0

0− i

)
= Iand

(
u 0
0 u∗

)
= U

1 3 5 θ20.1 θ22.1 θ24.1
CK1 1 1 1 1 1 1

CK2,3

(
E 0
0 E

)(
P 0
0 P

)(
P ∗ 0
0 P ∗

)(
0 1
1 0

)(
0 P ∗

p 0

)(
0 P
P 0

)

Table E.5: Corepresentations of the magnetic space group C4
6v(C4

3v) at point
A

1 3 5 20.1 22.1 24.1
CA1 1 1 1 1 1 1

CA2 1 1 1 -1 -1 -1

CA3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 −w∗
w 0

)(
0 −1
1 0

)(
0 −w
w∗ 0

)
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(Continued): Corepresentations for C4
6v(C4

3v) magnetic space group at point
A

θ2.1 θ4.1 θ6.1 θ19 θ21 θ23

CA1 1 1 1 1 1 1

CA2 1 1 1 -1 -1 -1

CA3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 w
w∗ 0

)(
0 w∗

w 0

)(
0 1
1 0

)

Table E.6: Corepresentations for C4
6v(C4

3v) magnetic space group at point Γ

1 3 5 20.1 22.1 24.1
CΓ1 1 1 1 1 1 1

CΓ2 1 1 1 -1 -1 -1

CΓ3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 w∗

w 0

)(
0 1
1 0

)(
0 w
w∗ 0

)

(Continued): Corepresentations for C4
6v(C4

3v) magnetic space group at point
Γ

θ2.1 θ4.1 θ6.1 θ19 θ21 θ23

CΓ1 1 1 1 1 1 1

CΓ2 1 1 1 -1 -1 -1

CΓ3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 −w
w∗ 0

)(
0 −w∗
w 0

)(
0 −1
1 0

)
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Table E.7: Corepresentations for C4
6v(C4

3v) magnetic space group at point M

120.1θ4.1θ23

CM11 1 1 1

CM21 -1 1 -1

Table E.8: Corepresentations for C4
6v(C4

3v) magnetic space group at point L

1 20.1 θ4.1 θ23

CL1 1 1 1 1

CL2

(
1 0
0 1

)(
−i 0
0 i

)(
0 1
1 0

)(
0 −i
i 0

)

Table E.9: Corepresentations for C4
6v(C1

3v) magnetic space group at point Γ

1 3 3 19 21 23
CΓ1 1 1 1 1 1 1

CΓ2 1 1 1 -1 -1 -1

CΓ3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 1
1 0

)(
0 w
w∗ 0

)(
0 w∗

w 0

)
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(Continued): Corepresentations for C4
6v(C1

3v) magnetic space group at point
Γ

θ2.1 θ4.1 θ6.1 θ20.1 θ22.1 θ24.1

CΓ1 1 1 1 1 1 1

CΓ2 1 1 1 -1 -1 -1

CΓ3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 w
w∗ 0

)(
0 w∗

w 0

)(
0 1
1 0

)

Table E.10: Corepresentations for C4
6v(C1

3v) magnetic space group at point A

1 3 3 19 21 23
CA1 1 1 1 1 1 1

CA2 1 1 1 -1 -1 -1

CA3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 1
1 0

)(
0 w
w∗ 0

)(
0 w∗

w 0

)

(Continued): Corepresentations for C4
6v(C1

3v) magnetic space group at point
A

θ2.1 θ4.1 θ6.1 θ20.1 θ22.1 θ24.1

CA1 1 1 1 1 1 1

CA2 1 1 1 -1 -1 -1

CA3

(
1 0
0 1

)(
w 0
0 w∗

)(
w∗ 0
0 w

)(
0 w
w∗ 0

)(
0 w∗

w 0

)(
0 1
1 0

)
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Bound and free excitons in ZnO. Optical selection rules in the absence
and presence of time reversal symmetry
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a b s t r a c t

The correlation between ionized donor bound exciton recombinations and neutral donor bound exciton

recombinations in ZnO has been investigated. The experimental data obtained by means of magneto-

photoluminescence (MPL) concerning charge state and localization energies of ionized and neutral

donor bound excitons are in good agreement with theoretical predictions. The optical selection rules in

absence and presence of time reversal symmetry (TRS) are investigated. It is shown that the inclusion of

extra degeneracy due to TRS reveals a number of new states of the same symmetries and essentially

does not change the existing optical selection rules.

& 2008 Elsevier Ltd. All rights reserved.

1. Neutral and ionized donor bound excitons

Lithium-doped ZnO epilayers were grown by chemical vapor
deposition on ZnO substrates. Photoluminescence (PL) and
magneto-photoluminescence (MPL) measurements were per-
formed using a 325 nm HeCd laser. Fig. 1 displays the PL at 4.2 K
in the energetic range of the free and bound excitons. The
most prominent excitonic transition lines are the I9 (3.3567 eV),
I8 (3.3598 eV), I6a (3.3604 eV), I2 (3.3674 eV), I1 (3.3720 eV), and
I0 (3.3726 eV).

Previous studies have shown that I9, I8, and I6a are neutral
exciton complexes bound to an indium [1], gallium [2], and
aluminum impurity, respectively [3]. These lines are accompanied
by the higher energetic lines I2, I1, and I0 [4]. The neutral bound
exciton line I9 is correlated to I2, I8–I1, and I6a–I0. In fact, all
investigated samples exhibit only I0–I2 excitons if the related
excitons I6a–I9 are present as well. Due to a similar scaling in
intensity and energetic position, it is likely that these correlated
pairs of transition lines are excitons bound to an impurity of the
same chemical identity but in a different charge state. Conse-
quently, we attribute I0, I1, and I2 to ionized donor bound excitons
related to Al, Ga, and In impurities, respectively. Concerning the
I1 complex, this correlation is in agreement with the data
published by Johnston et al. [2], who reported a simultaneous
decrease in the I8 and I1 intensity for ZnO crystals doped with a
radioactive Ga isotope. The various bound exciton complexes with

their localization energies and suggested chemical identities are
summarized in Table 1.

The charge states of the bound exciton complexes are
investigated by MPL spectroscopy. Excitons bound to ionized
impurities can be distinguished from those bound to neutral
impurities by a nonlinear splitting of energy levels in the
magnetic field perpendicular to the c-axis of the crystal, while
excitons bound to neutral impurities exhibit a linear splitting
behavior for ~B ? c [5]. For ionized bound excitons at low magnetic
fields, only a high energy Zeeman component, resulting from a
G5 state is visible, whereas the low energy component, originating
from G1 to G6 transition is forbidden by selection rules (SRs).
However, for larger magnetic fields, the SRs can be relaxed due to
a spin–spin interaction of G5 states with anti-parallel spin, mixed
with G6 states with parallel spin, thus allowing the appearance of
a new line associated with the G6 state. The extrapolation of the
peak positions to B ¼ 0T reveals the presence of the zerofield
splitting, ascribed to the spin–spin interaction energy. Such an
interaction cannot occur in transition lines originating from
excitons bound to neutral impurities, since the spin of the two
equal particles are anti-parallel.

Evidently, we observe a linear Zeeman splitting for the
I6a–I8 lines, whereas this is not the case for the bound excitons I0 and
I1 (Fig. 2). Furthermore, an additional low energy transition due to
the zerofield splitting appears for I0 and I1 if a magnetic field
is applied. Similar results (not shown) were obtained for I9 (linear
Zeeman splitting) and I2 (zerofield splitting) in accordance with
the previously published measurements [6]. Consequently, fol-
lowing the previous discussion, the transition lines I6a–I9

originate from recombinations of neutral bound excitons, whereas
I0–I2 are related to ionized bound exciton complexes.
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2. Band structure and SRs for optical transitions in the absence
and presence of time reversal symmetry

Large magnetic fields and high spectral resolutions better than
50–100meV reveal the presence of additional transition lines due
to the lifting of degeneracy [7]. The new transitions are related to
the absorption and emission of free and bound excitons, which
depend on the structure and symmetry of the conduction band
(CB) and valence band (VB). In order to understand the origin of

the optical transitions, we recall and modify the theory of band
structures and SRs for wurtzite compounds with the C4

6v space
group. Possible reason for additional transition lines could be
related to excited states, non-zero hole g-values, hyperfine
structure splittings, or time reversal symmetry (TRS) splittings.
The following theoretical discussion intends to clarify, if the
inclusion of TRS in the group theoretical consideration can explain
the additional degeneracy and optical transitions.

2.1. Band structure

The band structure of wurtzite compounds has been investi-
gated by many authors [8,9]. However, to our best knowledge the
effect of TRS has not been considered. Disregarding the spin–orbit
(S–O) interaction, crystalline field (CF) and TRS effect, the free
electrons occupy S-like CB states and free holes P ðPx;Py; PzÞ VB
states. The S-like states transform according to irreducible
representation (irrp) Gc

1 of the C6v-ZnO point group, while the
P ðPx; Py; PzÞ hydrogenic-like orbitals transform like X;Y ; Z according
to the so-called vector representation Vðx; y; zÞ.

The CF splits the Px; Py; Pz states into Px; PyðG5ðx; yÞÞ and
PzðG1ðzÞÞ states. The vector representation for ZnO is reducible to
G1 and G5 irrps V ¼ G1ðzÞ � G5ðx; yÞ.

The inclusion of the S–O interaction results in further
splittings: Gc

1 � D1=2¼Gc
7, Gv

5 � D1=2¼Gv
7 � Gv

9, and Gv
1 � D1=2¼Gv

7.
The free electrons in the CB and holes in VBs are classified
according to double-valued irrps [10].

2.2. The effect of TRS on band structure and classification of states

Replacing t by �t and taking the complex conjugate of any
time-dependent Schrödinger equation we obtain C%

i ð~r;�tÞ wave
functions which are also eigenfunctions of ĤSch together with
the Cið~r; tÞ. The Ci are the basis of the D irrp of the group of ĤSch

while C%

i are the basis of D%. When D and D% are complex [11] the
state of a system (energy term) will be classified by the joint
D� D% irrps. Clearly, the degeneracy of a state increases twice. In
order to determine whether or not the TRS is present in a system,
one has to find all complex irrps of a symmetry group of a
Hamiltonian. Fröbenius and Schur [12] showed that it is sufficient
to know only the characters of irrps to determine whether a
representation (rep) is real or complex. The characters of the 32
crystallographic point groups and 230 space groups are readily
available in CDML tables [13]. We have tested all irrps of the
C6v-ZnO group. The following irrps are TRS degenerate:

Single-valued irrps for classification of spinless particle states
(like phonons): A1;2;3;4;5;6, D1;2;3;4;5;6, H1;2, L1;2;3;4, U1;2;3;4, P1;2;3, and
S1;2 of high symmetry points.

Double-valued irrps for particles with S ¼ 1
2;

3
2; . . . ðspinorsÞ:

G6;7;8 of point and space groups. The double-valued irrps of the
32 crystallographic point groups and 230 space groups are
normally complex and therefore TR degenerated. Consequently,
the states of free electrons and holes at k ¼ 0 in ZnO suppose to be
classified by joint irrps: Gc

7 � ðG
c
7Þ

%;Gv
9 � ðG

v
9Þ

%, and Gv
7 � ðG

v
7Þ

%.
Fig. 3 displays the effect of TRS on the band structure.

2.3. SRs for optical transitions in wurtzite structure in the absence

of TRS

In the absence of accidental degeneracy and TRS, the matrix
elements of a perturbation f̂ between CB and VB states is of the
form:

R
ðCc

i Þ
% f̂jv

j d~r, which is non-zero when the corresponding
Kronecker product Gc

� Df
�Gv contains the unit rep normally

denoted as G1 or A1 [13].
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Fig. 1. PL spectra of lithium-doped high quality ZnO grown by CVD at a

temperature of 4.2 K.

Table 1
Bound exciton complexes in ZnO

Line E (eV) Eb ðmeVÞ Complex Chem. element

I9 3.3567 19.2 D0X In

I8 3.3598 16.1 D0X Ga

I6a 3.3604 15.5 D0X Al

I2 3.3674 8.5 DþX In

I1 3.3718 4.1 DþX Ga

I0 3.3726 3.3 DþX Al

Energetic positions are given for T ¼ 4:2 K.

Fig. 2. Zeeman splitting of neutral and ionized donor bound excitons for magnetic

fields of 0–3 T. Spectra are taken at 1.8 K in Voigt geometry ( ~B ? c).
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The Df is a rep (not necessary irreducible) according to which
the perturbation operator transforms. In case of absorption
(emission) of electromagnetic radiation, the dipole moment
operator f̂ ¼ d̂ for the electric dipole radiation transforms like
X;Y ; Z (vector rep V ¼ G1ðzÞ �G5ðx; yÞ) in ZnO. In order to discuss
the SRs we have to establish the ordering of the VBs. Following the
ordering of Thomas and Hopfield [14] in agreement with recent
MPL studies [6] we attribute the uppermost A VB to consist of hole
states with G7 symmetry.

For ~Ekc (c-hexagonal axis along z) the SRs are:

Gc
7 �G1ðzÞ � Gv

7 ¼ G1 � G2 � G5 (allowed transitions for A- and
C-excitons).
Gc

7 �G1ðzÞ � Gv
9 ¼ G5 � G6 (B-excitons, forbidden transition

since the Kronecker product does not contain G1 rep).

For ~E ? c, we have:

Gc
7 �G5ðx; yÞ � Gv

7 ¼ G1 � G2 � 2G5 �G6.
Gc

7 �G5ðx; yÞ � Gv
9 ¼ G1 � G2 � G6 �G3 � G4 �G5.

For ~E ? c polarization all transitions for A-, B-, and C-excitons
are allowed and observed experimentally [15,16].

2.4. SRs in the presence of TRS

As mentioned the electron and hole states are TR degenerated
and therefore their states are classified according to the joint reps:
D� D%. Consequently, the respective SRs are:

For ~Ekc: ðGc
7 � ðG

c
7Þ

%
Þ �G1ðzÞ � ðGv

9 � ðG
v
9Þ

%
Þ. The decomposi-

tion of the KPs reveals 4G5 and 4G6 states. All the states have
different basis functions and those can be obtained by Clebsch–
Gordon coefficients methods. The B-excitons are still forbidden as
in the absence of TRS.

For ~Ekc: ðGc
7 � ðG

c
7Þ

%
Þ �G1ðzÞ � ðGv

7 � ðG
v
7Þ

%
Þ ¼ 4G1 � 4G2�

4G5. The transitions are also allowed as in the absence of TRS.
For ~E ? c: ðGc

7 � ðG
c
7Þ

%
Þ �G5ðx; yÞ � ðGv

9 � ðG
v
9Þ

%
Þ ¼ ðG5 � G6Þ�

G5 � � � �. The transition is allowed for an B-exciton, since the KP
G1 2 G5 �G5.

For ~E ? c: ðGc
7 � ðG

c
7Þ

%
Þ �G5ðx; yÞ � ðGv

7Þ � ðG
v
7Þ

%
¼ 4ðG1 � G2 �

G3 �G4 � G5� G6Þ. Again these transitions are allowed.
Clearly the TRS does not change the existing SRs. It introduces

only a number of new states of the same symmetries. All the
states are based on different wave functions, which correspond to
different energy levels. Further splitting due to TRS is possible. The
effect of TRS on phonons and TR splitting has been experimentally
observed [18]. Recent studies of the electronic band structure of
ZnO by means of first-principles calculations and density-
functional theory [17] clearly evidence the existence of TRS on
high symmetry point A and D line in ZnO and other wurtzite
compounds.

3. Discussions and conclusion

From the first part of this paper, it follows that magneto-
photoluminescence studies can clearly identify the origin of the
neutral and ionized bound exciton transitions shown in Figs. 1 and 2.
We observe a linear splitting of I6a–I8 corresponding to neutral
excitonic complexes and a non-linear zero-field splitting for the
ionized donor bound excitons I0–I2. It is suggested, that these ionized
donor bound excitons are related to the same chemical impurity as
their correlated neutral donor bound excitons I6a, I8, and I9.

The selections rules discussed in Section 2 are related to
absorption (emission) transitions observed by reflectivity mea-
surements [19,20]. Our results are in good agreement with early
and recently reported experimental data [21]. The ordinary
photoluminescence (PL) technique can only probe A-excitons
at k ¼ 0 of symmetries G5 and G6 (Gc

7 � Gv
9 ¼ G5ð"#Þ � G6ð""Þ).

The shoulder lines at around 3.3750 and 3.3775 eV might be

ARTICLE IN PRESS

Fig. 3. Band structure and selection rules for wurtzite compounds at the G symmetry point ðk ¼ 0Þ. The V stands for 3� 3 dimensional vector representation, which is

reducible to G1ðzÞ + G5ðx; yÞ. There are a number of wurtzite compounds for which the above band structure is valid. In some of them the crystalline field is rather negligible.

For them the very first left diagram of band structure can be relevant. Our figure can be directly compared with Fig. 1 in Ref. [8]. Birman assigned the top VB of a zinc-blende

structure by G04 rep. The G04 rep is one of the irrps of the zinc-blende space group and it is simultaneously vector representation of the group. For wurtzite structures, a

similar assignment on Birman’s figure is missing. It should be mentioned that for the here used valence band structure of ZnO, the ordering of the uppermost valence bands

has to be reversed.
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related to the G5 (anti-parallel spins) and G6 (parallel spins) free
excitons.

As discussed in Section 1, the transition lines I6a, I8, and I9

originate from the recombination of bound excitons at neutral
donor complexes such as Al, Ga, and In. The atomic ground states
of the elements listed in Table 1, including Li, are: Li (n ¼ 2, 2S1=2),
Al (n ¼ 3, 2P1=2), Ga (n ¼ 4, 2P1=2), In (n ¼ 5, 2P1=2); see Fig. 5.2,
p. 87 and Fig. 8.1, p. 115 in Ref. [22], where n is the principal
quantum number. These states are doublets ð2Sþ 1 ¼ 2Þ and
therefore exhibit anomalous Zeeman splitting. Their spectral
terms can also be found in [22]. In ZnO these dopants become
shallow donors to which the excitons of symmetries Gc

7 � Gv
7(A),

Gc
7 �Gv

9(B), and Gc
7 � Gv

7(C) are bound. The excitons bound to the
dopant states do not contribute to the spin states of complexes.
Therefore, these complexes remain doublets (S ¼ 1

2, 2Sþ 1 ¼ 2),
ms ¼ �1=2, þ1=2. In a magnetic field, the Zeeman effect of these
states can be observed and the g-values obtained.

For phonons in ZnO and GaN the extra time reversal
degeneracy has already been proven by experiments [19,20].
Clearly, the phonons at the high symmetry line D and point A

experience time reversal symmetry (TRS) degeneracy. However,
the time reversal splitting of electronic states has, to the best of
our knowledge, never been observed. Since the inclusion of TRS
has no effect on the optical selection rules, but only introduces
additional states of the same symmetry, this fact is in agreement
with our theoretical calculations.

In conclusion we have demonstrated a correlation between
ionized and neutral donor bound excitons of the same chemical
identity. For high resolution and high magnetic field spectra
additional transition lines can be observed. Rigidly derived
selection rules are in good agreement with the experimental
data. The inclusion of TRS as possible origin has been studied.
It could be proven that the inclusion of TRS does not change
the existing selection rules compared to those in the absence of

TRS. It only introduces new states of the same symmetry. By the
strict derivation of the selection rules, it could be concluded that
the inclusion of TRS should not affect the observable optical
transition.
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Phonons and electronic states of ZnO, Al2O3 and Ge

in the presence of time reversal symmetry
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Abstract. Using group theoretical techniques we have investigated all single valued
representations as well as double valued, these follow from the inclusion of spin, of wurtzite
(e.g. ZnO) , trigonal (e.g. Al2O3 ) and cubic (e.g. Ge ) structures, with the C4

6v, D
6
3d and O7

h

space groups, respectively, with regard to the presence or absence of Time Reversal Symmerty
(TRS). We have found a number of phonons in wurtzite and trigonal structures to be time
reversal degenerate, whereas in the cubic Si, Ge and diamond the vibrational modes are not
time reversal degenerate. Electronic band structure also experience extra TRS degeneracy.
Therefore, the selections rules for optical radiative transitions need modification.

1. Introduction
Wurtzite (C4

6v−space group) wide band semiconductors: ZnO, GaN, 6H-SiC, etc., have received
considerable attention owing to their opto-electronic properties. Phonons are the primary
excitations that influence the thermodynamics and the transport properties of materials. In
order to understand materials phenomena we study phonons thouroughly.

Sapphire Al2O3 is a very common material on the Earth’s crust that crystallizes in the trigonal
space group D6

3d. The excellent mechanical and optical properties of sapphire in its pure and
dopped form makes it a material of choice for various physical and technological applications.
It is frequently used as substrate for growing thin films of semiconductor such as GaN, ZnO,
ZnS, etc.

Ge, Si and Diamond with the space group O7
h are well known compounds with a large variety

of technological applications.
The effect of time reversal symmetry on vibrational modes, electronic states and optical

properties of these compounds is still not well understood. It is our aim to comprehesively
investigate the impact of TRS on the properties of these materials. TRS has also has an impact
on scattering processes of semiconductors. We shall briefly indicate some consequences of TRS
on optical transistions.
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2. Space and Time Reversal Symmetry. Phonons and Electronic States of
Quasiparticles in Wurtzite, Trigonal and Cubic Crystals.
States of quasiparticles such as phonons, electrons in conduction band (CB), holes in the valence
band (VB), excitons, plasmons, polaritons, magnons, etc., in the absence of the TRS are classified
according to the irreducible representations (irrps) Dk

j of the space group Gk. The wave vector
k runs over the entire first Brillouin zone (BZ) and determines the high symmetry points and
lines. In wurtzite BZ they are Γ, A,M,K,L,H, R,Q, S, ∆, Σ, Λ, U and P ; in trigonal crystals:
Γ, T, P, F, Y, L, Λ and Σ and in cubic crystal structures Γ, W,X,Z(V ), Q, S,A, Λ, ∆ and Σ.
All these high symmetry points and lines have own set of irrps. The irrps of the 230 space
groups and their characters are well established and available in CDML tables [1]. In the
tables the generators of single and double valued irrps are given. The states of phonon-spinless
quasiparticles are classified according to the single valued (SV) irrps, while states of electrons,
holes, and therefore excitons according to double valued (DV) irrps. Frobenius and Schur (F-
Sch.) showed that when an irrp is complex an extra degeneracy may occur. They derived the
so-called reality test for irrps which is of the form:

R =
f

h

∑

g∈Gk

χk(g
2) δk,−gk = +1(a), − 1(c), 0(b) (1)

where all the quantities have their usual meaning [2, 3]. In the case (a) the irrps are real and
there is no extra degeneracy, while in (b) and (c) cases an extra degeneracy occurs. In these
cases the states of quasiparticles will be classified according to the direct sum of Dk

j and (Dk
j )

?

irrps ⇒ Dk
j ⊕ (Dk

j )
?. This classification of the states reflects both space and time reversal

symmetry. Consequently, the degeneracy (the dimension of Dk
j ) doubles.

In this paper we shall investigate irrps of a space group using F-Sch. criterion (equation (1))
to determine whether or not the TRS is present in a crystal. Using the equation (1) we have
investigated all SV and DV irrps of wurtzite, trigonal and cubic cyrstals.

2.1. Single Valued irrps. Phonons
As mentioned above SV irrps are used for the classification of spinless quasiparticles.
The following irrps belong to (b) or (c) cases of equation (1). All others not listed belong to
case (a).

wurtzite A1−6, ∆1−6, P1,2,3, L1−4, H1,2,3

trigonal Λi , Pi, Ti (i = 1, 2, 3)
cubic None. All irrps are real (case (a)). There is no TRS degeneracy.

The resulting classification of the vibrational states in these crystals subjected to TRS is:
wurtzite Ai ⊕A?

i , ∆i ⊕∆?
i , Pj ⊕ P ?

j ; Li ⊕ L?
i , Hj ⊕H?

j (i = 1− 4, j = 1− 3)

trional Λi ⊕ Λ?
i , Pi ⊕ P ?

i , Ti ⊕ T ?
i ; (i = 1− 3)

cubic The phonons in Si, Ge, and diamond are not subject to TRS. They are
classified according to the Dk

j tabulated in CDML[1].

2.2. Discussion of line Γ−∆−A for wurtzite
The displacement representation [4, 5, 6] provides the number of normal modes and their
symmetries in the entire BZ. In the wurtzite structure the normal modes spanned by
displacement representation at critical points Γ, A and line ∆ are:

Γ : 2Γ1 ⊕ 2Γ4 ⊕ 2Γ5 ⊕ 2Γ6

A : 2A1 ⊕ 2A4 ⊕ 2A5 ⊕ 2A6

∆ : 2∆1 ⊕ 2∆4 ⊕ 2∆5 ⊕ 2∆6

Using compatibility relations, the resulting modes assignment along the Γ−∆−A axis is:
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Point Γ : Γ1 ⊕ Γ5, Γ6, Γ4, Γ5, Γ6, Γ4 and Γ1

Point A : A5 ⊕A?
5, A1 ⊕A?

1, A5 ⊕A?
5 and A1 ⊕A?

1

Line ∆ : the dispersion curves connect the points Γ and A when going from
the bottom to the top on the A axis side: ∆5, ∆

?
5, ∆1, ∆

?
1, ∆5, ∆

?
5,

∆1 and ∆?
1.

Using CDML tables we have derived all Γ, ∆ and A irrps. We have found the following
relations. A?

1 = A4, A
?
5 = A6, ∆?

1 = ∆4, ∆?
5 = ∆6 . Figure 1 displays assignment of the

schematic dispersion curves of the Γ −∆ − A region of the BZ subjected to TRS for wurtzite
compounds in terms of joint irrps. For simplicity we used straight lines for connectivity.

Fig.1 Phonon assignment along the Γ−∆−A axis.

2.3. Experimental Evidence
The very first experimental proof of the existence of TRS have been provided by Hewat and
Thoma [7, 8] and reference herein. by inelastic neutron scattering. They observed experimental
data on a ∆− line phonon dispersion curve TR degenerate. More recently Ruf [9] et. al. studied
the phonon dispersion curves in GaN by inelastic X-ray scattering in Fig.2 in [9]. Their data
gave evidence of the existence of TRS. With the help of our Figure 1 it is easy to understand
experimental evidence of TRS obtained by Hewat, Thoma, Ruf and others [7, 8, 9]. A number
of lattice dynamics calculations by means of density functional theory and ab initio theory have
been reported [10, 11, 12], providing further evidence of TRS degeneracy. Sapphire has similar
features on high the symmetry Λ− line which have been proven theoretically and experimentally
by Heid, Schrober and Ossowski [12, 13, 14, 15].

2.4. Double Valued irrps. Electrons, holes and excitons
Inclusion of spin results in DV irrps (spinors) for electron and hole states. These states transform
according to DV irrps. We have briefly discussed the selection rules for the excitons symmetries in
the presence of TRS with respect to phonon scattering processes, previously discussed by Birman
and Ganguly [16] without consideration of the effect of TRS on the exciton symmetry. For the
Hamiltonian of the exciton-phonon interaction one needs the exact symmetry for the exciton and
phonon. The exciton symmetry results from the product of electrons and holes symmetries. For
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ZnO the A-exciton has the symmetry ΓCB
7 ⊗ΓV B

9 = Γ5⊕Γ6. The spilitting onto two single states
Γ5 and Γ6 is due to exchange interaction. The irrps ΓCB

7 and ΓV B
9 are DV irrps ( spinors) and

belong to case (c) in equation (1). Therefore, the TRS must be taken into account. The resulting
A-exciton symmetry due to TRS is

[
ΓCB
7 ⊕

(
ΓCB
7

)?] ⊗
[
ΓV B
9 ⊕

(
ΓV B
9

)?]
= 4Γ5 ⊕ 4Γ6 , and in

this case the exchange interaction splits the exciton state into four Γ5 and Γ6 states. Clearly,
the inclusion of TRS results in three more states of Γ5 and Γ6 symmetries, with different energy
levels, compared to the selection rules without TRS. In other words, the TRS does not introduce
states of new symmetries, but introduces more states of the same symmetries. Consequently,
TRS does not change the existing optical selection rules tabulated in many books [1], but
it may affect the enhanced Raman scattering processes in crystals. These involve a creation
and destruction of intermediate states of crystals. The interaction of excitons with phonons is
determined by Kronecker product of exciton and phonon symmetry DExciton

j ⊗DPhonon
j . These

KPs have to be evaluated by the standard group theoretical decomposition of the reducible rep
onto irrps.

3. Conclusion
We have investigated the effect of TRS on vibrational modes in wurtzite, trigonal and cubic
structures. For these structures the single valued representations of time reversal degenerate
states are given. The symmetry of excitons in wurtzite time reversal subjected is discussed.
Inclusion of TRS may result in an increase of time reversal degenerate phonon states of the
exciton-phonon interaction for enhanced Raman scattering processes. A need of modification
of existing optical selection rules (Kronecker Products) in the presence of TRS is indicated.
Our results are valid for the following compounds: wurzite: ZnO, ZnS, ZnSe, ZnTe, GaN, AlN,
InN, BP, BeO, CdS, CdSe, CdTe, CuI, 2H-SiC, 3H-SiC, 4H-SiC, 6H-SiC, etc.; Trigonal: Al2O3,
Cr2O3, Fe2O3, V2O3, Ti2O3, AlBO3, FeBO3, NaNO3, CaCO3, ZnCO3, MgCO3 MgTe, MnCO3,
CdCO3, FeCO3, etc.; Cubic : Ge, Si, Diamond, etc.
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Selection rules for inter- and intra-valley scattering processes

between the minima of the lowest conduction band G, L,M, and

A are investigated in wurtzite ZnO. The knowledge of the

selection rules is required for the determination of the Clebsch–

Gordon coefficients (CGCs). These coefficients diagonalize the

Kronecker products (KPs) of relevant irreducible representa-

tions of quasi particles participating in scattering processes. The

elements of the scattering tensors are the linear combinations of

the CGCs. Within this work, the CGCs for ZnO belonging to the

space group C4
6n are determined.

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The study of scattering processes
involving phonons provides important information about
various physical properties of semiconductors. These
processes are usually described by the different scattering
tensors which are determined by appropriate experimental
techniques. Applying electrical (transport) measurements,
tensors like the second rank conductivity, capacitance, and
resistivity tensor can be determined. The inelastic light
scattering is described by a symmetric second rank tensor
which can be derived with high accuracy using Raman
spectroscopy. The mechanical properties of crystals depend
on tensors like surface stiffness constants, determined by,
e.g., Brillouin scattering, or the third rank piezoelectric
tensor which involves electron–acoustic–phonon inter-
actions. Particularly, in non-centro-symmetric crystals (zinc
blende and wurtzite) the strain tensor and induced electric
fields can be expressed as a third rank electromechanical
tensor (see, e.g., Ref. [1]).

In this contribution we investigate scattering processes
in the wide band gap semiconductor ZnO which is attracting
much attention due to potential applications in, e.g., short-
wavelength optoelectronic devices and surface acoustic
wave modulators [2, 3]. In particular, possible inter- and
intra-valley scattering processes at local extrema in the

electronic band structure of ZnO are studied by Clebsch–
Gordan coefficients (CGCs). These scattering processes can
occur at high symmetry points due to the interaction of
carriers with phonons, impurities, and dislocations. The
mechanisms have been studied in a wide variety of different
semiconductors. Lax and Hopfield [4] and Birman et al. [5]
have investigated the selection rules for direct and indirect
radiative transitions by intra- and inter-valley scattering in Si
and Ge. The Raman scattering tensors in cubic Cu2O (O4

h)
were analyzed by Birman [6]. The mathematical theory of
the CGCs was derived by Berenson and Birman [7] who
calculated CGCs for diamond (O7

h) and rocksalt (O5
h) [8].

Birman et al. [9] have shown that the matrix elements of the
Luttinger–Bir–Picus k � p effective Hamiltonian can be
constructed as products of the CGCs times symmetrized
tensorial field quantities. They applied the method to the b-
wolfram structure (O3

h). Kunert and Suffczyński [10, 11]
developed the theory of the CGCs related to the wave vector
selection rules (WVSRs) in terms of block structures. They
computed the CGCs for the O3

h space group. Finally,
Berenson [12] discussed the scattering tensors for crystals
limited to the point groups Td and C6v. However, the
coefficients for ZnO have not been studied up to now. In
principal, the here presented results can also be applied to
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other wide band gap semiconductors like GaN, CdS, 6H-SiC,
BeO, and ZnS which crystallize in the same hexagonal C4

6v

structure.

2 Symmetry of ZnO band structure The states of
spin less quasi-particles like phonons and excitons are
classified according to the single-valued irreducible repres-
entations (SV-irrps) of the crystal space group. Recently,
Lambrecht et al. [13] calculated the band structure of ZnO
using first principles linear muffin-tin orbital density
functional theory. In their computation the spin of electrons
and holes was disregarded. However, the effect of the time
reversal symmetry along the high symmetry line D and at
point A was taken into account.

Figure 1 in Ref. [13] gives an overview of the ZnO band
structure throughout the entire Brillouin zone (BZ). Several
minima of conduction bands at high symmetry points can be
distinguished, e.g., for G, M, A, L, and X. The corresponding
symmetries are G1, M1, A1, L1, and X1. The valley A1 is time
reversal degenerate. Therefore, its symmetry is supposed to
be A1 � ðA1Þ

�
¼ A1 � A4 [14]. The maxima of the valence

bands at the G point and A point have the symmetries G5 and
A5, respectively.

For direct optical transitions in semiconductors, which
preserve the k vector, an electron can be scattered by a
phonon. In such a case the scattering processes can be
described by group theoretical scattering selection rules
regarding only the SVirrps [4, 5]. In most semiconductors,
however, there is also an appreciable and measurable spin–
orbit interaction. Consequently, the electron and hole states
must be assigned by spinor representations. For ZnO, these
areG7 for the conduction band andG7þ,G9,G7� for the upper
valence bands. The spinor representations are also referred to
as double-valued irrps (DV-irrps).

3 The wave vector selection rules: Kronecker
product and Clebsch–Gordan coefficients In this
section we discuss the consequences of the momentum

conservation principle, when an electron in the state k is
scattered into another state with k0 due to a phonon in the k00

state. The momentum conservation determines the WVSRs.
In ZnO as well as many other hexagonal crystals with the
space groupC4

6v, there are three minima at the L andM points
in the BZ. The first minimum at each of these points is
characterized by the wave vectors kLð101Þ and kMð010Þ in
the fundamental domain of the BZ [15]. The remaining two
minima are derived from the kL and kM wave vectors to
2kLð011Þ, 3kLð�111Þ and 2kMð100Þ, 3kMð010Þ, where 1, 2,
and 3 are the symmetry operators according to the CDML
labeling [15]. Together with kLð101Þ and kMð010Þ, the wave
vectors form so-called stars of the high symmetry points
L and M. Combining these six wave vectors, we obtain the
WVSRs of momenta conservation which are listed in Table 1
together with the calculated coupling coefficients. The U
matrices for all tables are created from the elements of the
Tables 1–5. For an example, see the listed U matrix of
Table 3.

The description of any scattering process is given by
the Kronecker product (KP) of irrps which corresponds to the
particles involved in such processes. For example, for
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Table 1 Clebsch–Gordan coefficient matrix for L1 �M1 ¼ A1 � A5 � L1 � L2, a ¼ 1=
ffiffiffi
2

p
, b ¼ 1=

ffiffiffi
3

p
, w ¼ �1=2 þ i

ffiffiffi
3

p
=2.

block
A1 A5 L1 L2

WVSRs ss0s00

kL þ kM ¼ kA 111 b b b 0 0 0 0 0 0
2kL þ 2kM ¼ kA 221 b �iwb �iw�b 0 0 0 0 0 0
3kL þ 3kM ¼ kA 331 b w�b wb 0 0 0 0 0 0
2kL þ 3kM ¼ kL 231 0 0 0 ia 0 0 �ia 0 0
3kL þ 2kM ¼ kL 321 0 0 0 �ia 0 0 ia 0 0
kL þ 3kM ¼ 2kL 132 0 0 0 0 �ia 0 0 ia 0
3kL þ kM ¼ 2kL 312 0 0 0 0 ia 0 0 �ia 0
kL þ 2kM ¼ 3kL 123 0 0 0 0 0 ia 0 0 �ia
2kL þ kM ¼ 3kL 213 0 0 0 0 0 �ia 0 0 ia

U�1ðL1 �M1ÞU ¼

A1 0 0 0

0 A5 0 0

0 0 L1 0

0 0 0 L2

0

B
B
@

1

C
C
A

Table 2 Clebsch–Gordan coefficient matrix for ðA1 � A�
1Þ�

M1 ¼ ½L1 � L2�.
block L1 L2

WVSRs ss0s00 aa0 1 2 3 1 2 3

kA þ kM ¼ kL 111 11 0 0 0 �i 0 0
11 �i 0 0 0 0 0

kA þ 2kM ¼ 2kL 122 12 0 0 0 0 �i 0
21 0 �i 0 0 0 0

kA þ 3kM ¼ 3kL 133 13 0 0 0 0 0 �i
31 0 0 �i 0 0 0

U�1ððA1 þ A�
1Þ �M1ÞU ¼ L1 0

0 L2

� �

www.pss-b.com � 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



the scattering of an electron from the L valley into the M
valley, the KP L�M must be decomposed into irrps of
phonons. For this purpose, we use the comprehensive tables
for KPs of the 230 space groups by Crackenell et al. [15]
(CDML). The CGCs are the elements of a unitary matrix that
reduces the direct KP of two reducible or irrps onto a sum of
blocks of irrps contained in the productDf�kgl � Df�k0gl0 with

U�1Df�kgl � Df�k0gl0U ¼
X

l00
cll0;l00D

f�k00gl00; (1)

where all quantities have their usual meaning [7]. The KP
reflects different kinds of interactions like electron–hole,
electron–phonon, phonon–phonon, etc. which are normally
treated as perturbation of an unperturbed Hamiltonian. In
other words, the CGCs matrix diagonalizes the perturbation
terms. Selected CGCs for ZnO are listed in Tables 1–5. For
detailed calculations of CGCs in other space groups, please
refer to the Berenson–Birman–Kunert method [7, 10, 11].

4 Scattering processes in ZnO Despite the fact that
ZnO is a direct band gap semiconductor, inter- and intra-
valley scattering processes are possible. Carriers in semi-
conductors are scattered by their interaction with many
different defects, like stacking faults, dislocations, surfaces,

interfaces, and impurities. Very common impurities with
high concentrations in ZnO are, e.g., the group III donors Al,
Ga, and In in the neutral (I6, I8, I9) and ionized charge state
(I0, I1, I2/3) [16, 17]. Raman scattering in resonance with
excitonic states results in a strong increase of the Raman
cross-section due to the exciton–phonon interaction in ZnO
[18]. In terms of electrical transport, the Boltzmann kinetic
equation includes the effects on the distribution function f(k)
due to the applied field, diffusion of carriers, and scattering
by phonons and impurities [19, 20]. The scattering processes
are determined by appropriate matrix elements of the
relevant Hamiltonian. These matrix elements, in turn,
depend on the symmetry and obey certain selection rules.
From the band structure of ZnO [13], we can easily derive the
symmetries of the valence bands and conduction bands at
the high symmetry points M, L, and A. Here, we determine
the CGCs for the intra- and inter-valley scattering processes
involving the emission of phonons in ZnO. These CGCs are
listed in Tables 1–4. For an excitation energyE > 3:8 eV, the
creation of excitons at the high symmetry point A is possible.
The symmetries for these excitons are listed in Table 5.

5 Tables of coefficient matrices Following the
general introduction about scattering processes in ZnO, we
now provide detailed tables of CGCs for various scattering
processes. For scattering processes between different valleys
of the conduction band, the following KPs are required:
L�M,L� G ,L� A,M � G ,M � A, andG � A. In Table 1,
we list the CGCs for electron scattering between the L1 and
M1 valleys resulting in large phonon momenta of A1, A5, L1,
and L2 symmetries (L1 �M1 ¼ A1 � A5 � L1 � L2).

Table 2 displays the CGCs for linear combinations of
wave functions of phonons with large momenta �hkL1

and
�hkL2

which originate from the scattering of electrons
occupying the conduction band minima of A1 and M1

symmetry (ðA1 � A�
1Þ �M1 ¼ ½L1 � L2�).

Tables 3 and 4 consist of CGCs for scattering processes
of electrons occupying three different sub-valleys with
momenta �hkM , 2�hkM , and 3�hkM which belong to one
minimum of the CB valley M1. The scattering processes
resulting in low momentum (�hkG � 0) of G1 and G5 phonons
are shown in Table 3 ðM1 �M1 ¼ ½G 1 � G 5�Þ. The CGCs
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Table 3 Clebsch–Gordan coefficient matrix M1 �M1 ¼ ½G 1�
G 5�, b ¼ 1=

ffiffiffi
3

p
;w ¼ �1=2 þ i

ffiffiffi
3

p
=2.

block G1 G5

WVSRs ss0s00 aa0 a00 ¼ 1 1 2

kM þ kM ¼ kG 111 11 b b b
ffiffiffiffiffiffi
w�

p

2kM þ 2kM ¼ kG 221 12 b bw bw� ffiffiffiffiffiffi
w�

p

3kM þ 3kM ¼ kG 331 13 b bw�
bw

ffiffiffiffiffiffi
w�

p

U�1ðM1 �M1ÞU ¼ G 1 0

0 G 5

� �

U ¼ b
1 1

ffiffiffiffiffiffi
w�

p

1 w w� ffiffiffiffiffiffi
w�

p

1 w� w
ffiffiffiffiffiffi
w�

p

0

@

1

A

Table 5 Clebsch–Gordan coefficient matrix for exciton wave
functions originating from high symmetry point A,
ACB

7 � AVB
9 ¼ ½G 5 � G 6�.

block G5 G6

WVSRs ss0s00 aa0 a00 ¼ 1 2 1 2

kA þ kA ¼ kG 111 11 0 �i 0 0
12 0 0 �i 0
21 0 0 0 �i
22 �i 0 0 0

U�1ððA7ÞCB � ðA9ÞVBÞU ¼ G 5 0

0 G 6

� �

Table 4 Clebsch–Gordan coefficient matrix M1 �M1 ¼ ½M4�,
c ¼ 1=

ffiffiffi
2

p
, w ¼ �1=2 þ i

ffiffiffi
3

p
=2.

block M4

WVSRs ss0s00 aa0 a00 ¼ 1 2 3

kM þ 2kM ¼ 3kM 111 11 c 0 0
kM þ 3kM ¼ 2kM 123 12 0 w 0
2kM þ kM ¼ 3kM 231 13 0 0 w�

2kM þ 3kM ¼ kM 222 21 �c 0 0
3kM þ kM ¼ 2kM 333 22 0 w� 0
3kM þ 2kM ¼ kM 312 23 0 0 w

U�1ðM1 �M1ÞU ¼ ½M4�

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com



for M4 phonons with large momentum are listed in Table 4
ðM1 �M1 ¼ ½M4�Þ.

In Table 5, we display an example of the symmetries and
CGCs of possible excitons at the A point for
ðA7ÞCB � ðA9ÞVB. The conceivable excitons ofA symmetries
have low momentum and the same symmetries as the G
excitons. It should be noted that the valence band symmetry
at the A point in Table 5 describes a hole state from the B
valence band as has be proven in a recent magneto-
optical study of the valence band ordering in ZnO by
Wagner et al. [21].

6 Discussion The CGCs provided in this work have
several important applications. Principally, they are defined
as coefficients between basis functions of the irrps contained
in the KP and the basis functions of the product of two irrps
[7, 11]

C
k00s00 l

00g
a00 ¼

X

sa

X

s0a0

k l k0 l0 j k00 l00 g
s a s0 a0 j s00 a00

� �

Fks l
a Fk0s l0

a0 ;

(2)

where

k l k0 l0 j k00 l00 g

s a s0 a0 j s00 a00

� �

¼ Usls0l0;s00l00g
aa0;a00 (3)

are the matrix elements of the CGCs. The symbols a, a0, and
a00 indicate the matrix elements of the KP l� l0 and the
representation contained in the KP (l00). These symbols a, a0,
and a00 enumerate also the basis wave functions of the irrps l,
l0, and l00, respectively (see Eq. (4)). The k, k0 and k00 stand for
wave vectors (momenta �hk) of quasi particles involved in
scattering processes such as electrons and phonons. The U
matrix (CGC matrix) has two important physical meanings.
On the one hand, it yields suitable linear combinations of the
appropriate symmetry allowed basis functions of irrps (l00)
contained in the KP in terms of product wave functions of
l� l0 (see Eqs. (2) and (3)). On the other hand, the U matrix
diagonalizes any KP of two irrps (l� l0) and brings the irrps
l00 to the matrix diagonal block form (see Eq. (1) and the
equations below the Tables 1–5).

For example, using our coefficients listed in Table 3, the
appropriate symmetries of the G5 wave functions contained
in M1 �M1 can be determined to:

cG 5

11 ¼ 1
ffiffiffi
3

p ckMM1

11 þ wc2kMM1

22 þ w�c3kMM1

33

n o
;

cG 5

22 ¼ 1
ffiffiffi
3

p
ffiffiffiffiffiffi
w�

p
ckMM1

11 þ w�c2kMM1

22 þ w�c3kMM1

33

n o
:

(4)

Next, the CGCs can also be used in the determination
of the scattering tensors P. When expanded in powers of

kQ, we have [20]:

Pab ¼ P0
ab þ

X

mn

Pjn
abk

j � QðmnÞ þ � � � (5)

and in terms of CGCs they are

Pjn
ab ¼

X

mn

cðmnmÞUl�l0

nj;mnP
ð1Þ
ab ðmnÞ; (6)

where P is the first order scattering tensor, and U is the
matrix of the CGCs. The quantities in the above equations
have their usual meanings [20]. The CGCs can also be used
in the description of morphic effects [12], higher infrared
order moment expansion, diagonalization of phonon
dynamical matrices, as well as in the description of Gunn
effect (inter-valley electron–phonon interaction) (see Ref.
[1] and references therein). The coefficients can essentially
be utilized in the construction of the effective Luttinger–
Bir–Picus Hamiltonian matrix elements [9]:

HðKÞ ¼
X

k

akdk;jj�
X

l

X
ðkÞ
l K

ðkÞ�
l ; (7)

where a is the constant and Kl is Hermitian. The Xl span the
l-dimensional linear vector space consisting of independent
matrices. Birman et al. [9] have shown that the matrices are
exactly the CGCs and therefore each element of an effective
Hamiltonian matrix is a sum of symmetry adapted
components of invariants times a CGC with the reduced
matrix given by means of the Wigner–Eckart theorem:

HabðKÞ ¼
X

k

ak
X

l

ðU�1Þj
�jk
ablK

ðkÞ�
l : (8)

Using the CGCs and invariants, Birman et al. [9]
constructed the effective Hamiltonian matrix for Diamond
(O7

h) with the k � p expansion method to the second order
degree in k of the twofold degenerate G12þ state. With the
here provided CGCs, a similar approach can be applied to
construct the effective Hamiltonians for ZnO.

7 Conclusion In summary, we have studied the
scattering tensors in ZnO by means of CGCs. Starting from
existing band structure calculations, the CGCs were derived
from selection rules for inter- and intra-valley scattering
processes. For scattering processes in the same valley, both
cases of low and large momentum of the quasi-particles were
considered. In addition, the symmetries and CGCs of
excitons at the high symmetry point A were determined.
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Scattering matrix for two phonon processes at k = 0 in
Si and Ge of O7

h symmetry is given.
Also diagonalization of spin-orbit interaction Hamilto-
nian has been computed by means of Clebsh-Gordan co-
efficients.

1 Introduction The Raman active modes (RAM’s)
with k = 0 in two-phonon processes are determined
by irreducible representations (irreps) contained in sym-
metrized Kronecker product (SKP) of single valued (SV)
vector representation (VR). For Si and Ge the VR is Γ4−
[1] with the basis xf(r), yf(r) and z(fr) and we have
[Γ4− ⊗ Γ4−]. The irreps contained in the SKP determine
the RAM’s symmetry allowed. The Clebsch-Gordan coef-
ficients (CGC’s) matrix which diagonalizes the Kronecker
product (KP), yields correct linear combinations of al-
lowed phonon basis wave functions.
The spin-orbit (SO) interaction represented by KP, Γ4− ⊗
D 1

2
, involves double valued (DV) spinor irreps. Here we

diagonalize the SO matrix by means of suitable CGC’s
matrix.

2 The simplified coupling coefficients theory
The KP of two irreps l and l′ is equivalent to the sum of l′′
irreps contained in the product

Dl ⊗Dl′ ∼=
∑

R

(ll′ | l′′)Dl′′ (1)

and the basis of l′′ are of the form :

ψl
′′
α =

∑
U ll′
αβψ

l
αψ

l′
β (2)

The matrix elements of U are determined by

U ll′,l′′

aa′,a′′U
ll′,l′′∗
āā′ā′′ = (3)

l′′

g

∑

R

Dl(R)aāD
l′(R)a′ā′D

l′′∗(R)a′′ā′′

and putting a = ā = a0, a
′ = ā′ = ā′0, a

′′ = ā′′ = ā′′0

we calculate non-zero coefficients ofUa0,a′0a′′0 .U
∗
a0,a′0a

′′
0
=

|Ua0,a′0a′′0 |2.

Then all other matrix elements of Ua0a′0a′′0 are obtained
from

Ua0a′0a′′0 = (4)
1

U∗a0a′0a′′0
.
l′′

g

∑

R

Dl(R)aa0D
l′(R)a′a′0D

l′′∗(R)a′′a′′0

3 Diagonalization of SKP for Raman active
modes In this section we want to diagonalize the KP
[Γ4− ⊗ Γ4−] ∼= Γ1+ + Γ3+ + Γ5+.
The CGC’s U matrix brings the above KP to the block
diagonal form:
U−1[Γ4− ⊗ Γ4−]U = Γ1+ ⊕ Γ3+ ⊕ Γ5+.

For SKP of identical irreps, l = l′ = Γ4− we reformu-
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late the standard Eq. (3) in the following manner:

U
Γ4−Γ4−,l

′′

aa′,a′′ U
Γ4−Γ4−,l

′′∗
āā′ā′′ = (5)

dim(l′′)
2g

∑

R

[(Γ4−)aa′(Γ4−)āā′+

+ (Γ4−)āa′(Γ4−)aā′ ] .Γ
l′′∗
a′′ā′′

where the irreps l′′ are Γ1+, Γ2+, Γ5+.

The diagonal elements of SKP [Γ4− ⊗ Γ4− ]
s
aā,a′ā′ are

obtained using the index relation: aā, a′ā′ −→ (aa′āā′ +
āa′aā′) and
U−1
s [Γ4− ⊗ Γ4− ]2Us = Γ1+ ⊕ Γ3+ ⊕ Γ5+

For calculation of non-zero diagonal elements we have:
a = ā = a0, a

′ = ā′ = a′0, a
′′ = ā′′ = a′′0

Uaa′a′′U
∗
a0a′0a

′′ = (6)
dim(l′′)

2g

∑

R

[
(Γ4−(R))aā0 (Γ4−(R))a′ā′0+

+ (Γ4−(R))a′′ā′′0 (Γ4−(R))a′′ā′′0
]
.Γ l

′′∗
a′′ā′′0

(R)

Having the non-zero diagonal matrix elements, we calcu-
late the remaining matrix elements of U as follows.

Uaa′a′′ =
dim(l′′)

2g

1

U∗a0a′0a′′0

∑

R

[(Γ4−)aā0(Γ4−)a′ā0′ (7)

+ (Γ4−)a′′ā0′′(Γ4−)a′′ā0′′ ] .D
l′′∗
a′′ā0

′′

The obtained U matrix is:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

±b ±b ±b 0 0 0

0 0 0 0 0 ±a
0 0 0 ±a 0

0 0 0 0 0 ±a
±b ±w�b ±wb 0 0 0

0 0 0 ±a 0 0

0 0 0 0 ±a 0

0 0 0 ±a 0 0

±b ±wb ±w�b 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where: a = 1√
2
, b = 1√

3
, and w = − 1

2 + i
√
3
2 .

The matrix U diagonalizes the SKP

U−1 [Γ4− ⊗ Γ4−]U = Γ1+ ⊕ Γ3+ ⊕ Γ5+ (9)

The coefficients of the first column give an appropri-
ate combination of phonon Γ1+ wave function: ϕΓ1+

ph =

±bf(r)(x2 + y2 + z2). Similarly the ϕΓ3+

ph and ϕΓ5+

ph can
be constructed.

4 Diagonalization of spin-orbit interaction In this
section we give second example of diagonalization of SO
effective Hamiltonian frequently needed for band structure
calculation in semiconductor. Particularly the k̄.p̂ perturba-
tion method is very useful in the determination of E(k̄).
In the k̄.p̂ expansion to second degree in k̄ the inclusion
of SO interaction leads to 6 × 6 matrix: Γ4− ⊗D 1

2
where

D 1
2
(α, β, γ) for full rotational group O7

h space group op-
erators becomes Γ6+[1] and therefore again we deal with
KP; Γ4− ⊗ Γ6+ which decomposed takes a form Γ4− ⊗
Γ6+

∼= Γ8− ⊕ Γ6−. It means the top of three fold degener-
ate valence band of Γ4− in Si and Ge splits onto Γ8−(four
fold degenerate hole states) and Γ6−(two fold degenerate).
The energy distance between Γ8− and Γ6− is the energy
of SO interaction. The SO matrix elements can be straight
forward computed using general formula:

Hso =
h̄

4m2
0c

2
(∇U × p̂) σ̂ (10)

The σx, σy , σz are Pauli matrices. Choosing the basis:

ϕ1 = yzf(r)

(
1

0

)
, ϕ2 = zxf(r)

(
1

0

)

ϕ3 = xyf(r)

(
1

0

)
, ϕ4 = yzf(r)

(
0

1

)

ϕ5 = zxf(r)

(
0

1

)
, ϕ6 = xyf(r)

(
0

1

)

one obtains:

Hso = −
Δ

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 i 0 0 0 −1
−i 0 0 0 0 i

0 0 0 1 −i 0

0 0 1 0 −i 0

0 0 i i 0 0

−1 −i 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where Δ is the SO energy distance between P 3
2

and P 1
2

hole states. In the Kane’s Jms base [3] the matrix is diag-
onalized

H11 = H22 = H44 = H55 =
Δ

3
,

H33 = H66 =
−2Δ
3

where the new basis functions are given in terms of the old
ϕi (i = 1 - 6) by CGC’s matrix [3].

ϕj =

6∑

j=1

Ujiϕi (12)

The matrix U in Eq. (11) is the CGC’s matrix that must
be calculated by rigid group theoretical method using Eqs.
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(3), (4), (9) in our paper.
The SO Hamiltonian transforms according to the KP:
Γ4− ⊗ Γ6+ which contains the symmetry of heavy holes
Γ8− and the symmetry of light holes Γ6−.

U−1(Γ4− ⊗ Γ6+)U = Γ8− ⊕ Γ6− (13)

In order to perform calculations we have computed the 96
matrices of following irreps Γ4−, Γ6+, Γ8− and Γ6− using
augmenters from [1]. The resulting U matrix is:

U =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 i 0 0 0 −1
−i −1 0 0 0 i

0 0 −1 1 −i 0

0 0 1 −1 −i 0

0 0 i i −1 0

−1 −i 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

Clearly our group theoretical diagonalization method
by means of Eqs. (3), (4) is the most rigid and correct way.

5 Discussion Our diagonalization of SKP regarded
to two-phonon processes can be used in analysis of Ra-
man spectra [2]. From the Eqs. (5), (6) the correct linear
combinations of RAM’s wave functions follow. To our best
knowledge, it is the first time that SKP is used for comput-
ing symmetrized Raman scattering tensors.
Concerning SO matrix the energy parameter Δ can not
be calculated theoretically. It is measured by several ex-
perimental methods. Queisser and Panish were the first
who measuredΔ by photoluminescence (PL) spectroscopy
from heavily doped by Zn- holes in GaAs [4]. They ob-
served second PL band originating from transition between
the lowest conduction band and split-off light hole valence
band Γ6 in GaAs with T 2

d space group.
For Ge, Δ = 0.26 meV and Si, Δ = 0.044 meV have been
measured by Ghosh [5].

6 Conclusion We have used group theoretical method
for diagonalization of two-phonon using symmetrized Kro-
necker product. We also have diagonalized SO matrices.
Our method can be extended to three-phonon processes as
well as to other interactions like spin-spin, inter- and in-
travalley scattering. Our results are valid for all compounds
with O7

h symmetry.
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 1  Introduction  The scattering tensors (Sc.T’s) are 
of great interest to experimentalists. Historically many au-
thors have used polarized measurements to interpret and 
assign vibrational modes of Raman spectra and most re-
cently this technique have become powerful research tool 
in many areas due to availability of lasers [1-3]. The 
CGC’s can also be used to obtain the polarization SR’s for 
dipole and quadrupole resonant Raman and Brillouin scat-
tering, as well as in morphic effects.  They are useful in in-
terpretation of infrared absorption spectra in optical transi-
tions in higher order optical processes. They also play a 
major role in determination of effective Hamiltonians. Bir-
man showed [4] that the matrix elements of any Hamilto-
nian is prescribed as a sum of symmetry adapted compo-
nents of symmetrised base times CGC’s. The utility of 
CGC’s can also be extended to second order phase transi-
tion phenomena where the so-called active representations 
(AR’s) are needed. The antisymmetrized square and sym-
metrised cube of AR’s involve CGC’s. In this work we fo-
cus on intravalleys (Intra.V) and intervalleys (Inter.V) scat-
tering of quasiparticles by phonons in Si and Ge, those 
were discussed by Lax et al. [5] and Birman et al. [6]. 

 In order to establish the SR’s associated with scattering 
processes the Wave Vector Selection Rules (WVSR’s) 
have to be determined. The WVSR’s are a primary step in 
finding the appropriate scattering tensors. The El-Ph inter-
action in Si and Ge is represented by the KP of the follow-
ing irreps: 

2 1Ge: LΓ - ƒ , 2 1Γ Δ- ƒ , 1 1L Δƒ  

Si: 4 1LΓ - ƒ , 4 1Γ Δ- ƒ , 1 1L Δƒ . 

In general, the KP is reducible to the irreps of phonons 
* " "lD k , according to 

( )* * ' ' * " "
' "

l l l
ll lD D c j Dƒ @Âk k k . (1) 

The CGC’s matrix diagonalises the El-Ph perturbation de-
termined by the KP of irreps in a given Hamiltonian H, 
and following from Eq. (1): 

( )1 * * ' ' * " "
' "

l l l
ll lU D D U c j D- ƒ =È ˘Î ˚ Âk k k . (2) 

In Eq. (2), the matrices of irreps "l  have diagonal block 
form. For calculations of U matrices we use the Birman 

The selection rules (SR’s) for the Kronecker product (KP) of
Si and Ge irreducible representations (irreps) are required to
determine the intervalley scattering processes. The SR’s for
transitions between the lowest conduction band minima
at Γ , X  and L  high symmetry points and the highest maxi-
mum of the valence band (VB) in the Brillouin zone of 7

hO
space group symmetry are determined. The symmetry of pho-
nons due to electron-phonon (El-Ph) interaction follows from

 the KP’s: ( )1 12 2L Γ Γ -ƒ , ( )1 12 2Δ Γ Γ -ƒ , ( )1 1 1L L Δ+ ƒ  for
Ge and ( )1 15 4L -ƒ Γ Γ , ( )1 15 4Δ Γ Γ -ƒ , ( )1 1 1L L Δ+ ƒ  for Si.
The elements of El-Ph scattering tensors are linear combina-
tions of the Clebsch-Gordon coefficients (CGC’s). Here we
have computed the coupling coefficients relevant to scattering
tensors. Our theoretical results confirm the available experi-
mental data.    
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method [7] and the CDML reps labelling [8]. It is the aim 
of this paper to obtain the U matrices for several scattering 
processes in Si and Ge. 
 
 2 The wave vector selection rules  In this section 
we discuss the WVSR’s for Inter.V and Intra.V scattering 
processes. In Ge there are four equivalent minima at the L  
point which are obtained from the star of the first wave 

vector denoted by ( )1,1,1
aL
π

=k  of the little group LG k . 

The star Lk  is { } { }LzLyLxLL CCCE kkkkk 222
* ,,,=  

with ( )0,0,1C 2x −=
aL
πk , ( )0,1,0C 2y −=

aL
πk  and 

( )1,0,0C 2z −=
aL
πk , where the symmetry operators 

transforms the ( )1,1,1
aL
π

=k  into the remaining valleys. 

The WVSR for these scattering processes are listed in Ta-
bles 1 and 2 and the symmetry operators 
( )1E , ( )22xC , ( )32 yC , ( )42 zC  and ( )531

−C , ( )931
+C  are 

labelled in CDML notation [8]. 
 In Ge for Intra.V and Inter.V scattering processes 
within the four L-valleys and three X-valleys, the WVSR’s 
and the CGC’s are presented in Tables 1 and 2. 
 In Silicon the Inter.V scattering between the one Γ-
valley and six Δ-valleys are governed by SR’s listed in Ta-
ble 3 ( )ΔΓΔ =+ kkk  together with appropriate CGC’s 
for these scattering processes. Empty places in the tables 
mean zero matrix elements. 

Table 1 Clebsch-Gordan coeffiecients for scattering within val-

leys of the same symmetry type: 
2
1

=a . 
 

1 1 1 5                 L L Γ Γ+ + + +ƒ = ≈  
WVSR’s 1 1 2 3 

1 1L L Γ+ =k k k  a a a a 
2 2L L Γ+ =k k k  a -a a -a 
3 3L L Γ+ =k k k  a -a -a a 
4 4L L Γ+ =k k k  a a -a a 

 
 
Table 2 Clebsch-Gordan coefficients for scattering between dif-

ferent valleys of the same symmetry type: ib
2
2

=  

and
2
2

=c . 

[ ]1 1 2L L+ +ƒ  1X  
 1 2 3 4 5 6 

1 3L L X+ =k k k  c -b     
2 4L L X+ =k k k  c b     

1 2 5L L X+ =k k k    c b   
4 3 5L L X+ =k k k    c -b   
1 4 9L L X+ =k k k      c b 
2 3 9L L X+ =k k k      c b 

 

 
Table 3 Clebsch-Gordon coefficients for scattering processes between different valleys Γ  and Δ .  

4 1Γ Δ- ƒ =                       1Δ                      ≈                                            5Δ  
 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 

Γ Δ Δ+ =k k k  0      1 0           
 0      0 i           
 i      0 0           

2 2Γ Δ Δ+ =k k k   0       -1 0         
  0       0 i         
  -i       0 0         

3 3Γ Δ Δ+ =k k k    i        1 0       
   0        0 - i       
   0        0 0       

4 4Γ Δ Δ+ =k k k     - i         0 0     
    0         1 0     
    0         0 i     

5 5Γ Δ Δ+ =k k k      - i          0   0   
     0          -1   0   
     0          0 - i   

6 6Γ Δ Δ+ =k k k       i           0   0 
      0           -1   0 
      0           0 - i 
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Table 4 Generating matrices for induced representations. 
 

7
hO   4  2  9  26  37 

 0 0 0 1  0 1 0 0  1 0 0 0  0 -1 0 0  1 0 0 0 
 0 0 1 0  1 0 0 0  0 0 0 1  1 0 0 0  0 0 1 0 
 0 1 0 0  0 0 0 1  0 1 0 0  0 0 0 -1  0 1 0 0 

 
1L +  

 1 0 0 0  0 0 1 0  0 0 1 0  0 0 1 0  0 0 0 1 
 0 0 0 1  0 1 0 0  1 0 0 0  0 1 0 0  1 0 0 0 
 0 0 1 0  1 0 0 0  0 0 0 1  -1 0 0 0  0 0 1 0 
 0 1 0 0  0 0 1 1  0 1 0 0  0 0 0 1  0 1 0 0 

 
2L -  

 1 0 0 0  0 0 0 0  0 0 1 0  0 0 -1 0  0 0 0 1                           
Generators=2.2, 4.1, 9, 26.2 and 37 and generating relations.  4.1x4.1=1, 11.3x5=3.3, 2,2x5=6.2, 5x4.1=7.3, 5x2.2=8.1, 9x4.1=10.2, 
9x2.2=11.3, 4.1x9=12.1, 37x25=13, 2.2x13=14.2, 3.3x13=15.3, 4.1x13=16.1, 13x9=17, 2.2x17=19.2, 4.1x17=20.1, 13x5=21, 
2.2x21=22.2, 3.3x21=23.3, 4.1x21=24.1, 2.2x26.2=25, 3.3x25=27.3, 4.1x25=28.1, 6.2x25=30.2, 7.3x25=31.3, 8.1x25=32.1, 
10.2x25=34.2, 11.3x25=35.3, 12.1x25=36.1, 14.2x25=38.2, 15.3x25=39, 16.1x25=40.1, 17x25=41, 18.2x25=42.2, 19.3x25=43.3, 
20,1x25=44.1, 21x25=45, 21.4x25=45.4, 22.2x25=46.2, 23.3x25=25=47.3 and 24.1x25=48.1. 
 
 3 Scattering processes in Ge and Si  For scatter-
ing processes between different valleys belonging to the 
same star, the following symmetric KP’s have to be con-
sidered: 
 
• Ge: [ ]( )2'2Γ ; [ ]( )2'1L ; [ ]( )21Δ  

Si: [ ]( )215Γ ; [ ]( )21L ; [ ]( )21Δ  in Lax et al. [2] 

 

• Ge: 
[ ]( )22−Γ

; 
[ ]( )21+L

; 
[ ]( )21Δ  

Si: [ ]( )24Γ ; [ ]( )21+L ; [ ]( )21Δ  in CDML [5] 

 
For scattering between one valley 2Γ -  and four L-
valleys Lk , 2 Lk , 3 Lk  and 4 Lk , the phonon symmetry is 

−2L  (LA) and the CGC’s of U  are obtained from: 

( ) −+−
− =↑↑⊗Γ 212

1  LULU . (3) 

• The −↑ 2L  is the full induced 4×4-dimensional rep 
where U  is given by: 

0 0 0
0 0 0
0 0 0
0 0 0

i
i

U
i

i

±Ê ˆ
Á ˜±
Á ˜=

±Á ˜
Á ˜Ë ¯±

. (4) 

In order to prove the correctness of the U  matrix, we have 
computed the matrix U  by Sakata method [9], using: 

   ( ) ( )†'
r H

F D r AD r
Œ

= Â . (5) 

where all quantities have their usual meaning. In this me-
thod one uses the full induced reps. We have computed the 
generators of −2L  full induced phonon representation. It is 
clear that the generating matrices are not diagonal, and so 
the matrix U  diagonalizes the KP of Eq. (3) and the rep 

−↑ 2L  on the right-hand side has a block diagonal 4×4-
form. The matrix calculated by Sakata method is identical 
to our U  matrix. 
 
 4 Discussion  In Table 1, we list the WVSR’s for L-
Inter.V and the corresponding CGC’s. The scattering proc-
esses in all valleys are the same and the symmetry of the 
participating phonons is ( )0≈Γ k . 
 In Table 2 we present the WVSR and CGC’s for 
[ ] ...1211 ⊕=⊗ XLL  Inter.V scattering between four dif-
ferent L-valleys. It follows that the symmetry of phonons 
belongs to X-valley ( )XXX kkk 9,5, . We can estimate the 
energy lost by an electron in emitting an acoustic phonon. 
In our tables we list momentum conservation principles for 
scattering processes. The energy of these particles must al-
so be conserved. For Lkk =' , Lkk 3'=  and Lkk 9'= , we 
read: 

( )'L L Ph XE E E- =k k k ; ( )XLL kqkk =− 3  (6) 

where k , 'k  and q  runs through Lk , Lk2 , Lk3 , Lk4 , 
Xk , Xk5  and Xk9 . An electron with initial energy kE  

and wave vector k  is scattered to another energy state 
with k'E  and wave vector 'k . Assuming that we deal with 
parabolic bands and where the effective mass is given, for 
example, ( )*

01.6em m
^
=  in Ge [10]. Obviously our q  lies 

between minimum and Xk5 . For the backscattering we 
have:  

( )2
' max 2 2
L L s s sE E h k mν ν υ- = = -k k q ,     (7) 

where sms
610≅υ  is the phonon velocity. 

 For 16 cm104 −×≈Lk , 16 cm102.4' −×≈Lk , 
( ) meV 472 *2 ≈= emE

L
kk  and 16 cm102.8 −−×≈qk  

we obtain meV 8 . In emitting a phonon with the same 
vector ( )XXX kkk 9,5, , the electron reverses its direction 
and energy changes by %10  [10]. 
 
 5 Conclusion  In this work, we focused on utilisation 
of group theory with regard to matrix elements of scatter-
ing tensors which are a linear combination of Clebsch-
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Gordon coefficients. The required phonon symmetries are 
determined by irreps contained in KP. We have calculated 
the U matrix for the LA phonon which diagonalizes the in-
tervalley scattering between the Г2- valley and the four L-
valleys of the same star symmetry. We also have estimated 
an electron energy loss to X-valley acoustic phonon emis-
sion due to L-valleys electron scattering in a quasi-elastic 
process in agreement with available experimental data.  
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At sufficiently high pressures, wurtzite structure zinc oxide (W-
ZnO) can be transformed to the cubic rocksalt (R-ZnO)
structure. The R-ZnO exhibits semiconductor behavior with an
indirect wide band gap of Eg ¼ 5:5 eV. The maximum valence
band is found far away from the center of the Brillouin zone
(BZ) at high symmetry point L and line S, depending on the

pressure. The unusual electronic band structure (EBS) of the R-
ZnO leads to several direct and indirect optical transitions
which find applications in ultraviolet optoelectronic devices.
We have investigated radiative and non-radiative symmetry
restricted selection rules, as well as inter- and intra-valley
scattering processes.
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1 Introduction The R-ZnO structure (R-O5
h, Fm3n

space group) has recently attracted much attention due to an
unconventional EBS that can be used in mechanical and
optoelectronic applications [1–4]. Jaffe et al. [5] calculated
the EBS of R-ZnO by the all-electron local-orbits Hartree–
Fock method along some major symmetry lines and points,
shown in Fig. 1a. Some symmetry assignments are contrary
to that commonly accepted, for example, the band structure of
R-ZnO in [5], which is presented in Fig. 1b, where one of the
VB maximum has W1 symmetry instead of W5 symmetry,
and theK point seems to be incorrectly assigned. Reference to
group theoretical assignments has not yet been provided.

Segura et al. [6] reported on pressure dependence of the
optical absorption edge in R-ZnO up to 20GPa measured at
room temperature. The low-energy tail of the absorption has
been assigned to an indirect transition. Figure 2 shows the
EBS of R-ZnO along some high symmetry directions of the
BZ at several pressures. The minimum of the lowest
conduction band (CB) remains at the center of the BZ
(point G), while the highest maximum of the valence band
(VB) occurs on the S-line and at the L point. No group
theoretical assignments of electron and hole states have been
discussed, and therefore no optical selection rules (OPSRs)
have been considered. Based on pressure absorption
dependence, the optical absorption leads to indirect
transitions: L–G, S–G as well as direct transitions at X, L,
and high symmetry points have been assigned by us using a

group theoretical approach. In this paper, we provide rigidly
calculated OPSRs for all transitions, as well as selection rules
for possible inter- and intra-valley scattering processes.

In Section 2 of this paper, we discuss assignments of
electrons and holes in CBs and VBs needed for determina-
tion of OPSRs. In Section 3, we deal with the general
quantum mechanical rules needed for matrix element
transitions. In Section 4, we discuss the wave vector
selections rules (WVSRs) which follow from the momentum
conservation principle. The direct radiative transition
selection rules (DrTrSRs) and the symmetry of excitons
are discussed in Section 5. The indirect transitions (InDrTrs)
involving vibrational modes are considered in Section 6. In
the last section we discuss our results and predictions
regarding the splitting of L excitons.

2 Symmetry assignments of electron and hole
states in the conduction and valence bands in
R-ZnO The states of electrons and holes in a crystal are
characterized by the wave vector k and the irreducible
representations (irrps) of a space group G(k). When the spin
of a particle or quai-particle is disregarded, the states are
classified according to the so-called single-valued irrps
(SVirrps). The inclusion of spin leads to double-valued irrps
(DVirrps) known as spinors. The EBS can be determined by
several experimental techniques such as absorption, Raman,
photoluminescence and reflectivity spectroscopies.
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Segura et al. [6] did not take into account SRs for their
high symmetry points, so based on group theoretical
techniques, we have determined the major high symmetry
line and points of the respective BZ according to the irrps
of O5

h space group using Cracknell, Davies, Miller and
Love Tables (CDML) labeling [7]. In Table 1, we list the
respective states of electron and holes in terms of CDML
labeling of irrps in CBs and VBs. In Table 2, we show a
correspondence of irrps labeling between Bouckaert,
Smoluchowski and Wigner (BSW) [8] Jaffet and Koster
(JK) [9], and CDML tables.

3 Selection rules We first recall the basic theorems
on SRs [9]. The study of an absorption or scattering cross
section for a process involving the absorption or scattering of
particles or quasi-particles with wave vector k in a crystal
involves the calculation of transition probabilities, which in
turn involves the calculation of quantum mechanical matrix
elements. The matrix elements of a perturbation f between an

initial and final state are of the form Vmn
pq ¼ cm

q fj jcn
p

D E
,

where cm
q and cn

p are the wave functions (with respective
basis functions for irrps Dm and Dn) of the particle or quai-
particles involved in the absorption or scattering processes.

Acting by symmetry operators of a given space group on
the matrix elements (wave functions and perturbation
operator f , we obtain the Kronecker product (KP) between
three irrps Dm�Df�Dn. When the KP contains the unit
representation, normally denoted as G1, G1þ or A1, the
transition between states due to perturbation f is allowed,
otherwise it is forbidden. The square of any irrps always
contains the identity representation. Therefore, it suffices to
consider only single KPs between two irrps and check
whether the third representation is in the decomposition. All

Table 1 Symmetry assignment of high symmetry points in cubic
R-ZnO.a

single-valued representations–spin excluded
conduction bands L1þ G1þ (lowest) X1þ
valence bands L3� (highest) G4� X5�

double-valued representations–spin included
conduction bands L6þ G6þ X6þ
valence bandsb L4�, L5�, L6� G8�, G6� X7�, X6�

aThe assignment is in terms of CDML irreducible representations. The
double-valued representations have been obtained by multiplication of the
single-valued representations by two-dimensional representations (spinor
representation D(1/2) CDML [7], p. 9);
bDue to possible spin–orbit interactions, the valence band L3� (two-
dimensional, small representation)�D(1/2) splits onto L4� (one-dimension-
al), L5� (one-dimensional) and L6� (two-dimensional) representations.
Similar effects happen for G6þ and X6þ representations.Figure 1 (a) Correlation-corrected Hartree–Fock band structure of

ZnO in the rocksalt structure and (b) correlation-corrected Hartree–
Fock band structure of ZnO in the rocksalt structure for some
additional directions in reciprocal space. Diagrams adopted from
Ref. [5].

Figure 2 Electronic band structure of rocksalt ZnO along high-
symmetry directions of the BZ at several pressures, as calculated
through ab initio DFT-LDA pseudopotential method. Diagram
adopted from Ref. [6].

Table 2 Labels of irreducible representations for the point G for
O5

h–Fm3n space group of R-ZnO.a

JK [8] BSW [9] CDML [7]

G1þ G1 G1þ
G2þ G2 G2þ
G3þ G12 G3þ
G4þ G150 G4þ
G5þ G250 G5þ
G1� G10 G1�
G2� G20 G2�
G3� G12þ G3�
G4� G15þ G4�
G5� G25 G5�

aFor more details, see Ref. [10], p. 533.
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possible KPs for 230 space groups have been tabulated in
CDML.

4 Momentum conservation principles: Wave
vector selection rules An electron in a state k can be
scattered into another state k0 due to an interaction with a
phonon at the k00 state. The momentum conservation kþ k0 ¼
k00 determines the WVSRs. The WVSRs originate from
appropriate combinations of arms of stars �k, �k0 and �k00[11].
For face-centered cubic crystals with tetragonal and cubic
symmetries (T2

d , O5
h, and others), the WVSRs have been

tabulated in Table 2. In R-ZnO, there are three pronounced
valleys at G, L, and X points. The star of the L valley is
�kðLÞ : kL, 2kL, 3kL, and 4kL, and the star of the X valley is
kX, 5kX, and 9kX. At the G point, we have only one wave
vector k ¼ 0. The numbers 1, 2, 3, 4, 5, and 9 denote the
symmetry operators ofO5

h group [7]. The first minima at each of
these points are characterized by the first wave vectors k ¼ 0,
kL, and kX in the fundamental domain of the BZ. It means that
we deal with four non-equivalent L valleys, three X and one G
valley. The inter- and intra-valley scattering processes are
subjected to WVSRs and are discussed in Section 6.

5 Direct radiative transition selection rules in
R-ZnO

5.1 Point G At point G, the momentum of the electron
and hole are very small (almost zero). The respective KP of a
radiative transition from the minimum CB of G1þ symmetry
(spin of electron and hole excluded) to the maximum of the
VB of G4� symmetry (Table 1) due to the laser beam with
electric fieldE ¼ E0 expðkr� vtÞ; ðEx;Ey;EzÞwhich trans-
forms like an ordinary vector x; y; z. Therefore, according to
G4� representation (VR) is of the form: fðG1þÞ � ðG4�Þ�
ðG4�Þg. The KP contains the identity representation and
therefore the direct transitions at G are in accordance with
absorption measurements [6].

5.2 Points L and X The appropriate WVSR for direct
transitions between the minimum of the L’s CB of L1þ
symmetry and the maximum of VB of L3� symmetry is
kLþ kL ¼ kG in channel G and kLþ 3kL ¼ kX,
kLþ 2kL ¼ 5kX, and kLþ 4kL ¼ 9kX in the X channel.
The SR is fL1þðCBÞ � L3�ðVBÞ � G4�g ¼ ðG3� þ G4� þ
G5�Þ � ðG4�Þ in the G channel and ðX1� þ X2� þ X3� þ
X4� þ 2X5�Þ in the X channel. Clearly the KP contains
the identity representation G1þ. Consequently, the direct
transitions at the L point are allowed in accordance with
experimental data [6].

For point X, we have kX þ kX ¼ kG in the G channel
and kX þ 5kX ¼ 9kX for the X channel, respectively. The
respective KP is of the form fðX1þÞ � ðX5�Þ � ðG4�Þg ¼
ðG1� þ G5�Þ � G4�, in the G channel and for the X channel
ðX3� þ X4�X5�Þ � G4�. Again the transitions are allowed,
as confirmed by Segura et al. [6].

5.3 S line Inspecting Fig. 2 [6], we note that the
transition fromS-VB toS-CB needs a very high energy laser

beam. Therefore, we will not consider this transition.
Nevertheless, the indirect transitionS–G is of interest and we
will discuss them here.

5.4 Spin inclusion and excitons in R-ZnO The
EBS have been studied by several authors [5, 6]. They have
not taken spin of electrons and holes into consideration. The
hexagonal W-ZnO, from which the R-ZnO has been made,
experiences strong magnetic properties evidenced by
pronounced spin–orbit (S–O) interaction values. The strong
magnetic properties and crystalline field split the VB into
three sub-bands which contribute to the three A, B, and C
excitons, and are seen by reflectance, photoluminescence
and absorption techniques.

We believe that R-ZnO will also exhibit some magnetic
properties that require an inclusion of spin. To our best
knowledge, there are no magnetic experimental data on R-
ZnO available. Nevertheless, we include the spin to our
considerations in OPSRs in an attempt to predict some new
features. When spin is included, the states of particles or
quasi-particles are classified according to DVirrps. We have
calculated the double-valued representation D(1/2) [11],
reduced to the symmetry operations ofO5

h group for points G,
L, and X using Eq. (9.65) and Table 3.1 in Ref. [7]. With
the help of the D(1/2) representation, we were able to
determine the spinor representations for the R-ZnO at high
symmetry points. The inclusion of electron spin in CBs
results in the classification of states in terms of the spinor
representations: G6þ ¼ G1þ � Dð1=2Þ, L6þ ¼ L1þ � Dð1=2Þ
and X6þ ¼ X1þ � Dð1=2Þ. All the representations are now
doubly degenerate.

The holes in the VBs after an inclusion of spin are
classified according to the following DVirrps: G8� and G6�
contained in G4� � Dð1=2Þ; L4�, L5�, and L6� contained in
the KP: L3� � Dð1=2Þ and X6þ in X1þ � Dð1=2Þ ¼ X6þ. It
means that the state L3� of the holes at the highest VB
maximum at L point splits into three VBs (when spin is
included) of L4�, L5�, and L6� symmetries each of them two-
fold degenerated. Similarly, holes at the G split onto fourfold
degenerate (G8�) heavy and two-fold degenerate (G6�) light
holes like states of holes in Si and Ge and GaAs.

Consequently, several direct and indirect excitons are
expected to be observed experimentally. For direct L
excitons we have three types of them as: L6þ � L4� (let’s call
them L1 excitons), L6þ � L5� (L2 excitons) and L6þ � L6þ
(L3 excitons). This is in analogy to W-ZnO’s A, B, and C, G
excitons [11]. We believe that the magneto-photolumines-
cence, reflectance and absorption will confirm our pre-
dictions. The R-ZnO structure (R-O5

h, Fm3n space group) has
recently attracted much attention due to an unconventional
EBS that can be used in mechanical and optoelectronic
applications

6 Indirect electronic transitions and inter and
intra-valley scattering processes in R-ZnO

6.1 Electronic indirect transitions in R-ZnO The
vertical direct radiative transitions preserve the k vector and
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InDrTrs involve participation of phonons. We must
distinguish between the two kinds of InDrTrs; those with
inclusion of electron and hole spin dependent on the
magnitude of S–O interactions and those without. When
S–O, spin–spin (S–S), or spin–lattice (S–L) interactions
are neglible, we deal with SVirrps which are the
classification of electron and hole states. In such cases of
the InDrTrs in R-ZnO, an electron in the CB can drop
radiatively from L1þ to L3� and then be scattered in the VB
by a phonon from L3� to the G4� VB. In the process, the
radiative transition from L1þ to L3� is allowed as discussed
in Section 5. The scattering processes in the VB requires KP:
L4� � G4� ¼ L1þ þ L2þ þ 2L3þ. The decomposition of the
KP clearly indicates the symmetry allowed phonons: L1þ (no
phonon), L2þ (longitudinal acoustic LA phonon), and L3þ
(transverse acoustic TA phonon). In the second scattering
process, an electron can be scattered from the L1þ to the G1þ
CB, described by KP L1þ � G1þ ¼ L1þ (longitudinal optical
LO phonon) and then drop radiatively from G1þ to G4�,
which is allowed.

6.2 Inter- and intra-valley scattering processes
in R-ZnO Regarding the theory of inter-valley scattering
(InterVSc) and intra-valley scattering (IntraVSc) processes,
we refer to the work by Lax–Hopfield (LH), and Birman–
Lax–Loudon (BLL) [12, 13]. More about the IntraVSc by
acoustic and optical phonons and InterVSc in GaAs, Si, and
Ge [14]. Recently, Kunert et al. [15] considered the
scattering processes in hexagonal W-ZnO.

In this section, we determine the allowed symmetries of
vibrational modes of an electron scattered from one valley to
another. There are three different scattering processes
involved. In R-ZnO [5, 6], the electronic bands resolve
valleys at G, ðG1þÞ, KðK1Þ, VðV1Þ, and possibly LðL1þÞ
points. Point X consists of three non-equivalent valleys with
electrons at kX, 5kX, and 9kX states, while at point Lwe deal
with four non-equivalent valleys with electrons of kL, 2kL,
3kL, and 4kLmomentum. The IntraVSc means scattering of
electrons within three valleys at X point or within four
valleys at the L point, while InterVSc refers to scattering
processes between three X valleys and four L valleys. Theses
scattering processes involve KPs between SVirrps (no-spin).
Here we consider the following KPs for InterVSc: G� X,
G� L, G� V and for IntraVSc: G� X, X � X, and L� L.

For InterVSc we have: G1þ � X1þ ¼ X1þ (LO and LA
phonons dependent on masses of ions), G1þ � L1þ ¼ L1þ
(LO and LA phonons), and G1þ � V1 ¼ V1 (unknown). Our
predictions of phonon symmetries participating in scattering
processes is based on group theoretical connectivity
relations. To the best of our knowledge, there are no
experimental data on phonon dispersion curves and phonon
density of states in R-ZnO.

In an IntraVSc process, which means scattering within or
between valleys belonging to the same star, two kinds of
phonons are involved, phonons with large momentum like
hkL, hkW , or hkX and with very low momentum hk ¼ 0.
The IntraVSc requires a special symmetric KP [11], and for

R-ZnO, take the form ½G1þ � G1þ�2 ¼ G1þ, ½X1þ�
X1þ�2 ¼ G1þ þ G3þ, and ½L1þ � L1þ�2 ¼ G1þ þ G5þ for
low momentum of G phonons and ½X1þ � X1þ�2 ¼ X1þ
and ½L1þ � L1þ�2 ¼ X1þ þ X4þ for large phonon momen-
tum. Consequently, phonons involved in IntraVSc in R-ZnO
are of symmetries: G1þ (TA and LA), G3þ, G5þ (TO and LO),
and X4þ (TO).

7 Discussion We have derived optical selection rules
based on the assignments of electronic bands listed in
Table 1. We believe that electron states in CBs with no spin
(G1þ, L1þ, and X1þ) and with spin (G6þ, L6þ, and X6þ) are
properly assigned. Experimentally, it has been shown that
the VB maxima in R-ZnO are at L point and S line, but not at
the center of the BZ (G point). In many compounds, the
highest VB maximum is at the G point and holes states
ðpx; py; pzÞwhich transform as the VR. Since the center of the
BZ is of the highest symmetry, we assigned it as G4� ¼ VR
(no spin). The highest VB maximum has been assigned by
L3� two-dimensional representations according to which
holes ðpx; pyÞ supposed to transform. Our OPSRs are based
mainly on theoretical derivations and are in agreement with
absorption data. There is a lack of experimental data on
R-ZnO, such as Raman, photoluminescence, and reflectance
spectra. There is also no phonon dispersion relation and
density of phonon states measured by X-ray and neutron
scattering techniques. The forthcoming experimental work
will verify our selection rules.

8 Conclusions An attempt has been made on assign-
ments of the EBS of R-ZnO. Some optical selection rules
related to direct and indirect transitions were discussed.
Splitting of the maximum VB at point L due to possible S–O
interaction onto three sub-bands of L4�, L5�, and L6�
symmetries, may result in the three observed exciton bands.
We hope that magneto-photoluminescence and reflectivity
will prove our predictions. It is well known that in the W-
ZnO at point G, three excitons A, B, and C contribute to the
optoelectronic devices application. It would mean that by
pressure, one can “shift” the A, B, and C parabolic excitons
in W-ZnO to the L1ðL4�Þ, L2ðL5�Þ, L3ðL6�Þ, and non-
parabolic ones in R-ZnO.
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