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Summary

Three-body hypernuclear Λnn and ΛΛn systems are studied within the hy-

perspherical approach framework with local two-body S-wave potentials de-

scribing the nn, Λn and ΛΛ interactions using the Jost functions method.

The bound states for these three-body systems Λnn and ΛΛn were sought as

zeros of the corresponding three-body Jost function on the complex energy

plane. Hypercentral potentials for corresponding systems are constructed

from the known two-body potentials.

Recent experiments indicated the possibility of a weakly bound state of

the two-body system Λn. Taking this into account, we adjusted the Λn-

potential and looked at the corresponding changes in the spectra of the

three-body systems Λnn and ΛΛn. It was found that with the adjusted

Λn-potential, a weakly bound state Λnn and ΛΛn is possible.
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Chapter 1

Introduction

Marian Dansyz and Jerzy Pniewski in 1952 used the nuclear emulsion tech-

nique to see two stars connected by thick track and that led them to the

conclusion that the experimental evidence depicted a hypernucleus, in par-

ticular a nucleus consisting of a Λ-hyperon and nucleons. Many hypernuclei

were discovered up until 1955 [1][2]. The first double hypernucleus was dis-

covered using a nuclear emulsion irradiated by a beam of kaons (K−-mesons)

in Warsaw in 1962 and second at Brookhaven National Laboratory in 1966.

The next double hypernucleus was discovered at Tokyo 1991 by performing

experiment with K−-beams at the KEK Proton Synchorotron [3][4].

There is no direct experimental way to study the hyperon-nucleon

(Y N) and hyperon-hyperon(Y Y ) interactions (Y=Λ,Σ,Ξ,Ω). Hypernuclei

are produced when hyperons are captured by nuclei, which can live long

enough compared to nuclear reactions times. Therefore the information

about hyperon-nucleon (Y −N) interaction has been found from the analysis

of hypernuclei and its scattering data is limited. The scattering data for

hyperon(Y )-hyperon(Y ) interaction is non-existing.

1
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Double and multi strange nuclei more suitable for giving more interest-

ing information about the hyperon-hyperon interaction and strange matter

properties [5][6]. Until 2001 only three candidates existed for ΛΛ hyper-

nuclei observed in emulsion experiment [7]. The observation of a double-

strangeness(-2) nucleus in an emulsion was first reported by Danysz et al,

around 1960s. They observed that 10
ΛΛBe was produced following a Ξ hy-

peron capture at rest and subsequently decayed by pionic emission after

being exposed to a K− beam [8].

The second double hypernucleus 6
ΛΛHe was observed and reported by

the KEK-E373 experiment. The observation was called the Nagara event.

The 6
ΛΛHe formation was uniquely identified by the observation of sequential

weak decays, and experimental 2Λ binding energy BΛΛ = 7.25 ± 0.19+0.18
−0.11.

The more information on hypernulei was found in the E373 experiment

named the Demachi-Yanagi event. The formation of bound state of 10
ΛΛBe

with binding energy of BΛΛ = 12.33 ± 0.19+0.35
−0.21 [9]. Thirdly the light ΛΛ

hypernucleus 4
ΛΛH from the AGS experiment was produced in the (K−,K+)

reaction on 9Be [7].

The investigation of hypernuclei is related directly to the various aspects

of nuclear and hadron physics. The knowledge of these interactions is im-

portant for a better understanding of strangeness of hadronic state equation,

beyond ground state baryon density . The compact astrophysical objects

such as neutron stars for instance might be strongly affected by the presence

of hypermatter due to a considerable high softening of the hadronic equation

of state at very high baryon densities [10]. The neutron stars interior are

dense enough to allow appearance of new particles with quantum number

strangeness [11]. Hypernuclear structure provides information around sat-

uration density [10]. In order to understand the core of neutron stars, it
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is important to study interactions among neutrons and hyperons to extract

information of the equation of states in such matter [12]. The investiga-

tion of hypernuclei is also important for spectroscopy of conventional nuclei,

since single hyperon bound in nuclei do not experience Pauli blocking from

nucleons and thus serves as probes for many body dynamics [10].

A detailed consisted understanding of the quark aspect for a baryon-

baryon interactions is needed, extension of the three dimensional hypernu-

clear chat, impurity effects in nuclear structure, nuclear medium effects of

baryons, the study of strangeness in astrophysics and the production of ex-

otic hypernuclei beyond the normal neutron/proton drip lines are all motives

to research on hypernuclear physics. Several experiments are planned for

future to investigate the double Lambda hypernuclei [13]

The measurements of Λ − p cross sections has been reported by the

Maryland group from the experiment on low-energy Λ− p elastic scattering

between 120 and 330 MeV/c. The studies of Λn shows that its potential

is spin-dependent, with the singlet interaction stronger than the triplet in-

teraction, and are both attractive. The total spin combination (S = 1)

represent the triplet state while the total spin combination (S = 0) rep-

resent the singlet state. The energy dependence of the singlet and triplet

S-wave phase shifts is given in the effective-range formalism as,

k cot δs,t = − 1

as,t
+ 0.5rs,tk

2,

where a is the scattering length, r is the effective range and s, t stand for

singlet and triplet states [6]. The Λ−p system can be in four possible states,

namely,

σs, σt(sz = −1), σt(sz = 0), σt(sz = +1).
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All of these states are achieved since the proton and the Lambda particle

both have spins (each equals 1/2) then the total spin ~S = ~sp + ~sΛ can have

magnitude of either 0 or 1. The total spin (S = 1) has combinations of

three orientations of z components (+1,0,-1) and also the total spin (S = 0)

has only single orientation combination. Both States equally represented in

the unpolarized beam. As the Λ particle approach the nucleon target, the

probability of being in the triplet state is 3/4 and the probability of being

in the singlet state is 1/4 [14]. Therefore the total cross sections for this

system is calculated as follows,

σΛn =
1

4
σs +

3

4
σt (1.1)

where σt and σs are the cross sections for scattering in the triplet and singlet

states [14].

The Particle data group also reported measurements of Λ− p cross sec-

tions from the experiment on low-energy Λ−p elastic scattering between 135

and 16000 MeV/c [15]. In this work we will use the Jost functions method

with known two-body potentials to numerically compute the total scattering

cross sections for this Λn system.

The three-body systems resonances of the Λnn and the ΛΛn hypernu-

clear system have been theoretically sought recently as zeros of the cor-

responding Jost functions in the minimal approximation, [L] = [Lmin], of

the hyperspherical harmonics approach [16]. The hyperspherical approach

with local two-body potentials describing nn, Λn, ΛΛ interactions was used.

They found that the position of the resonances were sensitive to the choices

of the Λn potential. The S-matrix poles on the second (unphysical) sheet of

the complex energy surface were located and resonance states energies were
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found. The position of the S-matrix poles were strongly depending on the

choices of the Λn potential.

In Ref.[16] it was also realized that the three-body (Λnn and ΛΛn) bound

state can be obtained if the potential strength is artificially increased by

the scaling factor of approximately 50%. They did so by increasing the

potentials depth artificially by multiplying the corresponding potential by

scaling factor from 1 upwards. The Jost functions zeros on the unphysical

sheet (fourth quadrant) moved towards the origin (threshold) of the energy

surface.

When the potentials with the scaling factor of approximately 1.5 is

reached the Jost functions zeros crossed the threshold and moved into the

real negative axis. Part of this work is to look for zeros of Jost functions on

the real negative energy axis for the Λnn and ΛΛn system [16] with a mod-

ified Λn potential. Recently, new experiment indicates that the Λn system

might have a loosely bound state. This means that the Λn potential is more

attractive than it was thought before.

The hyperspherical coordinates was used to describe the configuration

of these three body system, with hyperradius running from zero to infinity

while others (hyperangles) varying within finite ranges. The wave function

was expanded in an infinite series over the hyperspherical harmonics and

ended up with an infinite system of coupled hyperradial equations, which

were truncated for practical calculations [16].The second-order Schrödinger

equation of the system was reduce to first-order coupled differential equa-

tions.

These equations were then solved numerically as a boundary-value prob-

lem to determine the Jost functions directly. The Jost functions were then

used to locate the bound states and resonance states for the hypernuclear
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system [16].

In this work we followed same work that has been done on the three-

body systems to search for zeros of the corresponding Jost functions on the

first (physical) sheet of energy surface. This was done by locating alredy

known resonance state and make the corresponding potential more deep by

multiplying with certain discrete factor until we cross the threshold and

move onto the physical sheet.

This dissertation is structured as follows:

• Chapter 2 present the properties of Λ-particle, hypernucleus and the

Lambda hyperon interactions with nucleons.

• Chapter 3 describe the Jost function method for solving the two body

(Λn) Schrödinger equation and how to find the total cross section for

single channel problem using the Jost functions numerically. We also

describe the Jost function method for solving the three body (Λnn

and ΛΛn) Schrödinger equation in an hyperspherical approach using

minimal approximation.

• Chapter 4 we present the potentials used.

• Chapter 5 gives the results of our calculations.

• Chapter 6 we state the conclusions from our results.



Chapter 2

Hypernuclear Physics

2.1 The Lambda-Particle

The Λ-particle were discovered with other strange particles in 1947 in cosmic

rays and observed in the laboratory around 1953. They were detected and

seen that they are actually created in pairs. These particles were classified

in groups and one of the groups called hyperons which are heavier than

nucleons and decays into them. The Λ-particle belonged to that group of

hyperons [17].

The Λ-Particle is made up of, the up quark, the down quark and the

strange quark. The Λ-particle is the lightest hyperon with the mass of

1115.684MeV and a mean life of 2.60 × 10−10s. Its properties are listed in

Table 2.1.

The strange particles are produced by the strong interaction, but they

decay via the weak forces. Each particle has a property called ’strangeness’

which is conserved in strong interaction but not conserved in weak interac-

tion. The decay modes of lambda (Λ) hyperon are given in Table 2.2.

7
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Table 2.1: Λ-particle properties taken from [14].

Λ-particle property Quantum number

Isospin(I) 0
Spin(Parity) 1/2+

Charge(Q) 0
Strangeness(S) -1

Charm(C) 0
Bottomness(B) 0

Λ-particle decay mode Fraction[%]

p+ π− (63.9±0.5)
n+ π0 (35.8±0.5)
n+ γ (1.75±0.15)×10−3

p+ π− + γ (8.4±1.4)×10−4

p+ e− + νe (8.32±0.14)×10−4

p+ µ− + νµ (1.57±0.35)×10−4

Table 2.2: Λ-particle decay nodes properties taken from [15].

The Λ-hyperon belongs to a group of particles that are not abundant in

this world and therefore not available for scattering experimental purposes,

so their interactions with other particles are then studied indirectly [16].

The Λ-particles can be created in different ways, like using a beam of Kaon

(K−) and nuclei as target to produce this kind of reaction [14],

K− +A X →A
Λ X + π+

where p is the proton, π+ is the π-meson with positive electric charge. Due to

the fact that there is no Pauli exclusion principle between the nucleons and

Λ-particle [13], the Λ-particle can occupy 1s-state containing two neutron

already until it decays according to,

Λ→ p+ π−,
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or,

Λ→ n+ π0.

2.2 The Hyper-nuclei

A hypernucleus is a bound system of neutrons, protons and one or more

hyperons. Hyperons (Λ,Σ,Ξ,Ω) have lifetimes of the order of 10−10s [18].

The hypernucleus is denoted using this symbol A+1
Y Z with Z protons, A −

Z neutrons and a hyperon Y . For this work we consider Λ-hypernuclei.

When the Λ hyperon is added to the core nucleus, due to no Pauli principle

between the nucleons and Λ particle, the Λ particle can reach deep and

attract the surrounding nucleons unlike the addition of nucleon whereby the

Pauli principle will force it to be located outside. We call this a “glue like“

role [13]. The binding energy of a Λ particle is defined [18] as,

BΛ(A+1
Λ Z) ≡M(A+1

Λ Z)−M(AZ)−mΛ < 0,

Physically, it is the energy needed to remove Λ-particle from a hypernucleus.

The fundamental difference between the hypernuclear physics and nu-

clear physics is realized in the structure of the 4
ΛHe, a nucleus consisting

of four baryons (two protons, one neutron and one Λ). In the 4
ΛHe ground

state, all particles are in the 1s state (as they are in normal 4He). The

Pauli principle requires the two neutrons to have their spins oriented in the

opposite directions, so that the net spin of 4He is zero. The restriction due

to Pauli principle does not occur for 4
ΛHe, so the spins of neutron and the

Λ can be either anti-parallel (for a total spin of zero) or parallel (for a total

spin of 1). A typical reaction for forming a hypernucleus is indicated as [14],
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K− +A X →A
Λ X + π−.

The Λ-particles are not stable because the hypernucleus decays in a time

of about 2.60× 10−10s. The creation of Λ-hypernuclei and their subsequent

decay can be observed by using emulsions exposed to cosmic radiation or

in experiments with accelerators using secondary kaon beams or secondary

pion beams. It is possible to measure the Λ-particle binding energy in the

hypernucleus that have been created in the case of pion beams. The Λ-

particle can interact with all the nucleons so roughly their BΛ ∝ A.

2.3 Lambda-Nucleon system

Recently the Λn bound state has been observed by the HypHI collaboration

on the work on light hyper-nuclei produced in disintegration relativistic pro-

jectile. Collisions of 6Li at 2 GeV per nucleon with 12C were investigated.

After performing decay calculations using fermi-breaking up model, with Λn

state included, the bound state energy found to be 50 keV with spin=1 [5].

The other experimental work was done on Λp → Λp system and the

total cross sections were determined in the incident momentum region of

120− 1000 MeV [6][15][19].

The Λn potential is spin dependent with singlet interaction stronger

than the triplet and both interactions being attractive [5]. The scattering

parameters of the effective-range theory were evaluated from a low-energy

Λ-proton interaction experiment. The energy dependence of singlet and

triplet S-wave phase shifts given in the effective-range formalism, with shape
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dependent term neglected,

k cot δs,t = − 1

as,t
+ 0.5rs,tk

2,

where a is a scattering length, r is the effective range, and s, t represent

singlet and triplet states. The total cross sections of Λp → Λp [5] system

were determined using the following equation,

σtotal =
1

4
σs +

3

4
σt

=
π

k2 +
(
− 1
as

+ 0.5rsk2
)2 +

3π

k2 +
(
− 1
at

+ 0.5rtk2
)2 . (2.1)

The experimental Λp→ Λp cross sections have been fitted using the

maximum-likelihood method with (2.1), taking as, at, rs and rt as free pa-

rameters and also in the zero-range approximation (rs = rt = 0). The best

fits obtained by maximizing the likelihood functions [5]. The best values

for the four-parameter fit are presented in Table 2.3 for several momentum

regions.

Table 2.3: Four parameter fits of the Λ − p scattering data for various
momentum intervals

Momentum
range PΛ

(MeV/c) as(F ) at(F ) rs(F ) rt(F )

120-320 -1.8 -1.6 2.8 3.3
140-320 -1.6 -1.4 2.7 2.4
160-320 -1.7 -1.6 2.8 3.1
120-300 -2.3 -1.4 3.0 2.9
120-280 -3.6 -1.1 3.7 1.6
120-260 -1.3 -1.6 3.3 2.6
120-240 -1.4 -1.6 3.1 2.6



Chapter 3

Jost Functions theory

3.1 Two-body Jost Functions

3.1.1 Schrödinger Equation

The non-relativistic two-body(Λn) [20] quantum mechanical problem which,

after the separation of the motion of its center of mass is reduced to an effec-

tive one body problem whose motion is governed by the total Hamiltonian

in the relative coordinates ~r,

H =
−h̄2

2µ
∆~r + V (~r), (3.1)

where,

µ =
mΛmn

mΛ +mn
,

is the reduced mass of for Lambda(Λ) and nucleon particles. Therefore the

eigenvalue equation,

HΨ = EΨ,

12
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is reduced to this following second order differential equation for the wave

function,
−h̄2

2µ
∆~rψ(k, ~r) + U(~r)ψ(k, ~r) = Eψ(k,~r). (3.2)

Then after decomposition of the wave function into the radial and angular

parts as,

ψ(~r) =
u`(k, r)

r
Y`m(θ, ϕ), (3.3)

the equation (3.2) is reduced into the single particle radial Schrödinger equa-

tion of the form,

[
d2

dr2
+ k2 − `(`+ 1)

r2
− V (r)

]
u`(k, r) = 0, (3.4)

obeyed by the radial wave function u`(k, r) whereby k2 = 2µE/h̄2 and

V (r) = 2µU(r)/h̄2.

3.1.2 Boundary conditions

The boundary conditions are imposed at both ends of the interval rε[0,∞)

to determine various physical solutions. There are three types of physical

problems associated with the Schrödinger equation,

[
d2

dr2
+ k2 − `(`+ 1)

r2

]
u`(k, r) = V (r)u`(k, r), (3.5)

called the bound, resonant, scattering problems and they differ on boundary

conditions imposed on wave function at large distances (r →∞ ).

The potential is regular, which means that,

lim
r→0

r2V (r) = 0, (3.6)
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and the physical solution is proportional to the Riccati-Bessel function,

u`(k, r) ∼
r→0

j`(kr). (3.7)

The proportionality coefficient in equation (3.7) is an arbitrary constant that

determines the wave function normalization. The observable quantities do

not depend on normalization, so we make this coefficient unity.

The potential V (r) when r →∞ should vanish faster than r−n, if n ≥ 1.

We call the potentials that vanish faster than the Coulomb potential at

infinity short-range potentials. They obey this conditions

∫ ∞
R
|V (r)|dr <∞, (3.8)

where R is any non-zero radius and this potentials are less singular than 1/r2

at the origin. We can combine these conditions imposed on this potentials

at small and large distances and have this condition

∫ R

0
|V (r)|rdr +

∫ ∞
R
|V (r)|dr <∞. (3.9)

3.1.3 Schrödinger equation transformation

We firstly look at the solutions of the Schroödinger equation (3.5) at the

larger distances (r →∞) where the potential vanishes,

[
d2

dr2
+ k2 − `(`+ 1)

r2

]
u`(k, r) ≈ 0, r −→∞ (3.10)

This is a ”free” second-order Schrödinger equation with two linearly in-

dependent solutions [21][22]. The solutions for this equation are the two
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incoming and outgoing spherical waves,

W
(in)
` (k, r) = h

(−)
` (kr),

W
(out)
` (k, r) = h

(+)
` (kr),

 (3.11)

called the Riccati-Hankel functions. They are not unique solutions since

Riccati-Bessel and Riccati-Neuman functions (j`(kr) and n`(kr)) are also

possible solutions [21][22]. The general solution of equation (3.10) at large

distances is a linear combination of this two spherical waves,

u`(k, r) −→
r→∞

h
(−)
` (kr)f

(in)
` (k) + h

(+)
` (kr)f

(out)
` (k). (3.12)

We go back to the Schrödinger equation (3.4) with non-zero potential and

present its solutions in the same combination as equation (3.12) but with

parameters (f
(in/out)
` (k)) considered as unknown functions of r-variable,

u`(k, r) = h
(−)
` (kr)F

(in)
` (k, r) + h

(+)
` (kr)F

(out)
` (k, r), (3.13)

were now F
(in/out)
` (k, r) are our unknown functions. The constants

f
(in/out)
` (k) can be now found by looking for the limits

F (in/out)(kr) −→
r→∞

f (in/out)(k)

.

Since now in our general solution (3.13) we have two unknown func-

tions which are not independent from each other, we impose the standard
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condition in variation parameters method by the following equation,

W
(in)
` ∂rF

(in)
` (k, r) +W

(out)
` ∂rF

(out)
` (k, r) = 0, (3.14)

called the Lagrange condition. We substitute equation (3.13) into equa-

tion (3.4) and use the Lagrange condition (3.14) and the Wronskian of the

Riccati-Hankel functions,

h
(−)
` (kr)∂rh

(+)
` (kr)− h(+)

` (kr)∂rh
(−)
` (kr) = 2ik. (3.15)

We now transform equation (3.4) into the following coupled systems of first

order differential equations [21][22] for the new unknown functions,

∂rF
(in)
` (k, r) = −

h
(+)
` (kr)

2ik
V (r)

[
h

(−)
` (kr)F

(in)
` (k, r)

+ h
(+)
` (kr)F

(out)
` (k, r)

]
,

∂rF
(out)
` (k, r) =

h
(−)
` (kr)

2ik
V (r)

[
h

(−)
` (kr)F

(in)
` (k, r)

+ h
(+)
` (kr)F

(out)
` (k, r)

]
,


(3.16)

with the boundary conditions,

F
(in/out)
` (k, 0) = 1. (3.17)

These boundary conditions are determined by physical requirements that

the amplitude ψ`(~r) of the probability density must be finite everywhere

which leads to,

lim
r→0

u`(k, r) = 0

at r = 0. This system of first order differential equations (3.16) is equivalent
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to the two-body radial Schrödinger equation (3.4).

When the potential vanishes for some r > R the right hand side of equa-

tions (3.16) becomes zero. This makes the derivatives of F
(in/out)
` (k, r) zero

and thus makes the functions F
(in/out)
` (k, r) constants. These constants are

called Jost functions which ensures that the Riccati-Hankels functions de-

termines the asymptotic behavior of wavefunction (3.13) at large distances,

u`(k, r) −→
r→∞

h
(−)
` (kr)f

(in)
` (k) + h

(+)
` (kr)f

(out)
` (k). (3.18)

3.1.4 Jost functions

When we compare the wave function (3.13) with its corresponding asymp-

totic behavior [21][22] ,

u`(k, r) −→
r→∞

h
(−)
` (kr)f

(in)
` (k) + h

(+)
` (kr)f

(out)
` (k), (3.19)

we realize that,

f
(in)
` (k) = lim

r→∞
F

(in)
` (k, r), (3.20)

and,

f
(out)
` (k) = lim

r→∞
F

(out)
` (k, r), (3.21)

at large distances. These amplitudes of incoming and outgoing spherical

waves are called the Jost functions. The Jost functions are complex func-

tions. For a potential truncated at a distance R, they are analytic every-

where on the complex momentum plane. The difficulties arising for the

potentials extending to infinity and the way to overcome them are described

next.
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3.1.5 Complex rotation

There are certain discrete points on the complex momentum plane where

the physical wave function (3.13) has only outgoing wave at its asymptotic

behavior (3.19). These points are called the spectral points (resonance and

bound states) on complex momentum plane. The are no spectral points at

the real positive energies where the scattering states appear.

Using the WKB method it was proved that for a short-ranged potential

the wave function has the following asymptotic behavior on the momentum

plane,

u`(k, r) −→
r→∞

a`(E)e−ikr + b`(E)eikr, (3.22)

where a`(E) and b`(E) are r-independent constants. Using asymptotics

(3.22) and,

h
(±)
` (kr) −→

|kr|→∞
(∓i)`+1e±kr,

we obtain,

∂rF
(in)
` (k, r) −→

r→∞

(−i)`

2k
V (r)

[
a`(E) + b`(E)e2ikr

]
∂rF

(out)
` (k, r) −→

r→∞

i`

2k
V (r)

[
a`(E)e−2ikr + b`(E)

]
 (3.23)

There are several cases associated with equation (3.23):

• The momentum k is real.

Both derivatives ∂rF
(in/out)
` vanish fast, since the potential assumed

to be faster vanishing than the coloumbic potential. Both functions

F
(in/out)
` converge to the corresponding Jost functions (3.20,3.21).

• The momentum k has positive imaginary part, but is not a spectral

point.
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Both a`(E) and b`(E) are non-zero. The factors e−2Im (kr) and e2Im (kr)

on the right hand sides of equations plays dominant roles. As the

results the function F
(in)
` converges while F

(out)
` diverges.

• The momentum k has negative imaginary part, but is not a spectral

point.

Both a`(E) and b`(E) are also non-zero. The factors e−2Im (kr) and

e2Im (kr) on the right hand sides of equations also plays dominant roles.

The function F
(in)
` diverges while F

(out)
` converges.

• The momentum k = kn is a spectral point.

Only the outgoing waves is present in the asymptotics (3.23) so

a`(En) = 0. This shows F
(out)
` converges to f

(out)
` irrespective of the

sign of Im kn. For the function F
(in)
` the vanishing of a`(En) does not

make difference. The function F
(in)
` converges to its limiting value and

zero only if Im kn > 0.

So the F
(in)
` (E, r) converges to f

(in)
` (E) on the physical sheet , while

F
(out)
` (E, r) converges to f

(out)
` (E) on the unphysical sheet. The only com-

mon domain of k-plane where both limits exists is the real axis (i.e the both

rims of the cut on the energy-surface).

When the potential vanishes at certain distance R the right hand side

of equation (3.16) becomes zero and the derivatives ∂rF
(in/out)
` (k, r) is zero.

So when potential vanishes at large distances we have,

F (in/out)(k, r) −→
r→∞

f (in/out)(k). (3.24)

The Jost matrices now can be calculated using equations (3.16) from r = 0

to a larger distance R where the limit (3.24) is reached. These calculations
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works well for real values of the energy E. We encounter problems when

we move to unphysical sheet when we consider complex energies to locate

the resonance states [21][22]. This difficulty is caused by the asymptotic

behaviour of the Riccati-Hankel functions,

h
(±)
` (kr) −→

|kr|→∞
∓ exp

(
±ikr ∓ i`π

2

)
. (3.25)

When the momentum k is complex , either h
(+)
` (kr) or h

(−)
` (kr) exponen-

tially diverges depending on the sign of Im k. So one of the equations in

(3.16) does not give a numerical convergence.

We use the deformed integration path to overcome this difficulty. We

Im r

Re r
R

R’

θ

Figure 3.1: The path rotated by angle θ on the complex r-plane to solve the
coupled system of first-order differential equations.

now integrate the differential equations no longer along the real axis from

r = 0 to r = R but along the intermediate point r = R′ on the complex
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plane. If k = |k|eiϕ we can find the rotation angle θ in r = zeiθ, z = |r| such

that the product,

kr = |kr|ei(θ+ϕ),

has either positive or negative imaginary part. The acceptable range for the

rotation angle θ is the interval,

−π/2 < θ < +π/2,

which can be narrowed by the properties of potential V (r). The angle θ

should also be such that the potential vanishes at larger distance faster

than 1/|r| this conditions,

∫ ∞
R′
|V (zeiθ)|dz <∞, z = |r|.

The equations (3.16) takes the following form,

∂zF
(in)
` (k, r, θ) = −

eiθh
(+)
` (kr)

2ik
V (r)

[
h

(−)
` (kr)F

(in)
` (k, r)

+ h
(+)
` (kr)F

(out)
` (k, r)

]
,

∂zF
(out)
` (k, r, θ) =

eiθh
(−)
` (kr)

2ik
V (r)

[
h

(−)
` (kr)F

(in)
` (k, r)

+ h
(+)
` (kr)F

(out)
` (k, r)

]
,


(3.26)

where the derivatives are with respect to the variable z. The boundary

conditions for these equations remain,

F
(in/out)
` (k, 0, θ) = 1.
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These convergence limits,

f
(out)
` (k) = lim

z→∞
F

(out)
` (k, zeiθ),

f
(in)
` (k) = lim

z→∞
F

(in)
` (k, zeiθ),

follows from equation (3.26). Since on the arc R′R the potential is zero, the

integration along this arc does not change anything.

The complex rotation now resolves our problem of calculating the Jost

functions f in` (E) in the fourth quadrant of complex momentum plane on the

unphysical sheet of energy surface. We can now locate the resonance states

and we are able to calculate the S-matrix on the unphysical sheet.

3.1.6 Bound states

For the bound states the particle remain localized in the interaction region,

then the wave function dies out at large distances,

u`(k, r) −→
r→∞

0

The total energy En for the bound state is negative and the corresponding

momentum is pure imaginary,

kn =

√
−2µ|En|/h̄2 = iκn, κn > 0,

and that causes the one asymptotic term to grow exponentially while the

other one is exponentially attenuating, as a results the wave function,

u`(k, r) −→
r→∞

h
(+)
` (kr)f

(out)
` (k) ∼ e−κnr (3.27)
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such that at certain points En < 0,

f
(in)
` (kn) = 0. (3.28)

This tell us that the bound states corresponds to the zeros of Jost function at

real negative energies corresponding to the positive imaginary momentum.

3.1.7 Resonance states

Quantum resonances from quantum mechanical point of view are partially

localized states which slowly decays according to radioactive decay law.

There is no preferred direction for its decays. The asymptotic (3.12) of

a resonance state wave function includes only the outgoing spherical waves,

u`(k, r) −→
r→∞

h
(+)
` (kr)f

(out)
` (k), (3.29)

so they also zeros of Jost functions. Since number of quantum resonances

vanishes according to radioactive law,

N = N0e
Γt/h̄,

such that this number is proportional to the particle density,

ρ = |ΨΛn|2,

then the wave function must exponentially attenuating,

Ψ ∼ exp
(
−Γt

2h̄

)
,
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and its energy dependence is given by,

Ψ(~r, t) = exp

(
− i
h̄
Ert

)
exp

(
− Γ

2h̄
t

)
ψ(~r),

whereby the attenuating factor appears when the momentum has the imag-

inary part,

kn = kr − iki,

then,

E =
h̄2

2µ
k2 =

h̄2

2µ
(k2
r − k2

i )− i
h̄2

2µ
kikr

= Er − iEi

= Er − i
Γ

2
, Ei =

Γ

2

So the resonances are spectral points i.e the zeros of the Jost functions at

the complex roots on the fourth quadrant of momentum plane,

f
(in)
` (kn) = 0. (3.30)

The resonance states can be turned into the bound states and bound states

into resonances when the potential is decreased or increased its depth. If the

potential is being decreased then the bound states become less tightly bound

and transforms into resonance states. When the potential is increased then

the resonance becomes more narrow and becomes a bound state.

3.1.8 Scattering states

The scattering process happens when particles from afar approach their in-

teraction region and move away possibly in different direction. The energy

associated with these scattering states is real and positive. The correspond-
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ing momentum is also positive. The particle flux is conserved, so the incom-

ing and the outgoing spherical waves amplitudes are equal,

|f (in)
` (k)| = |f (out)

` (k)|, k > 0

and differ by phase factor.

For real energies the wave function and its complex conjugate obeys

the same Schrödinger equation. The corresponding incoming and outgoing

waves swap their roles,

[h±` (kr)]∗ = h∓` (kr), Im k = 0. (3.31)

The corresponding amplitudes also swap their roles,

f
(in)
` (k) = [f

(out)
` (k)]∗, (3.32)

and they can be written as follows,

f
(in)
` (k) = |f (in)

` (k)|e−iδ`(k),

f
(out)
` (k) = |f (out)

` (k)|eiδ`(k), k > 0,

 (3.33)

where δ`(k) is called the phase shift. The incoming amplitude is transformed

into outgoing amplitude,

f
(in)
` (k) = S`(k)f

(out)
` (k) (3.34)

using this transformation function called S-matrix. This transformation
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function S-matrix contains complete information about scattering process,

S`(k) = ei2δ`(k). (3.35)

The differential cross section is given by,

dσ

dΩ
=

1

4k2

∣∣∣∣∣∑
`

(2`+ 1)[S`(E)− 1]P`(cos θ)

∣∣∣∣∣
2

. (3.36)

The total cross section σ`(k) can now be obtained by integrating differential

cross sections over all directions. We integrate equation (3.36) over dΩ and

obtain,

σ(k) =
π

k2

∑
`

(2`+ 1)[S`(k)− 1]2 (3.37)

the sum of the partial cross sections,

σ`(k) =
π

k2
(2`+ 1)[S`(E)− 1]2, (3.38)

and has a physical meaning of the geometrical cross section of the incoming

beam of particles which has been disturbed by the potential.

3.2 Riemann surface

The Riccati-Hankel functions h
(±)
` (kr) and the Jost functions

F
(in/out)
` (k, r) depend on the momentum k, so they also depend on the energy

E. For a fixed value of energy E we can have two different values of the

momentum,

k = ±
√

2µ

h̄2E, (3.39)
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depending on the choice of the sign in front of the square root. So the Jost

matrices F (in/out)(E) are not single-valued functions of E. They have two

different values for a single E.

The multi-valued functions are treated as single-valued functions on the

multi-layered complex surface called Riemann surface [21][22][23]. Since the

bound and resonance states correspond to complex valued of k, it is useful

to consider the momentum k and energy E as complex variables. When we

consider the energy as complex E = |E|eiφ the momentum becomes,

k = ±
√

2µ

h̄2 |E|e
iφ/2. (3.40)

This means that when we go around the point E = 0, it takes full two circles

(φ −→ φ + 4π) to come back to initial value, where |E| and φ are polar

coordinates of the point E on the energy plane relative to the branching

point E = 0. So the Jost functions have two different values at each point

E on the circle. The Jost function is made single-valued function of E by

assuming that the complex energy E forms the so-called Riemann surface

having two parallel sheets. So the first circle around branching point is

on the first sheet then continue on the second sheet until coming to the

first sheet after completing two circles. The two sheets are cut along the

real axis and connected to each other as is shown in Fig.3.2. The physical

energies (for scattering states) lie on the positive real axis on the upper

rim of the cut. The physical sheet is covered starting from this physical

energies which corresponding to positive imaginary momentum by moving

anticlockwise around the branching point on the first circle (0 ≤ φ < 2π).

The second circle (2π ≤ φ < 4π) covers the unphysical sheet corresponding

to the negative imaginary momentum. It can be seen that the bound states
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S1

S2

B

Figure 3.2: Physical (S1) and unphysical (S2) sheets of complex energy
Riemann surface for a single-channel problem.

solutions of Shrödinger equation are only possible for Im k > 0 where the

wave function exponentially diminishes when r −→∞ which shows physical

behavior, and the resonance states (Im k < 0) with the wave function which

exponentially grows, shows unphysical behavior.

3.3 Three-body Jost Functions

3.3.1 Hyperspherical Coordinates System

We describe the positions of the three-body particles in space by using the

set of the Jacobi coordinates [16][24], ~r1, ~r2, whereby the configurations of

~r2~r1

θ~r1

2

1

3

Figure 3.3: The three-body configurations space using Jacobi vectors
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α
r2

r1

ρ

Figure 3.4: r1 and r2 in the polar plane and vary zero to infinite.

the system is given by six parameters,

r1, r2, ϕ1, ϕ2, θ1, θ2

the length of these vectors and their spherical angles. Two radii have infinite

ranges while the other four (angles) vary within finite limits. We do variable

change such that one variable runs from zero to infinite while other variable

run within finite limits,

r =
√
r2

1 + r2
2, hyperradius,

α = arctan
r2

r1
, hyperangle,

whereby r1 = r cosα and r2 = r sinα. The hyperradius is the collective size

of the system. After the introduction of the hyperradius and hyperangle we

still have the same number of variables,

r, α, ϕ1, ϕ2, θ1, θ2



CHAPTER 3. JOST FUNCTIONS THEORY 30

3.3.2 Three-body Jost Matrix

The three-body free Hamiltonian can be written as,

Ĥ0 =
h̄2

µ
(∆~r1 + ∆~r2) , (3.41)

where it can be shown that,

∆~r1 + ∆~r2 =
∂2

∂r2
+

5

r

∂

∂r
− Λ̂2

h̄2r2
(3.42)

and

Λ̂2 = h̄2

(
− ∂2

∂α2
− 4 cot(2α)

∂

∂α
+

~L2
1

cos2 α
+

~L2
2

sin2 α

)
. (3.43)

The ~L2
1 and ~L2

2 are the standard angular momenta operators associated with

variables ~r1 and ~r1 respectively. Since the hyperspherical coordinates are the

generalization of spherical coordinates then similarly to spherical harmonics

we construct the sets of eigenfunctions Y[L](Ω) of the operator Λ̂2 such that

they are also eigenfunctions of ~L2
1,(~L1)z,~L

2
1 and (~L1)z,

Λ̂2Y[L](Ω) = L(L+ 4)h̄2Y[L](Ω)

L̂2
1Y[L](Ω) = `1(`1 + 1)h̄2Y[L](Ω)

(L̂1)zY[L](Ω) = m1h̄Y[L](Ω)

L̂2
2Y[L](Ω) = `2(`2 + 1)h̄2Y[L](Ω)

(L̂2)zY[L](Ω) = m2h̄Y[L](Ω)


(3.44)

where the subscript [L] is the multi-index,

[L] = {L, `1, `2,m}
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L = `1 + `2 + 2n, n = 0, 1, 2, . . . , (3.45)

We let m1 be the mass of one of the identical (with spin 1/2) particle and

m2 be the mass third particle (with spin half). The total mass of the system

is M = 2m1 + m2 and the reduced mass for identical pair is µ1 = m1/2. The

inclusion of the third particle give the reduced mass of µ2 = 2m1m2/M.

√
M
µ2
~r2

√
M
µ1
~r1

Figure 3.5: The three-body system spatial configurations defined using Ja-
cobi vectors

The three-body Schrödinger equation can now be written as,

(
∂2
r +

5

r
∂r −

1

r2
L2 + k2 − V

)
Ψ

[s]
~k1,~k2

(~r1, ~r2) = 0, (3.46)

where,

V = 2
M

h̄2 (U12 + U13 + U23),

is the sum of the two-body potential Uij , the vectors {~k1,~k2} represent the

incident momenta of three body collision along the corresponding configu-

ration vectors {~r1, ~r2}, the superscript [s] = ((s1s2)s12s3)sσ represent spin

quantum number for the spin-addition scheme ~s = (~s1 + ~s2) + ~s3, the vari-

able r is the hyperradius, k called hypermomentum related to total energy

as k2 = 2ME/h̄2.

We combine Y[L](ω) with the spin state χ(s) = |((s1s2)s12s3)sσ〉 and
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obtain the function

Φjjz
[L] (ω) =

∑
mσ

〈`msσ|jjz〉Y[L](ω)χ[s], (3.47)

with full ortho-normal set of states with given angular momentum j in the

spin angular space. Now the wave function is expressed as,

Ψ
[s]
~k1,~k2

(~r1, ~r2) =
1

r5/2

∑
[L][L′]

U jjz[L][L′](E, r)Φ
jjz
[L] (ω~r)Φ

jjz
[L′](ω~k) (3.48)

where the hyperangle sets ω~r and ω~k are associated with the pairs {~r1, ~r2}

and {~k1,~k2}. We substitute equation (3.48) into equation (3.46) the pro-

jections onto the functions Φjjz
[L] , we end up with the following system of

hyperradius equation,

[
∂2
r + k2 − L(L+ 4) + 15/4

r2

]
u[L][L′] =

∑
[L′′]

V[L][L′′]u[L′′][L], (3.49)

where V is a potential matrix of the form,

V[L][L′](r) = 2M

∫
Φjjz∗

[L] (ω)(U12 + U13 + U23)Φjjz
[L′](ω)∂ω (3.50)

We introduce the parameter λ and substitute it into equation (3.49) as,

λ = L+ 3/2,

and now we have the of hyperradial Schródinger equations for the system as

[
∂2
r + k2 − λ(λ+ 1)

r2

]
u[L][L′] =

∑
[L′′]

V[L][L′′]u[L′′][L], (3.51)
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and the subscript jjz were dropped. The general solution of the matrix

equation (3.51) is

u[L][L′](E, r) = h
(−)
λ (kr)F

(in)
[L][L′](E, r) + h

(+)
λ (kr)F

(out)
[L][L′](E, r) (3.52)

where the incoming and outgoing hyperspherical waves described by the

Riccati-Hankel functions,

h
(±)
λ (kr) −→

|kr|→∞
∓ exp [±ı(kr − λπ/2)] . (3.53)

The matrix F
(in/out)
[L][L′] (E, r) are two new unknown functions which turned to

be dependent functions on each other. The variation parameters method

from theory of ordinary differential equations was used to find general so-

lution. The Lagrange condition that relates the unknown functions was

imposed and chosen as,

h
(−)
λ (kr)∂rF

(in)
[L][L′](E, r) + h

(+)
λ (kr)∂rF

(out)
[L][L′](E, r) = 0

which is standard in variation parameters method. We obtain the following

system of first order differential equations for these unknown matrices,

∂rF
(in)
[L][L′] = −

h
(+)
λ

2ik

∑
[L′′]

V[L][L′′]

[
h

(−)
λ′′ F

(in)
[L′′][L′]

+ h
(+)
λ′′ F

(out)
[L′′][L′]

]
,

∂rF
(out)
[L][L′] =

h
(−)
λ

2ik

∑
[L′′]

V[L][L′′]

[
h

(−)
λ′′ F

(in)
[L′′][L′]

+ h
(+)
λ′′ F

(out)
[L′′][L′]

]
,


(3.54)
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after substituting the general solution (3.52) and using the Lagrange condi-

tions. These system of first-order differential equations are equivalent to the

second order Schrödinger equation (3.51) [16][24]. The physical wave equa-

tion requires to be regular at r = 0, so the following boundary equations,

F
(in)
[L][L′](E, 0) = F

(out)
[L][L′](E, 0) = δ[L][L′] (3.55)

are imposed. This boundary condition indicates the singularities of h
(−)
λ (kr)

and h
(+)
λ (kr) which compensate each other [16][24]. The fundamental system

of regular solutions of (3.51) vanishes near r = 0 in such a way that,

lim
r→0

u[L][L′](E, r)

r(λ+1)
= δ[L][L′] (3.56)

The regular basis is defined by the following boundary condition,

lim
r→0

u[L][L′](E, r)

jλ(pr)
= δ[L][L′].

where jλ is the Riccati-Bessel function and according to equation (3.56) is

the generalization of the corresponding boundary condition for two-body

problem.

At large hyperradius where the potential,

V[L][L′](r) −→
r→∞

0,

the right hand side of equation (3.54) should tend to zero and therefore the

matrices F
(in/out)
[L][L′] (E, r) converges,

f
(in/out)
[L][L′] = lim

r→∞
F

(in/out)
[L][L′] (E, r), (3.57)
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to energy-dependent constants that can be called Jost matrices. The conver-

gence of these limits dependents in the choices of the energy E and how fast

the potential matrix V[L][L′](r) vanishes when r −→∞. The column matrix

function u[L][L′](E, r) constitute the regular basis which we can construct

physical solution Φ[L](E, r) with given boundary conditions at infinity,

Φ[L](E, r) =
∑
[L′]

u[L][L′](E, r)C[L′], (3.58)

where C[L] are combination coefficients. Since we are concerned with the

bound and resonance states then for both of them each element of column

u[L] at large r must be proportional to h
(+)
λ (kr) which is exponentially decay

when momentum k is on positive imaginary axis (bound states) or present

outgoing waves when momentum k is on the fourth quadrant of the complex

momentum plane (resonance states) i.e when,

∑
[L′]

f
(in)
[L][L′](En)C[L′] = 0. (3.59)

This homogeneous system of equations (3.59) has a non-trivial solution if

and only if,

det f
(in)
[L][L′](En) = 0, (3.60)

which determines the spectral energy points En. The S-matrix is given by,

S(E) = f
(out)
` (E)[f

(in)
` (E)]−1, (3.61)

and has poles at energies En.
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3.3.3 Minimal Approximation

The system (3.54) of equations consists of an infinite number of equations

and to do practical calculations one needs to truncate it somewhere. The

minimal approximation method [16][24] is imposed to do this truncation by

only retaining the first term in (3.48), giving,

Ψ(~r1, ~r2) ≈ 1

r5/2
u[Lmin](r)φ[Lmin](ω). (3.62)

This correspond to the minimal (n = 0) value of the grand orbital number

(3.45), called the hypercentral approximation. The two-body subsystem

assumed to be an S-wave states (`1 = `2 = 0) which means,

λ = λmin = 3/2

and

[
∂2

∂r
+ k2 − λmin(λmin + 1)

r2

]
u[0](k, r) = 〈U〉u[0](k, r), (3.63)

where,

〈U〉(r) =

∫
φ
jj∗2
[Lmin](ω)(U12 + U13 + U23)φjj2[Lmin](ω)∂ω, (3.64)

with all unnecessary subscript dropped. Applying the minimal approxima-

tion to equations (3.51) and (3.54) we end up with equation (3.63) which

looks like exactly two body Schrödinger equation [16][24] and we obtain its
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corresponding single pair of first-order differential equations,

∂rF
(−)
[Lmin][L′min]

= −
h

(+)
λ (kr)

2ik
〈U〉[

h
(−)
λ′′ F

(−)
[L′′min][L′min]

(k, r) + h
(+)
λ′′ F

(+)
[L′′min][L′min]

(k, r)
]

∂rF
(+)
[Lmin][L′min]

=
h

(−)
λ (kr)

2ik
〈U〉[

h
(−)
λ′′ F

(−)
[L′′min][L′min]

(k, r) + h
(+)
λ′′ F

(+)
[L′′min][L′min]

(k, r)
]
.


(3.65)

3.4 Complex Rotation

Now within the minimal approximation [16][24] only the first of equations

remains and as result we end up with only one pair of equation (3.63). We

encounter technical problem when we move from real energy axis to complex

energies. The complications arises as one of the Riccati-Hankel functions on

the right hand side of equations (3.63) is always exponentially diverging.

So when the potential matrix vanishes not fast the convergence of equation

(3.63) is not achieved.

We employ the same complex rotation method (described in Sec.3.1.5)

to overcome this difficulty by replacing the hyperradius with complex hy-

perradius,

r = xe(iθ) x ≥ 0 0 ≤ θ < π/2

∂xF
(−)(x, θ, k) = −h

(+)(kxe(iθ))

2ik
〈U〉(xe(iθ))[

h
(−)
λ (xe(iθ))F (−)(k, x, θ) + h

(+)
λ (xe(iθ))F (+)(k, x, θ)

]
∂xF

(+)(x, θ, k) =
h(−)(kxe(iθ))

2ik
〈U〉(xe(iθ))[

h
(−)
λ (xe(iθ))F (−)(k, x, θ) + h

(+)
λ (xe(iθ))F (+)(k, x, θ)

]


(3.66)
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The rotation does not change the Jost functions which is r-independent but

changes the functions F (±) to the effect that F (−)(r, k) can be defined above

the (−∞e(iθ),+∞e(iθ)) [24] in the complex momentum plane. So using the

rotation with large enough θ we can calculate the Jost functions at the points

of interest in the fourth quadrant of the momentum plane.



Chapter 4

Potential Models

4.1 Two-body Potential

We describe the potentials between the two-body (Λn, ΛΛ, nn) systems in-

teraction using the following potential, namely,

U(r) =

[
A1(r)− 1 + P σ

2
A2(r)− 1− P σ

2
A3(r)

] [
β

2
+

1

2
(2− β)P r

]
(4.1)

An = Wnexp(−anr2), n = 1, 2, 3, . . .

where P σ and P r are the permutation operators in the spin and configu-

ration spaces [16]. The following parameters were used for the two-body

potential above in Ref.[16]:

39
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Table 4.1: The parameters of the potential for the pairs nn, Λλ and Λn
systems. The Λn system have three different sets. All these parameters are
taken from Ref.[16].

nn ΛΛ Λn

W1(MeV) 200 200 200
W2(MeV) 178 0 106.5
W3(MeV) 91.85 130.8 118.65
a1(fm−2) 1.487 2.776 1.638
a2(fm−2) 0.639 0 0.7864
a3(fm−2) 0.465 1.062 0.7513

β 1 1 1.5

4.2 Lambda-nucleon Potentials

We use the two-body Potential (4.1) to construct the Λn potential and use

the parameters on Table 4.1. We constructed two Λn potentials,

UΛn(r) = W1exp(−a1r
2)−W2exp(−a2r

2), (4.2)

for the triplet state (3S1 with total spin 1) and,

UΛn(r) = W1exp(−a1r
2)−W3exp(−a3r

2), (4.3)

for the singlet state (1S1 with total spin 0). In the case of total spin 1, the

spin permutation operator has P σ = 1 magnitude and for total spin 0 the

spin permutation operator is P σ = −1.

These potentials must be continuous everywhere and analytical functions

of r. They must obey this conditions,

lim
r→0

r2U(r) = 0, (4.4)
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and

lim
r→∞

rU(r) = 0. (4.5)

For the first condition we have,

lim
r→0

r2U(r) = lim
r→0

r2
[
W1exp(−a1r

2)−W2exp(−a2r
2)
]

= 0,

lim
r→0

r2U(r) = lim
r→0

r2
[
W1exp(−a1r

2)−W3exp(−a3r
2)
]

= 0.

 (4.6)

For the second condition we have,

lim
r→∞

rU(r) = lim
r→∞

r
[
W1exp(−a1r

2)−W2exp(−a2r
2)
]

= 0,

lim
r→∞

rU(r) = lim
r→∞

r
[
W1exp(−a1r

2)−W3exp(−a3r
2)
]

= 0

 (4.7)

This shows that the Λn-potential is less singular at the origin than the

centrifugal term and vanishes faster than the Coulomb potential. The values

used to plot these two potentials were taken from Table 4.2 which are derived

from Ref.[16]. These potentials are suitable to perform the calculations

required so that we can explore their all energy E-surface.

The original parameters on Table 4.1 for Λn interaction do not support

the recently found Λn-bound state (50 keV) for triplet state, and therefore

we adjusted these parameters to generate this bound state. The potentials

were rewritten in the following way,

UΛn(r) = W1exp(−a1r
2)− γW2exp(−a2r

2), (4.8)

UΛn(r) = W1exp(−a1r
2)− γW3exp(−a3r

2), (4.9)

including the scaling factor (γ) to readjust their strengths.

These Λn-potentials (4.8 and 4.9) which also appears on Figure 4.2 with
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Table 4.2: The new and old parameters for the two potentials for Λn systems.

old Λn new Λn

W1(MeV) 200 200
W2(MeV) 106.5 170.590635
W3(MeV) 118.65 190.052384
a1(fm−2) 1.638 1.638
a2(fm−2) 0.7864 0.7864
a3(fm−2) 0.7513 0.7513

β 1.5 1.5

Figure 4.1: The Λn potentials for singlet state and triplet state using old
parameters on the Table 4.2.
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Figure 4.2: The Λn potentials for singlet state and triplet state using new
parameters on Table 4.2.

new parameters were used to calculate the total cross sections by firstly

calculating their corresponding S-matrix using the two-body Jost method.

In Fig.4.3, the theoretical Λn cross section with the adjusted Λn-potential

is compared with available data for Λp scattering. Due to the isotopic in-

variance, the difference between Λn and Λp cross sections should be small.

This is the reason why we may do such a comparison.
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4.3 Hypercentral Potential

We use two-body potential which describes the interaction between the λn-

particles in our model. The two-body potential [16] considered described

as,

U(ρ) =

[
A1(ρ)− 1 + P σ

2
A2(ρ)− 1− P σ

2
A3(ρ)

] [
β

2
+

1

2
(2− β)P r

]
,

(4.10)

An = Wnexp(−anρ2), n = 1, 2, 3, . . .

where P σ and P r are the permutation operators in the spin and configura-

tion spaces [16]. We consider both systems Λnn and ΛΛn in a unified way

which their hypercentral consists of three terms,

〈U〉 = 〈U12〉+ 〈U13〉+ 〈U23〉, (4.11)

where Uij is the two-body potential acting between particles i and j. Let

1 and 2 be the identical particles (nn or ΛΛ) and 3 the remaining Λ or

neutron. The six dimensional volume is

d~r1d~r2 = r2
1r

2
2dr1dr2 sin θ~r1dθ~r1dϕ~r1 sin θ~r2dθ~r2dϕ~r2

= r5dr
1

4
sin2(2α)dα sin θ~r1dθ~r1dϕ~r1 sin θ~r2dθ~r2dϕ~r2

= r5drdω.

Now from minimal approximation [16][24] we assumed that `1 = `2 = 0 and

L = Lmin = 0, so the equation (3.47) reduced to single term,

Φjjz
[L] (ω) = Y[Lmin](ω)χ[s], (4.12)
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where the quantum numbers jjz coincide with sσ. The identical two-body

spin s12 in the S-wave state is zero and three-body spin is always 1/2. The

hyperspherical harmonics which is independent of angles is,

Y[Lmin](ω) ≡ π−3/2, (4.13)

which means the permutation operators P r acting on all three terms in

equation (4.11) has eigenvalue 1, that is,

P rijY[Lmin] = Y[Lmin], ij = {12}, {13}, {23}. (4.14)

The spin permutation operator P σ12 changes the sign of χ[s],

P σ12ξ[s] = χ[s], (4.15)

because of s12 = 0 in [s] = ((s1s2)s12s3)sσ. The recoupling of the other

spins is as follows,

|((s1s2)s12s3)sσ〉 =
∑
s13

|((s3s1)s31s3)sσ〉〈((s3s1)s31s3)sσ〉|((s1s2)s12s3)sσ〉

= −1

2
|((s3s1)s31s3)sσ〉+

√
3

2
|((s3s1)s31s3)sσ〉,

(4.16)

so it was found that,

χ+
[s]P

σ
[13]χ[s] =

1

2

and similarly for the pair {23},

χ+
[s]P

σ
[23]χ[s] =

1

2
.
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The following interparticle distances were used,

ρ12 = r1

√
M

µ1
= r

√
M

µ1
cosα,

ρ13 =

√
M

µ2
r2

2 +
M

4µ1
r2

1 −
M

4
√
µ1µ2

r1r2 cos θ~r2

=

√
M

µ2
r2 sin2 α+

M

4µ1
r2 cos2 α− M

4
√
µ1µ2

r2 sinα cosα cos θ~r2

= r

√
M

µ2
sin2 α+

M

4µ1
cos2 α− M

2
√
µ1µ2

sin(2α) cos θ~r2 ,

ρ23 =

√
M

µ2
r2

2 +
M

4µ1
r2

1 −
M

4
√
µ1µ2

r1r2 cos(180− θ~r2)

=

√
M

µ2
r2 sin2 α+

M

4µ1
r2 cos2 α+

M

2
√
µ1µ2

r2 sinα cosα cos θ~r2

= r

√
M

µ2
sin2 α+

M

4µ1
cos2 α+

M

2
√
µ1µ2

sin(2α) cos θ~r2 ,

(4.17)

into the integral(3.64) when we insert the potentials Uij (4.10). The equation

(4.11) is reduced to,

〈U〉 = 〈U12〉+ 2〈U13〉, (4.18)

since the interactions U13 and U23 are identical due to same particles. The

following expressions were obtained for the terms of the hypercentral poten-



CHAPTER 4. POTENTIAL MODELS 48

tial (4.18) [16],

〈U12〉 =
4

π

∫ π/2

0
dα sin2(2α)

[
W
{12}
1 exp

(
−a{12}

1 ηr2
)

− W
{12}
3 exp

(
−a{12}

3 ηr2
)]
,

〈U13〉 =
2

π

∫ π/2

0
dα sin2(2α)

[
W
{13}
1 exp

(
−a{13}

1 ζr2
)
s
(
−a{13}

1 ξr2
)

− 3

4
γW

{13}
2 exp

(
−a{13}

2 ζr2
)
s
(
−a{13}

2 ξr2
)

− 1

4
W
{13}
3 exp

(
−a{13}

3 ζr2
)
s
(
−a{13}

3 ξr2
)]
,

(4.19)

with the scaling factor (γ) included, whereby,

∫ π

0
exp(±f cos θ~r2) sin θ~r2dθ~r2 =

∫ 1

−1
exp(±ft)dt

=
1

f

(
ef − e−f

)
=

2

f
sinh(f),

(4.20)

and

η(α) =

√
M

µ1
cos2 α, ζ(α) =

√
M

µ2
sin2 α,

ξ(α) =
M

2
√
µ1µ2

sin(2α), s(f) =
1

f

(
ef − e−f

)
.

(4.21)

The parameters W
{ij}
n and a

{ij}
n are given in Table 4.1
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Results and Discussion

We adjusted the Λn potential (4.2) obtained from known two-body potential

(4.1) to generate the bound state (∼ 50 keV) that was recently discovered

in Ref.[5]. The two-body potential which supported the Λn bound state is,

UΛn(r) = W1exp(−a1r
2)−W3exp(−a3r

2),

with W1 = 200MeV, W3 = 190.052384MeV, a1 = 1.638fm−1 and a2 =

0.7513fm−1. This was done by solving first-order coupled differential equa-

tions (3.16) numerically for the triplet state (3S1) of spin 1 for this Λn

system. We artificially varied two-body potential (4.8) to make it more at-

tractive by multiplying it with the value of scaling factor (γ) from unity to

obtain the potential above. We finally obtained the bound state energy with

the scaling factor γ= 1.60179, which corresponds well with the experimental

value found in paper Ref.[5]. The scaling factor used to find the Λn bound

state was used to obtain the total elastic cross sections for the same Λn

system, by constructing the singlet state (4.2) and triplet state two-body

49
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potentials (4.3). The total cross sections were compared and correspond

well with the experimental cross sections taken from [6][15][19]. They are

presented on Figure 4.3.

Table 5.1: The calculated bound and resonance state energies of the Λnn
system using the two-body potential.

Er(MeV) Ei(MeV) kr(fm
−1) ki(fm

−1) γ

0.551 -2.349 0.477 -0.378 1.00
0.692 -2.058 0.469 -0.337 1.05
0.789 -1.770 0.458 -0.297 1.10
0.845 -1.487 0.443 -0.258 1.15
0.863 -1.211 0.425 -0.219 1.20
0.841 -0.948 0.403 -0.181 1.25
0.780 -0.701 0.375 -0.144 1.30
0.681 -0.477 0.341 -0.107 1.35
0.543 -0.281 0.298 -0.0724 1.40
0.364 -0.123 0.240 -0.0393 1.45
0.140 -0.0193 0.147 -0.0101 1.50
0.0886 -0.00799 0.117 -0.00526 1.51
0.0339 -0.00125 0.0722 -0.00133 1.52
0.00476 -0.258×10−4 0.0270 -0.734×10−4 1.525
0.00174 -0.338×10−5 0.0163 -0.159×10−4 1.5255
0.521×10−3 -0.284×10−6 0.00895 -0.244×10−5 1.5257
-0.901×10−4 0.830×10−14 0.171×10−14 0.372×10−2 1.5258
-0.132×10−2 0.261×10−14 0.141×10−13 0.0142 1.526
-0.169 0.648×10−10 0.309×10−10 0.161 1.55
-0.606 -1.47×10−11 -3.71×10−12 0.305 1.60

-0.624 -3.49×10−11 -8.67×10−12 0.310 1.60179
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Table 5.2: The calculated bound and resonance state energies of the ΛΛn
system using the two-body potential.

Er(MeV) Ei(MeV) kr(fm
−1) ki(fm

−1) γ

0.0934 -4.198 0.591 -0.578 1.00
0.388 -3.914 0.593 -0.537 1.05
0.696 -3.437 0.585 -0.478 1.10
0.923 -2.983 0.574 -0.423 1.15
1.073 -2.529 0.558 -0.369 1.20
1.157 -2.086 0.537 -0.316 1.25
1.179 -1.664 0.512 -0.265 1.30
1.140 -1.269 0.481 -0.215 1.35
1.04 -0.906 0.444 -0.166 1.40
0.882 -0.584 0.398 -0.120 1.45
0.667 -0.312 0.337 -0.0752 1.50
0.392 -0.107 0.255 -0.0343 1.55
0.0406 -0.00713 0.0865 -0.00163 1.60

0.0316 -0.838×10−3 0.0717 -0.951×10−3 1.60179

0.0299 -0.752×10−3 0.0698 -0.878×10−3 1.602
0.0217 -0.403×10−3 0.0595 -0.551×10−3 1.603
0.0135 -0.156×10−3 0.0468 -0.272×10−3 1.604
0.00509 -0.222×10−4 0.0288 -0.0627 1.605
0.328×10−3 -0.916×10−7 0.00731 -0.102×10−5 1.60556
0.157×10−3 -0.207×10−7 0.506×10−2 -0.333×10−6 1.60558
0.716×10−4 -0.396×10−8 0.00342 -0.943×10−7 1.60559
-0.140×10−4 0.567×10−13 0.306×10−11 0.00151 1.6056
-0.873×10−3 0.548×10−14 0.374×10−13 0.0119 1.6057
-0.00346 0.113×10−15 -3.88×10−16 0.0237 1.606
-0.0392 -4.39×10−15 -4.47×10−15 0.0799 1.61
-0.0864 2.94 ×10−15 2.02×10−15 0.119 1.615
-0.136 1.12×10−15 0.612×10−15 0.149 1.62
-0.187 -9.39×10−16 -4.38×10−16 0.175 1.625
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Table 5.3: Possible calculated resonance energies E1,2,3 = Er − i
2Γ for the

system Λnn using Λn-potential with γ=1.60179.

Λn-potential E1 E2 E3

E(MeV) 0.0390- i20.1718 0.0291- i20.1818 0.0185- i20.1892

Table 5.4: Possible calculated resonance energies E1,2 = Er − i
2Γ for the

system ΛΛn using Λn-potential with γ=1.60179.

Λn-potential E1 E2

E(MeV) 0.143- i28.497 0.173- i29.150

Figure 5.1: The distribution of spectral energy points on the complex energy
plane from Table 5.1.
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Figure 5.2: The distribution of spectral energy points on the complex energy
plane from Table 5.2.

Figure 5.3: The spectral points of the momentum corresponding to the
energies given in Table 5.1 on the complex momentum plane.
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Figure 5.4: The spectral points of the momentum corresponding to the
energies calculated in Table 5.2 on the complex momentum plane.

Figure 5.5: The spectral points of the possible new resonance energies cal-
culated in Table 5.3 and Table 5.4.
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The numerical results for the Λnn and ΛΛn systems obtained after solv-

ing their corresponding first-order differential equations (3.65) are presented

on Table 5.1 and Table 5.2. We firstly located the spectral points (res-

onances) found in Ref.[16] which lie on the unphysical energy sheet. We

found the zeros of three-body Jost functions for the new resonances by ar-

tificially varying the potentials by increasing the scaling factor (γ) in small

steps from unity upwards. These new resonances are actually the known

resonances from Ref.[16] moved to the new positions by making their corre-

sponding potentials more attractive. We continued making potentials more

attractive until the resonances crosses their threshold and move onto the

real negative energy axis on the physical energy sheet.

The spectral points trajectories for both systems are presented on Figure

5.1 and Figure 5.2 on the complex energy plane and are also shown on

the complex momentum plane on Figure 5.3 and Figure 5.4. The spectral

points that lies in the fourth quadrant are resonance states on the unphysical

sheet of Riemann energy surface. The bound states are the spectral points

that lie on the negative real axis and they are on the physical sheet of

Riemann energy surface. For these three-body systems we get different

spectral points when we adjust their corresponding potentials by scaling

factor of γ ∼ 1.60179. The ΛΛn has the resonance state while the Λnn has

a bound state.

The minimum values of γ needed for obtaining the bound states of the

Λnn and ΛΛn systems were 1.6056 and 1.5258, respectively. As the po-

tentials depths increases the resonances below the initial resonance energy

located from Ref.[16] are also pulled up towards the threshold. We located

the possible resonances after increasing potentials depths by scaling factor

of 1.60179 and are presented on Figure 5.5 from Table 5.4 and Table 5.3.
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Conclusion

By adjusting the Λn-potential, we reproduced the bound state energy (∼

50 keV) of the Λn system using the two-body Jost function method. We also

obtained the total cross sections for the Λn system that corresponds well

with experimental cross sections.

In this work we studied the ΛΛn and Λnn systems using the Jost function

method. We described these three-body systems using the hyperspherical

coordinates and numerically solve the system of first-order differential equa-

tions which are equivalent to their corresponding three-body Schrödinger

equation.

The zeros of three-body Jost functions for these three-body (ΛΛn and

Λnn) systems were obtained by multiplying their corresponding two-body

potentials by an appropriate scaling (γ) factors then we got our spectral

points.

Possible resonances for both Λnn and ΛΛn systems were located us-

ing their corresponding two-body potentials multiplied by the scaling factor

γ ∼1.60179 and are given in Table 6.1 .
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Table 6.1: Calculated possible resonances using the scaling factor of γ ∼
1.60179.

Possible resonance states: E(MeV) = Er − i
2Γ

Λnn system

0.0390 - i
20.1718

0.0291 - i
20.1818

0.0185 - i
20.1892

ΛΛn system
0.143 - i

28.497

0.173 - i
29.150
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