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Abstract

Nowadays, Clifford A-algebras are hot areas of research due to their applicability to different disci-

plines; capacity to create relationship between quadratic and linear A-morphisms; and relation to

tensor A-algebras. In this work, we investigate the commutative property of the Clifford functor on

sheaves of Clifford algebras, the natural filtration of Clifford A-algebras, and localization of vector

sheaves; out of which two papers are extracted for publication [43], [44]. To present the thesis in a

coherent way, we organize the thesis in five chapters.

Chapter 1 is a part where relevant classical results are reviewed. Chapter 2 covers basic results

on Clifford A-algebras of quadratic A-modules (which are of course results obtained by Prof. PP

Ntumba [42]).

In Chapter 3, we discuss the commutativity of the Clifford functor Cl and the algebra extension

functor (through the tensor product) of the ground algebra sheaf A of a quadratic A-module (E , q).

We also observe the existence of an isomorphism between the functors S−1 and (S−1A) ⊗ –. As

a particular case, we show the commutativity of the Clifford functor Cl and the localization functor

S−1. A discussion about the localization of A-modules at prime ideal subsheaves and at subsheaves

induced by maximal ideals is also included.

In Chapter 4, we study two main A-isomorphisms of Clifford A-algebras: the main involution and

the anti-involution A-isomorphisms, which split Clifford A-algebras into even sub-A-algebras and

sub-A-modules of odd products. Next, we give a definition for the natural filtration of Clifford A-

algebras and show that for every A-algebra sheaf E , endowed with a regular filtration, one obtains

a new graded A-algebra sheaf, denoted Gr(E), which turns out to be A-isomorphic to E .
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A conclusive remark and list of research topics that can be addressed in connection with this research

do appear in Chapter 5.
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Chapter 1

Preliminary Concepts and Results

1.1 Introduction

In this chapter we review classical concepts and results regarding different algebras (tensor, symmet-

ric, exterior, and Clifford algebras), quadratic modules, and localization of rings and modules. The

results raised in this chapter are ground work for the results obtained in the next chapters in the

setting of sheaves of algebraic structures. The notions of gradation, filtration, opposite and twisted

algebras, and graded isomorphisms are also addressed here so as to lay down a sound background

to the central concept, construction and fundamental properties of Clifford algebras. Definitions

and results stated in the form of remarks and propositions are adopted from the materials cited.

We don’t include the proofs of most of the results in this chapter except the proofs of the results

related to localization.
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1.2 Algebras

Algebras are rings with a compatible vector space or module structure. This section uses a natural

and intuitive way to introduce algebras and reviews algebras with universal properties such as tensor,

symmetric, and exterior algebras which are, of course, related to Clifford algebras.

1.2.1 Definitions and Basic Properties

The points in this section are adopted from [22, pp. 477-479], [50, pp. 28-30], and [53, pp. 27-29].

More detailed information about the proofs of the results can be found from these materials.

Let K be a commutative ring with unity. An abelian group A which has a structure of both an

associative ring and a K-module where the property

λ(xy) = (λx)y = x(λy)

is satisfied for all λ ∈ K and x, y ∈ A is called an associative algebra. We say that A is unital if it

contains an element 1 such that 1.x = x = x.1 for all x ∈ A. A set B ⊂ A is said to generate A if

every element of A can be represented as a linear combination of products of elements of B. The

center of an algebra A is the set Z(A) = {a ∈ A| ab = ba for all b ∈ A}. The center is a commuta-

tive subalgebra containing K. An algebra over K is said to be central if its center coincides with K.

Remark 1.1

i) One can also define an algebra A over K as follows: It is an associative ring A together with

a non-zero ring homomorphism φ : K −→ A such that
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a) φ(K) ⊆ Z(A), i.e., φ(k).a = a.φ(k), for all k ∈ K, a ∈ A.

b) The map K ×A −→ A : (k, a) 7−→ φ(k).a turns A into a K-vector space when K is a

field and A has a unity.

ii) Since φ (from the above item) is non-zero, it follows that φ is injective when K is a field, i.e.,

K ∼= Im(φ). Thus, K may be considered as a subalgebra of A.

iii) An algebra over K is called finitely generated if it is finitely generated as a module over K.

iv) A K-subspace I of A is called a left ideal (resp., a right ideal) of A if for any a ∈ A and

x ∈ I one has a.x ∈ I (resp., x.a ∈ I). I is called a two-sided ideal if it is both a left and

right ideal.

v) If I is a two-sided ideal of A, the factor ring (quotient ring) A/I has a K-algebra structure

induced by A. This algebra is called a factor (quotient) algebra.

vi) A K-algebra A is called left-Noetherian if it satisfies the ascending chain condition on the left

ideals, that is, for any increasing sequence of left ideals I1 ⊆ I2 ⊆ · · · , there exists a number

n such that Ik = In for all k ≥ n. An analogous definition works for a right-Noetherian

algebras. A Noetherian algebra is an algebra which is both left and right Noetherian.

1.2.2 Tensor, Symmetric and Exterior Algebras

Tensor algebra is useful in giving a uniform description of all objects of linear algebra and even in

arranging them in algebraic structure [53, pp. 295]. The tensor algebra of an R-module M , denoted

T (M), is the algebra of tensors on M (of any rank) with multiplication being the tensor product.

12



Definition 1.1 Let R be a commutative ring and M be an R-module. For each k ≥ 1, let

T k(M) = M ⊗R · · · ⊗RM︸ ︷︷ ︸
ktimes

and set T 0(M) = R. Define

T (M) = R⊕ T 1(M)⊕ T 2(M)⊕ · · · = ⊕∞k=0T
K(M).

T (M) is an R-module and if the ring multiplication is defined as

(m1 ⊗m2 ⊗ · · · ⊗mi)(m
′

1 ⊗m
′

2 ⊗ · · · ⊗m
′

j) = m1 ⊗m2 ⊗ · · · ⊗mi ⊗m
′

1 ⊗m
′

2 ⊗ · · · ⊗m
′

j,

T (M) becomes an R-algebra. The algebra T (M) is called the tensor algebra of M .

Explicitly, the tensor algebra satisfies the following universal property, which formally expresses the

statement that it is the most general algebra containing M .

Proposition 1.1 Universal property of tensor algebras [50, pp. 93-94, Prop. 5.2.2] Let

M be an R-module and A an R-algebra. Then for any R-module homomorphism ϕ : M −→ A

there exists a unique R-algebra homomorphism ψ : T (M) −→ A such that ψ|M = ϕ. That is the

following diagram commutes.

M //

ϕ
##

T (M)

ψ
��
A

.

The above universal property shows that the construction of the tensor algebra is functorial in

nature. That is, T is a functor from the category of R-modules to the category of R-algebras. The

functoriality of T means that any R-module homomorphism from M to N extends uniquely to an

algebra homomorphism from T (M) to T (N).

Proposition 1.2 [22, p. 483, Proposition 16.2.5 ] Let M be a free R-module of rank n with basis

e1, · · · , en. Then, T (M) is a free R-module with a basis which consists of all tensors e1⊗ · · · ⊗ en.
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Remark 1.2 Since every element of T (M) is a finite sum of elements of the form m1⊗m2⊗· · ·⊗mn,

as an algebra, it is generated by T 0(M) = R and T 1(M) = M .

From the universal property of the tensor algebra, if we consider only symmetric or skew-symmetric

multilinear maps, we will arrive at the notions of the symmetric or the exterior algebra of M ,

respectively, which are discussed in the next sections.

The symmetric algebra S(M) of an R-module M is an algebra that is constructed from the tensor

algebra T (M) by taking the quotient algebra of T (M) with its two-sided ideal I(M) generated by

all differences of products m1 ⊗m2 −m2 ⊗m1 where m1 and m2 are in M .

Definition 1.2 Let M be an R-module, T (M) its tensor algebra and I(M) the ideal of T (M)

generated by elements of the form m1 ⊗ m2 − m2 ⊗ m1 for m1,m2 ∈ M . The quotient algebra

S(M) = T (M)/I(M) is called the symmetric algebra of M .

Remark 1.3 The following results follow from the definition.

i) [54, p. 66, Proposition 2.14] S(M) is a commutative R-algebra. S(M) is generated as a ring

by S0(M) and S1(M), which are the respective images of T 0(M) and T 1(M). Note that

S0(M) lies in the center of S(M) (which actually follows from the fact that T 0(M) lies in the

center of T (M)) and, by construction, any two elements of S1(M) commute. Thus, S(M)

is generated by a set of pairwise commuting elements, and therefore S(M) is commutative.

ii) [50, p. 97, Corollary 5.3.6] Let M be a free R-module of rank n with basis e1, · · · , en. Then

S(M) is isomorphic to the polynomial algebra in n commuting variables over R, which is

R[x1, · · · , xn].
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The Grassmann or the exterior algebra is constructed like the symmetric algebra where the symmetric

property of the corresponding multilinear map is now replaced by the skew-symmetric property.

Definition 1.3 Let M be an R-module, T (M) its tensor algebra and J(M) the ideal of T (M)

generated by elements of the form m⊗m for any m ∈M . The quotient algebra∧
(M) := T (M)/J(M).

is called the exterior algebra of M.

Remark 1.4 [50, pp. 98-99, Properties 5.4.3]

i) The exterior product m1∧· · ·∧mn is the image of m1⊗· · ·⊗mn under the natural surjection

T n(M) −→
∧n(M).

ii) The is alternating on elements of M , which means that m ∧m = 0 for all m ∈M .

iii) The exterior product is anticommutative on the elements of M . Indeed, if m,n ∈M , then

0 = (m+ n) ∧ (m+ n) = m ∧m+m ∧ n+ n ∧m+ n ∧ n = m ∧ n+ n ∧m.

Therefore,

m ∧ n = - (n ∧m).

Proposition 1.3 Let M be a free R-module of rank n with basis e1, · · · , en. Then the following

hold:

i) [22, p. 487, Proposion 16.4.4] Let k ≥ 1.
∧k(M) is a free R-module with basis {ei1∧· · ·∧eik}

where i1 < · · · < ik. In particular, its rank is given by rk(
∧k(M)) =

 n

k

.

ii) [54, p. 80, Theorem 3.1]
∧

(M) is a free R-module of rank 2n.

15



1.2.3 Grading and Filtration in Algebras

The definitions and results mentioned here can be found in [22] and [50].

Definition 1.4 Let R be a ring. A gradation on R is a decomposition

R = R0 ⊕R1 ⊕R2 ⊕ · · · =
∞⊕
n=0

Rn

of R as a direct sum of subgroups Rn such that RiRj ⊆ Ri+j for all i and j. A ring with a gradation

is called a graded ring.

Remark 1.5

i) The group Rn is called the homogeneous component of R of degree n, and elements of

Rn are called homogeneous elements of degree n. Every r ∈ R has a unique expression

r =
∑

n≥0 rn with rn ∈ Rn for every n and rn = 0 for almost all n. This decomposition is

called the homogeneous decomposition of r, and rn is called the homogeneous component of

r of degree n.

ii) [50, p. 36, Lemma 2.8.3] For an ideal a of a graded ring R, the following three conditions

are equivalent:

1) For every a ∈ a, all homogeneous components of a belong to a.

2) a =
⊕

n≥0(a ∩Rn)

3) a is generated (as an ideal) by homogeneous elements.

Definition 1.5 A left module M over a graded ring R such that M =
⊕∞

n=0 Mn, which is a direct

sum of subgroups Mn, and RiMj ⊆Mi+j is called a graded module. A graded module that is also

a graded ring is called a graded algebra. A graded ring could also be viewed as a graded Z-algebra.

16



Examples

The following are the most common examples of graded algebras.

i) Polynomial rings:- The homogeneous elements of degree n are exactly the homogeneous poly-

nomials of degree n.

ii) The tensor algebra T (M) of a module M :- The homogeneous elements of degree n are the

tensors of rank n, T n(M).

iii) The exterior algebra
∧

(M) and symmetric algebra S(M) are also graded algebras.

Remark 1.6 The following results follow as a natural consequence of the definition.

i) A graded ring is a graded module over itself. A submodule of a module which is graded is

called a graded submodule. An ideal in a graded ring is homogeneous if and only if it is a

graded submodule. A subring is, by definition, a graded subring if it is a graded submodule.

The annihilator of a graded module is a homogeneous ideal.

ii) Any (non-graded) ring R can be given a gradation by letting R0 = R and Ri = 0 for i > 0.

This is called the trivial gradation on R.

iii) Let K be a fixed commutative ring. A superalgebra over K is a K-module A with a direct

sum decomposition A = A0

⊕
A1 together with a bilinear multiplication A× A −→ A such

that AiAj ⊆ Ai+j where the subscripts are read modulo 2. A superring, or Z2-graded ring, is

a superalgebra over the ring of integers Z. The elements of Ai are said to be homogeneous.

The parity of a homogeneous element x, denoted by |x|, is 0 or 1 according to whether it is in

A0 or A1. Elements of parity 0 are said to be even and those of parity 1 to be odd. If x and

17



y are both homogeneous then so is the product xy and |xy| = |x|+ |y|. The identity element

in a unital superalgebra is necessarily even. A commutative superalgebra is one which satisfies

a graded version of commutativity. Specifically, A is commutative if yx = (−1)|x||y|xy for all

homogeneous elements x and y of A.

Definition 1.6 The parity grading of a module M (resp. an algebra A) is merely a decomposition

of M (resp. an algebra A) into a direct sum of submodules M0 and M1 (resp. submodules A0 and

A1), the elements of which are respectively called even or odd.

Remark 1.7 Let A be a superalgebra over a commutative ring K. The submodule A0, consisting

of all even elements, is closed under multiplication and contains the identity of A and therefore

forms a subalgebra of A, naturally called the even subalgebra. It forms an ordinary algebra over K.

In algebra, filtration refers to a family {Si : i ∈ I} of subobjects of a given algebraic structure

S, with the index i running over some index set I that is a totally ordered set and subject to the

condition that if i ≤ j in I then Si ⊆ Sj.

Definition 1.7 A filtered algebra over the field K is an algebra A over K which has an increasing

sequence {0} ⊂ A0 ⊂ A1 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ A of subspaces of A such that

A =
⋃
i∈N

Ai

and is compatible with the multiplication in the following sense

∀m,n ∈ N, Am · An ⊂ An+m.

18



Examples

i) Any graded algebra A graded by N, for example A = A
′
0 ⊕ A

′
1 ⊕ A

′
2 ⊕ · · · =

⊕∞
n=0A

′
n , has

a filtration given by An =
⊕n

i=0A
′
i .

ii) One can construct a graded algebra from a filtered algebra. Indeed if A is a filtered algebra,

with filtration {0} ⊂ A0 ⊂ A1 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ A, the associated graded algebra,

say G(A), can be constructed as follows: Define G(A) =
⊕

n∈NGn , where, G0 = A0, and

∀n > 0, Gn = An/An−1 , and product in G(A) is defined by (x + An−1)(y + Am−1) =

x ·y+An+m−1 for all x ∈ An and y ∈ Am. It is easy to see that the new multiplication is well

defined and endows G(A) with the structure of a graded algebra, with gradation {Gn}n∈N.

Furthermore if A is associative then so is G(A) and if A is unital G(A) will be unital as well.

The following definition is found in [25].

Definition 1.8 Let A be an algebra and (A≤k)k∈Z be a family of submodules of A.

1. The family is called an increasing filtration of A if

i) Every A≤k is contained in A≤k+1;

ii) A≤jA≤k ⊆ A≤j+k ; and

iii) 1A ∈ A≤0.

2. An increasing filtration (A≤k)k∈Z is said to be regular if
⋂
k∈ZA

≤k = 0 and
⋃
k∈ZA

≤k = A.

3. An increasing filtration (A≤k)k∈Z is said to be natural if A≤k = {0} whenever k is a negative

integer.
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In the chapters to come, especially in Chapter 4, we are going to explore different results related to

filtration in the framework of Clifford A-algebras.

1.2.4 Opposite and Twisted Algebras

Our main references for this section are [2] and [25].

Definition 1.9 The opposite algebra Ao or Aop of an algebra A is the algebra with the same set

of elements and the same addition but with multiplication ∗, given by a ∗ b = ba for a and b in A.

Remark 1.8

i) If K is the base ring for the algebra A then the K-dual HomK(M,K) for a right module M

over A is a right module over the opposite algebra Ao of A.

ii) Every algebra morphism ϕ : A −→ B gives rise to an algebra morphism ϕo : Ao −→ Bo

defined by ϕo(xo) := ϕ(x)o.

Definition 1.10 The twisted algebra At of a graded algebra A is the algebra defined by the same set

of elements and the same operations except that multiplication is defined as xtyt = (−1)|x||y|(xy)t,

where |x| and |y| stand for the parity of x and y, respectively.

20



Remark 1.9

i) A twisted opposite algebra Ato of an algebra A is constructed in such a way that both

the properties of opposite and twisted are satisfied. That is Ato is defined by the same

set of elements and the same operations except that multiplication is defined as xtoyto =

(−1)|x||y|(yx)to , where |x| and |y| stand for the parity of x and y, respectively.

ii) (xo)o and (xt)t is identified with x.

iii) If A is graded, bothAo, At, and Ato are also graded.

iv) If ϕ : A −→ B is a graded algebra morphism, then

a) ϕo : Ao −→ Bo defined by ϕo(xo) := ϕ(x)o;

b) ϕt : At −→ Bt defined by ϕt(xt) := ϕ(x)t; and

c) ϕto : Ato −→ Bto defined by ϕto(xto) := ϕ(x)to .

are also graded algebra morphisms of the respective algebras.

v) The set {A,Ao, At, Ato} forms a group of order four under the binary operation ? defined by

the following table

? A At Ao Ato

A A At Ao Ato

At At A Ato Ao

Ao Ao Ato A At

Ato Ato Ao At A

21



Definition 1.11 Let A and B be two graded algebras. The twisted tensor product (or graded

tensor product) of A and B, denoted by A⊗̂B, is the algebra defined by the same set of elements

and the same operations as A⊗B except that multiplication is defined as

(x⊗ y)(x′ ⊗ y′) = (−1)|x
′||y|(xx′ ⊗ yy′).

Remark 1.10 The identity element of the associative algebra A⊗̂B is 1A⊗ 1B. When the charac-

teristic of K is 2, A⊗̂B= A⊗B.

1.2.5 Graded Isomorphisms

Definition 1.12 Let A =
⊕∞

n=0An and B =
⊕∞

n=0Bn be graded R-algebras and η : A −→ B

be a map between them. η is called a graded R-algebra homomorphism if it is an R-algebra

homomorphism that respects grading, i.e., η(An) ⊆ Bn for each n in the indexing set.

Remark 1.11 Every graded algebra with parity grading A = A0⊕A1 admits a graded automorphism

ϕ such that ϕ(x) = (−1)|x|x for every homogeneous x.

Definition 1.13 An automorphism of an algebra A is a linear isomorphism ϕ : A −→ A such that

ϕ(ab) = ϕ(a)ϕ(b). An antiautomorphism of an algebra A is a linear isomorphism α : A −→ A such

that α(ab) = α(b)α(a) for all a, b ∈ A. An (anti)automorphism α is an involution if α2 = id.

Examples

1) Any algebra A over a commutative ring K may be regarded as a purely even superalgebra

over K; that is, by taking A1 to be trivial.
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2) Any Z or N-graded algebra may be regarded as superalgebra by taking the grading modulo 2.

This includes examples such as tensor algebras and polynomial rings over K.

3) In particular, any exterior algebra over K is a superalgebra. The exterior algebra is the standard

example of a supercommutative algebra.

1.3 Clifford Algebras

1.3.1 Introduction

Clifford algebras that developed to generalize the real numbers, complex numbers, quaternions and

several other hypercomplex number systems. They are intimately connected with quadratic forms

and orthogonal transformations.Indeed, the motive for their creation is to address problems that

require finding a K-algebra that contains a quadratic module (M, q) in which q looks like a square,

i.e., problems that seek a K-linear map f : M −→ A, where A is a unital associative K-algebra,

such that f(m)2 = q(m)1A for each m ∈ M . The most familiar Clifford algebra that is developed

so far is the Orthogonal Clifford algebra, which is most commonly referred as Riemannian Clifford

algebra. In this section we shall present a short review of the historical development and applications

of Clifford algebras, define the Clifford algebra of a quadratic module, and see some of the basic

results related to the Clifford algebra of a quadratic module. The references mostly used for this

section are [34, pp.237-238], [18, pp.61-94], [2, pp.5-6], [17], [25], [20, pp.6-8], [47, pp.22-26], [28]

and [49, pp.10-12].
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1.3.2 Historical Remarks on Clifford Algebras

Clifford algebras were discovered by William Kingdon Clifford (in 1878) as part of his search for a

generalization of the quaternions. He considered an algebra generated by V = Rn subject to the

relation v2 = −‖v‖2 for all v ∈ V . Lipschitz (in 1886) was the first to define groups constructed

from the numbers introduced by Clifford and use them to represent rotations in an Euclidean space.

Dirac (in 1928), in his work on the relativistic wave equation of the electron, introduced matrices

that provide a representation of the Clifford algebra of Minkowski space. Brauer and Weyl (in 1935)

connected the Clifford and Dirac ideas with the representations developed for Lie algebras to find

the spinorial and projective representations of the orthogonal groups in any number of dimensions.

1.3.3 Applications of Clifford Algebras

Clifford algebras have important applications in a variety of fields such as differential geometry, the-

oretical physics, cybernetics, robotics, image processing, engineering, computer aided design (CAD),

computer aided manufacturing (CAM), computer graphics, etc. This is so because geometric alge-

bra (a Clifford algebra over K = R) is a powerful mathematical tool that offers a natural and direct

way to model geometric objects and their transformations. It makes geometric objects (points,

lines and planes) into basic elements of computation and defines few universal operators that are

applicable to all types of geometric elements. If we trace back the historical development of the

geometrical modeling (via algebra) of the external world so as to process using computers, it was

linear algebra that was applied for the said purpose. But this approach ends up with a limitation that

all geometric objects have to be represented either by vectors and/or matrices. This assumption

had created a separation between geometric reasoning and matrix-based algorithms, which in turn,

had led to implementation errors of the programs developed at that time. To fill this limitation
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researchers suggested geometric algebra (Clifford Algebra) as an alternative for linear algebra be-

cause of its natural and intuitive way to model and manipulate the geometric objects by way of

unified treatment of subspaces of any dimensionality which makes many operators of the algebra

universally applicable to all types of elements. Furthermore, several mathematical theories, such as

projective geometry, complex numbers and the quaternions, are naturally integrated in geometric

algebra providing a unified framework.

As stated in [26], the applications of Clifford algebra have an enormous range. In the same pa-

per an overview has been given on its applications in areas of neural computing, image and signal

processing, computer and robot version, control problems and other areas that have been developed

over the past 15 years. Interested readers are referred to [26] for detailed information.

1.3.4 Quadratic Modules

The reader is referred to [25] for most of the sequel.

Definition 1.14 1) Let K be a commutative ring with unity and M a K-module. A mapping

q : M −→ K is called a quadratic formon M if

i) q(km) = k2q(m) for all m ∈M and k ∈ K; and

ii) bq : M ×M −→ K defined by bq(m,n) := q(m+ n)− q(m)− q(n) is K-bilinear.

2) M together with q, denoted by (M, q), is called a quadratic module and bq is called the associated

bilinear mapping.
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Remark 1.12

i) bq is symmetric.

ii) Every vector space over K becomes a quadratic space w.r.t. the trivial quadratic form q ≡ 0.

iii) Condition (ii) of the definition of a quadratic form defines an inner product on M ×M .

iv) If Char(K) 6= 2, (M, q) be a free quadratic module and (ei) a basis for M . Then

q(m) = 1
2

∑
i,j bq(ei, ej)mimj, where m =

∑
jmjej

and if there is a basis which is bq-orthogonal, the expression for q(m) reduces to diagonal form

q(m) =
∑

i q(ei)m
2
i , where m =

∑
imiei.

v) As long as Char(K) 6= 2 we can construct q from bq since the equality bq(m,m) = q(2m)−

2q(m) = 2q(m) yields q(m) = 1
2
bq(m,m). It is easy to check that if Char(K) 6= 2 and

bq : M × M −→ K is any symmetric K-bilinear form, then q : m 7−→ 1
2
bq(m,m) is a

quadratic form whose associated symmetric bilinear form is bq.

vi) With every symmetric bilinear mapping bq : M ×M −→ K we can associate a linear mapping

b∗q from M into HomK(M,K) defined by b∗q(m)(m′) := bq(m,m
′). And with every quadratic

form q : M −→ K we can associate q∗ : M −→ HomK(M,K) defined by q∗(m)(m′) :=

bq(m,m
′). We say that q (resp. bq) is nondegenerate if q∗ (resp. b∗q) is bijective, and we

say that q (resp. bq) is weakly nondegenerate if q∗ (resp. b∗q) is injective. When K is a field

and M is a finite dimensional vector space, every weakly nondegenerate quadratic form is

nondegenerate; but if dim(M) is infinite, no quadratic form on M is nondegenerate even if it

is weakly nondegenerate.
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Recall that a sequence of two linear mappings ϕ and ψ:

M ′ ϕ //M
ψ //M ′′ ;

is called an exact sequence if Im(ϕ) = Ker(ψ). A sequence of several mappings, or an infinite

sequence of mappings, is said to be exact if all the subsequences of two consecutive mappings are

exact. A functor F on the category of K-modules ModK into itself is exact if it transforms every

exact sequence into an exact sequence. The functors Hom and
⊗

are not exact for all rings K.

Instead the former is left exact and the latter is right exact. This means that for all modules P and

all exact sequences

0 //M ′ //M //M ′′ ,

N ′ // N // N ′′ // 0 ,

we get these exact sequences;

0 // Hom(N ′′, P ) // Hom(N,P ) // Hom(N ′, P ) ,

0 // Hom(P,M ′) // Hom(P,M) // Hom(P,M ′′) ,

P
⊗

N ′ // P
⊗

N // P
⊗

N ′′ // 0 .

Definition 1.15 A K-module P is called injective if the functor Hom(..., P ) is exact; it is called

projective if the functor Hom(P, ...) is exact; and is called flat if the functor P
⊗

... is exact.

Remark 1.13 Because of the left exactness of the functor Hom and the right exactness of the

functor
⊗

, we get at once the following statements:

i) P is injective iff the mapping Hom(N,P ) −→ Hom(N ′, P ) is surjective whenever N ′ −→ N

is injective.
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ii) P is projective iff the mapping Hom(P,M) −→ Hom(P,M ′′) is surjective whenever M −→

M ′′ is surjective.

iii) P is flat iff the mapping P
⊗

N ′ −→ P
⊗

N is injective whenever N ′ −→ N is injective.

Definition 1.16 A module M is called finitely presented if it is finitely generated and if there exists

a surjective morphism ϕ : P −→M such that P is projective and Ker(ϕ) is finitely generated.

Definition 1.17 Let (M, q) be a quadratic module where bq is the associated bilinear mapping.

Then

1) Two elements x and y of M are said to be orthogonal (with respect to q or bq) if bq(x, y) = 0.

2) For every subset P of M , the set P⊥ := {x ∈ M : x is orthogonal to all the elements of P} is

called the submodule of M orthogonal to P .

3) If (M ′, q′) is another quadratic K-module, their orthogonal sum (M, q) ⊥ (M ′, q′) is the couple

(M ⊕M ′, q ⊥ q′), where q ⊥ q′ is the quadratic mapping on M ⊕M ′ defined in such a way

that:

(q ⊥ q′)(x, x′) = q(x) + q′(x′)

Remark 1.14 i) Let P be a submodule of M . If the restriction of bq is nondegenerate, then

M = P ⊕ P⊥.

ii) It follows from the definition that bq⊥q′((x, x
′), (y, y′)) = bq(x, y) + bq′(x

′, y′).

iii) The quadratic mapping q ⊥ q′ is nondegenerate if and only if both q and q′ are nondegenerate.
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1.3.5 The Clifford Algebra of a Quadratic Module

There are several ways to understand the Clifford algebra Cl(M, q) of a quadratic module (M, q):

from the very abstract to the very concrete. The latter is good for computations, whereas the former

is good to prove theorems which may free us from computations. Here, we will look at Cl(M, q) by

starting with the categorical definition.

Definition 1.18 Let (M, q) be a quadratic module and AK(M, q) be the associated category whose

objects are the linear mappings f : M −→ A, where A is an associative algebra, such that f(m)2 =

q(m)1A (where 1A is the unit of A) for all m ∈ M and whose morphism from f : M −→ A to

g : M −→ B is an algebra morphism h : A −→ B such that g = hof . If AK(M, q) contains an

initial universal object f (which is unique up to isomorphism), its target is called the Clifford algebra

associated with (M, q).

Remark 1.15 i) We use ClK(M, q) or Cl(M, q) to denote the Clifford algebra that is associated

to (M, q). The unit element of AK(M, q) is usually denoted by 1q.

ii) f : M −→ A is an initial universal object in AK(M, q) entails that there is a unique h : A −→

B for each g ∈ AK(M, q) which is g : M −→ B satisfying g = hof .

iii) The objects of AK(M, q) are sometimes called Clifford mappings. Clearly, for all m,n ∈ M

and f ∈ AK(M, q), f(m)f(n) + f(n)f(m) = bq(m,n)1q. Consequently, f(m) and f(n)

anticommute if m and n are orthogonal in M .

iv) From the definition of a Clifford algebra, we deduce that every Clifford map factors uniquely

via the Clifford algebra.
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v) The Clifford algebra Cl(M, q), if it exists, defines a covariant functor from the category of

quadratic K-modules to the category of associative unital K-algebras.

vi) [25, p. 106, Lemma 3.1.1] If I(M, q) is the two sided ideal of T (M) generated by all elements

m⊗m− q(m) where m runs through M , then

Cl(M, q) := T (M)/I(M, q).

From this construction, it is easy to see that the product in Cl(M, q), usually called the

Clifford product, of two elements m ≡ m+ I(M, q) and n ≡ n+ I(M, q) is defined as:

mn = (m+ I(M, q))(n+ I(M, q)) := m⊗ n+ I(M, q).

Note that this product is associative and bilinear.

vii) The fact that Clifford algebras are a generalization of real numbers, complex numbers, and

quaternions can be verified as follows:

a) If M = K = R and q(x) := −x2, then Cl(M, q) = C.

b) If M = R2 and q(x1, x2) := −x2
1 − x2

2, then Cl(M, q) = H.

viii) If (mj)j∈J is a family of generators of M indexed by a totally ordered set J and f is a Clifford

mapping, the products

f(mj1)f(mj2) · · · f(mjn) with n ≥ 0 and j1 < j2 < · · · < jn

constitute a family of generators of Cl(M, q). If dim M = n, then dim Cl(M, q) = 2n.

ix) Since the ideal I(M, q) (in vi above) is not homogeneous, Cl(M, q) doesn’t inherit a grading

from T (M). But since the ideal has even parity, Cl(M, q) does inherit a Z2-grading. Moreover

Cl(M, q) inherits a filtration from the canonical filtration of T (M).
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Definition 1.19 For the Clifford algebra Cl(M, q) and a Clifford mapping f , one can consider a

filtration defined as follows:

1. Cl≤k(M, q) = 0 if k is negative integer;

2. Cl≤k(M, q) = K1q if k = 0;

3. Cl≤k(M, q) = K1q
⊗

f(M) if k = 1; and

4. Cl≤k(M, q) = The submodule of Cl(M, q) generated by all products f(m1)f(m2)...f(mj),

0 ≤ j ≤ k if k ≥ 2.

This filtration is called the natural filtration of the Clifford algebra Cl(M, q).

1.4 Localization of Rings and Modules

The technique of localization reduces many problems in commutative algebra to problems about

local rings. That is, the importance of localization of a ring is to partition the ring, infer results

on those partitions, and try to generalize the results on those partitions(localizations) on the ring.

This often turns out to be extremely useful in a sense that most problems with which commutative

algebra has been successful are those that can be reduced to a local case [16, pp.57], [31, pp.294-

308], [45, p.97]. Localization is a way of introducing “denominators” to a given commutative ring

with unity or a module. That is, it introduces a new ring/module out of an existing one so that it

consists of fractions x
s

where the denominators s range over a multiplicative subset S of the ring R.

The prototype is the construction of the field of fractions for an integral domain. The basic example

for localization of a ring is the construction of the ring Q of rational numbers from the ring Z of
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rational integers. In this section we shall explain how to construct new rings/modules by inverting

more general sets of elements.

1.4.1 Localization of Rings

A ring R is called a local ring if it is commutative and has a unique maximal ideal. Localization

of a ring expands a ring into a local ring by adjoining inverses of some of its elements which are

contained in a set called a multiplicative subset.

Definition 1.20 Let R be a ring and S a subset R. We say that S is multiplicative if

i) 1 ∈ S

ii) st ∈ S for all s, t ∈ S

Remark 1.16 The most common examples of a multiplicative set are < r >:= {rn|r ∈ R and n ≥

0} and R \ p where p is a prime ideal of a commutative ring R.

Construction of the ring of fractions Let R be a commutative ring and S a multiplicative subset

of R. Consider the equivalence relation ∼ on R×S defined by (r, s) ∼ (n, t) iff (ns− rt)u = 0 for

some u ∈ S. Denote by r
s

the equivalence class of (r, s) and the set R × S/ ∼ by S−1R. S−1R is

a commutative ring with unity with respect to addition and multiplication defined as follows:

r

s
+
n

t
:=

rt+ ns

st

r

s

n

t
:=

rn

st

There is a ring homomorphism from R to S−1R, say ψ : R −→ S−1R, defined by r 7−→ r
1
, such that

the image of S consists of units (invertible elements) in S−1R and every q ∈ S−1R is expressible
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in the form q = ψ(t)−1ψ(r) for some r ∈ R and t ∈ S. In such a construction, S−1R satisfies the

following universal property [22, p. 347, Proposition 11.1.2]. Indeed, given any commutative ring

R∗ and a ring homomorphism φ : R −→ R∗ such that φ(s) is a unit of R∗ for all s ∈ S, then there

exists a unique homomorphism η : S−1R −→ R∗ such that the following diagram commutes:

R
φ //

ψ
��

R∗

S−1R

η

;; .

Definition 1.21 Let R be a commutative ring with unity and S a multiplicative subset of R. S−1R

together with ψ is called a ring of fractions (localization) of R with respect to S if

i) ψ(t) is a unit element of S−1R for all t ∈ S.

ii) Every q ∈ S−1R is expressible in the form q = ψ(t)−1ψ(r) for some r ∈ R and t ∈ S.

If R is a commutative local ring and m its maximal ideal, and x ∈ R\m, then x is a unit (otherwise

x generates a proper ideal, not contained in m, which is impossible) [32, p. 110]. These local rings

form local objects in commutative algebra since for any commutative ring R and any prime ideal p

of R, one can localize R at p to get a local ring Rp(see Part 2 in the next example). Recall that an

ideal p of a commutative ring R is a prime ideal if 1 is not in p and for every s, t ∈ R we have the

implication: st ∈ p⇒ s ∈ p or t ∈ p. This is equivalent to saying that R− p is a multiplicative set.

Examples

1) If R is a commutative ring with unity and S = {1}, then S−1R = R.

2) Let R be a commutative ring with unity, p a prime ideal of R, and S the set-theoretic

complement of p. S−1R is called the localization of R at p, which is often denoted by Rp.
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Let R be an integral domain with field of fractions K. Then its localization Rp at a prime

ideal p can be viewed as a subring of K. Moreover,

R =
⋂
p

Rp =
⋂
m

Rm

where the first intersection is over all prime ideals and the second over the maximal ideals.

Remark 1.17

i) S−1R = {0} iff S contains 0 and the ring homomorphism R −→ S−1R is injective if and only

if S does not contain any zero divisors.

ii) It is essential to be clear about the distinction between R/p and Rp. In rough terms we may

think of R/p as being formed from R by ‘putting the elements in p equal to 0’, while Rp is

formed by ‘making the elements outside p invertible’.

iii) [30, pp.428-429] If I is an ideal of R, then S−1I = {s−1i|s ∈ S, i ∈ I} is an ideal of

S−1R. If J is an ideal of S−1R, then R
⋂
J , i.e., the inverse image of J under the canonical

homomorphism ψ, is an ideal of R.

iv) [30, pp.429-430, Corollary 8.48] Let R be a commutative ring with identity.

a) If R is Noetherian, then S−1R is Noetherian.

b) If every nonzero prime ideal in R is maximal, then the same is true for S−1R

c) If I is an ideal of R, then the ideal S−1I of S−1R is proper if and only if I ∩ S = ∅.

.

v) [30, p.432, ] Let R be a commutative ring with identity and I is an ideal R contained in all

maximal ideals. If M is a finitely generated unital R-module and IM = M , then M = 0.
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vi) [13, p.357, Corollary 10.3.3] There is a bijection between the set of prime ideals of S−1R and

the set of prime ideals of R which do not intersect S. This bijection is induced by the given

homomorphism R −→ S−1R.

vii) Another way to describe the localization of a ring R at a multiplicative subset S is via category

theory. Consider all R-algebras A, so that, under the canonical homomorphism R −→ A,

every element of S is mapped into a unit. These algebras are objects of the category, with

algebra homomorphisms as morphisms. Then, the localization of R by S is the initial universal

object of this category.

1.4.2 Localization of Modules

One can apply the construction used in the previous section to a left module M over a ring R so as

to obtain its module of fractions, denoted by S−1M , with denominators in a multiplicative subset

S of R. Here, instead of multiplication, scalar multiplication shall be defined by

r
t
.m
s

:= rm
ts

, where r
t
∈ S−1R and m

s
∈ S−1M .

Then S−1M is a left S−1R-module and there is a canonical module homomorphism η : M −→

S−1M defined by η(m) := m
1

.

Proposition 1.4 [25, p. 22] For every R-linear mapping ϕ : M −→ N of the R-module M into

S−1R-module N , there exists a unique S−1R-linear mapping ϕ̄ : S−1M −→ N making the following

diagram commutative

M
ϕ //

η
��

N

S−1M
ϕ̄

;; .
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Proof. For the proof of the proposition, define ϕ̄(m
1

) = η(m) for each m ∈ M . This clearly gives

the required unique S−1R-linear mapping.

Corollary 1.1 Given a multiplicative set T ⊆ R containing S, we have a unique morphism of

R-modules ηTS : S−1M −→ T−1M making the following diagram commutative

M
ηT //

ηS

��

T−1M

S−1M
ηTS

99 .

This follows immediately from Proposition 1.4. The morphism ηTS sends a fraction m
s

to the same

fraction considered as an element of T−1M .

Proposition 1.5 Let S ⊆ T ⊆ R be multiplicative subsets. Assume that for every t ∈ T there exists

r ∈ R such that tr ∈ S. Then for any R-module M, the canonical morphism ηTS : S−1M −→ T−1M

is invertible.

Proof. Notice that ηTS is surjective. Indeed, given y
t
∈ T−1M and r ∈ R such that tr ∈ S, we

have y
t

= ry
rt

and the latter is in the image of ηTS . On the other hand, ηTS (x
u
) = 0 implies that there

exists t ∈ T such that tx = 0. If r ∈ R is such that tr ∈ S, we get also (rt)x = 0. This proves

that x
u

= 0 in S−1M .

Note that for any morphism of R-modules ϕ : M −→ N , there is a unique morphism of R-modules

S−1ϕ : S−1M −→ S−1N such that the following diagram commutes.

M
ϕ //

ηS

��

N

ηS

��
S−1M

S−1ϕ
// S−1N

If ϕ is surjective/injective, so is S−1ϕ. This actually follows from the following proposition:

36



Proposition 1.6 Let M be an R-module. The kernel of ηS : M −→ S−1M consists of the elements

x ∈M such that sx = 0 for some s ∈ S. Moreover, the natural morphism

S−1M −→ S−1(M/ker(ηS)) (1.1)

is an isomorphism.

Proof. The kernel ηS consists of x ∈ M such that x
1

= 0. This means that (1, x) ∼ (1, 0) which

is equivalent to the existence of s ∈ S with 0 = s(1.x − 1.0) = sx. Let us show that (1.1) is

invertible. Surjectivity is clear. For injectivity, we consider a fraction x
s

in the kernel of (1.1). As

multiplication by s is invertible in S−1(M/ker(ηS)), we know also that x
1

is in the kernel of (1.1).

By the first part of the proposition, there exists s′ ∈ S such that s′x ∈ ker(ηS). Thus, there is

t ∈ S such that ts′x = 0. This implies that x
s

= 0.

Proposition 1.7 Let I ⊂ S−1R be an ideal. Then, I = S−1Io with Io = (ηS)−1(I).

Proof. We know that S−1Io −→ S−1R is injective and its image is contained in I. To show that

S−1Io = I, take r
s
∈ I. Then, r

1
= s r

s
∈ I. It follows that r ∈ Io so that r

s
∈ S−1Io. This proves

the claim.

Remark 1.18

i) [25, p.23, Theorem 1.10.3] Localization of a module is tightly linked the tensor product

S−1M ' S−1R⊗RM

with in an R-isomorphism. This way of thinking about localizing is often referred to as

extension of scalars. As a tensor product, the localization satisfies the usual universal property.
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ii) [50, p.31, Property 2.7.3] Localization of modules is a functor from the category of R-modules

to the category of S−1R-modules.

iii) The localization functor (usually) preserves Hom and tensor products in the following sense:

The natural map

S−1(M ⊗R N) −→ S−1M ⊗S−1R S
−1N

is an isomorphism [25, p.24, Corollary 1.10.5] and if M is finitely presented, the natural map

S−1HomR(M,N) −→ HomS−1R(S−1M,S−1N)

is an isomorphism[25, p.25, Proposition 1.10.8].

iv) [25, p. 61, Proposition 2.3.3] Let q : M −→ N be a quadratic mapping defined on a finitely

presented module M . The following three assertions are equivalent:

a) q is nondegenerate;

b) for every prime ideal p the quadratic mapping qp : Mp −→ Np is nondegenerate; and

c) for every maximal ideal m the quadratic mapping qm : Mm −→ Nm is nondegenerate.
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Chapter 2

Sheaves of Clifford Algebras

This chapter is concerned with the description of sheaves of Clifford algebras (or Clifford A-algebras

in short), which are the natural counterparts of Clifford algebras of quadratic vector spaces in the

sheaf-theoretic context. Points which we feel are vital for their description such as tensor, symmetric,

exterior A-algebras, A-quadratic morphisms, Clifford A-algebras, ideal sheaf of sheaves of rings,

and the parity grading of Clifford A-algebras are included. The case of Clifford A-algebras of

Riemannian quadratic free A-modules of finite rank has also been addressed so as to obtain the

rank of the associated Clifford free A-algebra, which is stated in Theorem 2.3.

In the discussions to come, the pair (X,A), or just A, will denote a fixed C-algebraized space, i.e.,

A is a sheaf of unital and commutative C-algebras over a topological space X. We will assume

that all sheaves encountered herein are defined over the topological space X. On the other hand,

we will also mainly use the notation of [35]; thus, for instance, A-ModX will stand for the category

of A-modules with their respective A-morphisms.
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2.1 Preliminary on sheaves and presheaves

Definition 2.1 By a sheaf (of sets) one means a triple (S, π,X), where S and X are topological

spaces and π : S → X is a (surjective) local homeomorphism,i.e., for every z ∈ S, there exists an

open neighborhood V of z in S such that π(V ) is an open neighborhood of π(z) in X and the

restriction of π to V is a homeomorphism.

Remark 2.1 i) Instead of the triple, it is common to refer just to S, by simply saying S is a

sheaf over X (or S is a sheaf space).

ii) For any x ∈ X, the set Sx := π−1({x}) ≡ π−1(x) is called the of S over x ∈ X, or the of S

at x.

iii) By a of a given sheaf S over X, one means any open subset E of S such that (E , π|E , X) is

a sheaf over X.

iv) Let (S, π,X) be a sheaf and U be an open subset of X. A in S over U is a continuous map

s : U → S such that π ◦ s = idU .

Definition 2.2 A F of sets on X is an assignment (correspondence) that associates a set

F (U) to every open subset U of X in such a way that the following conditions are satisfied:

a) For any open sets U , V of X, with V ⊆ U , there exists a restriction map

σUV : F (U)→ F (V ).

b) For every open set U of X, σUU = idF (U).
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c) For any open sets U , V , W in X, with W ⊆ V ⊆ U , σUW = σVW ◦ σUV .

F (U)

σUV
��

σUW

$$
F (V )

σVW

// F (W )

Notation If S is a sheaf on a topological space X, then S(U) ≡ Γ(U,S), stands for the set of

local sections of S on U , and Γ(S) := ΓS ≡ (Γ(U,S), σUV ), where σUV is the restriction map, stands

for the presheaf of sections of S.

Definition 2.3 Let F ≡ (F (U), σUV ) be a presheaf (of sets) on a topological space X. Then, we

say that F is a complete presheaf if the following conditions are satisfied:

i) If U is an open subset of X and U ≡ {Ui}i∈I is an open covering of U , and s1, s2 ∈ F (U)

such that σUUi(s1) = σUUi(s2), for every i ∈ I, then s1 = s2 (the converse is certainly true).

ii) Let U and U be as in (1); moreover let (si) ∈
∏

i F (Ui) such that, for any Uij ≡ Ui ∩Uj 6= ∅

in U one has

σUiUij(si) ≡ si|Uij = sj|Uij ≡ σ
Uj
Uij

(sj).

Then, there exists an element s ∈ F (U) such that σUUi(s) ≡ s|Ui = si, for all i ∈ I.

Remark 2.2 ΓS is also a complete presheaf.

Definition 2.4 Let ShX and CoPShX be the category of sheaves (of sets) and the category of

complete presheaves on X, respectively. The mapping

Γ : ShX −→ CoPShX

defined by S 7−→ Γ(S) is called the section functor .
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Remark 2.3

i) A presheaf of an algebraic structure (groups, rings, modules, etc) on a topological space X

is a contravariant functor of the category of open subsets of X into a particular category

whose objects are sets with the type of algebraic structure under consideration. For example,

if F ≡ (F (U), σUV ) is a presheaf of groups on X, then each one of the sets F (U), U ⊆ X,

is a group and for each pair of open sets V , U in X, with V ⊆ U , the restriction map

σUV : F (U) → F (V ) is a group morphism and the corresponding stalk of F at x ∈ X,

Fx = lim←−
x∈U

F (U) is a group.

ii) [35, p. 99, Definition 1.6] Let A ≡ (A(U), σUV ) be a presheaf of C-algebras and E ≡

(E(U), ρUV ) be a presheaf of abelian groups, on a topological space X, such that

a) E(U) is a (left) A(U)-module for every open subset U of X; and

b) For every open sets V , U in X, with V ⊆ U , one has ρUV (a.s) = σUV (a).ρUV (s), for any

a ∈ A(U) and s ∈ E(U).

Then, E is called a presheaf of modules (more precisely, of A(U)-modules) on X. Yet, it is

customary to say, simply, that E is an A-presheaf on X.

Definition 2.5 Let E ≡ (E(U), ρUV ) and F ≡ (F (U), λUV ) be two presheaves on a topological

space X.

1. By a morphism of presheaves E into F , say φ, denoted by φ : E → F , one means a

family of maps, indexed by τ (the topology of X), say, φ ≡ (φU)U∈τ , in such a manner that
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φU : E(U)→ F (U), U ∈ τ , while, for any U , V in τ , V ⊆ U , the following diagram of maps

E(U)

ρUV
��

φU // F (U)

λUV
��

E(V )
φV // F (V )

commutes.

2. If A ≡ (A(U), σUV ) is a presheaf of algebras and E and F are A-presheaves, φ ≡ (φU)U∈τ is

called a morphism of A-presheaves (A-morphism) if φ is a morphism of E into F and φU is

an A(U)-morphism of the A(U)-modules concerned.

3. For a presheaf E ≡ (E(U), ρUV ) there is an associated sheaf (E , π,X) where the individual

members of E and the corresponding local sections of E (over the same subset of X) are

related by a canonical map

ρU : E(U) −→ Γ(U, E) ≡ E(U)

defined by

s 7−→ s̃

where s is a section in E(U) and s̃ is the class of local sections of E over U that have the same

germ at each x ∈ U . This sheaf (E , π,X) is called the sheafification of E ≡ (E(U), ρUV ). It

is written as E = S(E).

4. Let PShX and ShX be the category of presheaves (of sets) and the category of sheaves (of

sets) on X, respectively. The mapping

S : PShX −→ ShX

where S is defined as in (3) is called the sheafification functor .
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Remark 2.4

i) The sheafification of a given presheaf endowed with an algebraic structure yields a sheaf with

simillar structure. i.e., the sheafification functor preserves algebraic structure. More generally,

a given sheaf of sets S on a topological space X is endowed with some particular algebraic

structure if and only if this is the case for its complete presheaf of sections Γ(S) on X.

ii) If φ : E → F is an A-morphism in the category of A-presheaves on X (denoted by A−PShX),

then φ̃ ≡ S(φ) is an A-morphism in the category of A-modules.

iii) Let F be an A-module on a topological space X and E a sub-A-module of F . Then for every

short exact A-sequence

0 −→ E −→ F −→ S −→ 0

one has S = F/E within A-isomorphism.

iv) In this thesis, A-modules (resp. A-algebras) on a topological space X will also be referred

to as AX-modules (resp. AX-algebras) or simply as A-modules (resp. A-algebras) if the

context is understood.

Definition 2.6 Let E be an A-module.

1) E is called a free A-module of rank n, (n ∈ N), whenever one has E = An, within A-

isomorphism.

2) E is called a vector sheaf (locally free A-module of finite rank n) (n ∈ N) on X, if for every

x ∈ X, there exists an open neighborhood U of x in X such that

E|U = An|U
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within A|U -isomorphism.

3) E is called a line sheaf if it is a vector sheaf of rank one.

4) Given a locally free A-module of finite rank n. An open covering of X, say, U = (Uα)α∈I,

satisfying E|Uα = An|Uα within an A|Uα-isomorphism, is called a local frame of E . Moreover,

any open set U in X for which E|U = An|U holds (within an A|U-isomorphism) is called a

local gauge of E .

5) 5.1) An A-valued inner product ρ on E is a sheaf morphism ρ : E ⊕ E −→ A which is

A-bilinear, positive definite, and symmetric.

5.2) If ρ is an A-valued inner product on E , then the pair (E , ρ) is called an inner product

A-module on X.

5.3) An A-valued inner product ρ on E is said to be strongly non-degenerate whenever the

induced A-morphism ρ̄ : E −→ E∗ ≡ HomA(E ,A) is an A-isomorphism of the A-

modules involved.

5.4) A Riemannian A-module E on X is an A-module E on X endowed with a strongly

non-degenerate A-valued inner product.

6) A sheaf morphism q : E −→ A of the underlying sheaves of sets of E and A is called a A-

quadratic morphism if for every open U ⊆ X, the set map qU : E(U) −→ A(U) is quadratic.

i.e., for any open U ⊆ X and sections λ ∈ A(U) and s, t ∈ E(U) one has

i) qU(λs) = λ2qU(s); and

ii) bqu : E(U) × E(U) −→ A(U) defined by bqu(s, t) := qU(s + t) − qU(s) − qU(t) is

A(U)-bilinear.
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The pair (E , q), where q is A-quadratic, is called a quadratic A-module.

7) A quadratic A-module (E , q) is called Riemannian quadratic A-module if the q-induced A-

bilinear morphism b is a Riemannian A-metric, i.e., a strongly non-degenerate, symmetric and

positive definite A-valued inner product.

It is also possible to define the notions of an A-quadratic morphism and quadratic A-module as

follows.

Definition 2.7 Let E be an A-module and F : A-ModX −→ ShSetX the forgetful functor of the

category ofA-modules into the category of sheaves of sets. A morphism q ∈ HomShSetX (F (E), F (A))

is called A-quadratic on E if the following are satisfied:

(1) Given any open subset U of X and scalar λ ∈ A(U), define λ ∈ HomA(U)(A(U),A(U)) ≡

EndA(U)A(U) ' A(U) by

λ(s) := λs,

for every s ∈ A(U). Then,

qU ◦ λ ≡ q ◦ λ := ev(λ2, q(−)) ≡ evU(λ2, qU(−)),

where ev ∈ HomShSetX (F (EndAA)⊕ F (A), F (A)) (ev is called the evaluation morphism)

is given by

evU(ψ, α) ≡ ev(ψ, α) := ψU(α) ≡ ψU · α

for any open U ⊆ X and sections α ∈ A(U) and ψ ∈ (EndAA)(U).

(2) The morphism Bq ∈ HomShSetX (F (E)⊕ F (E), F (A)), given by

Bq := (q ◦+)− (q ◦ pr1)− (q ◦ pr2), (2.1)
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where pri,+ : F (E) ⊕ F (E) −→ F (E) are the i-th projection and addition morphisms,

respectively, is A-bilinear.

The pair (E , q) is called a quadratic A-module.

We shall denote by

QA|U (E|U ,A|U) (2.2)

the group of A|U -quadratic morphisms on E|U . The set (2.2) is an A(U)-module. In fact, for any

α ∈ A(U) and q ≡ (qV )U⊇V, open ∈ QA|U (E|U ,A|U), one sets the following:

(α · q)V := α|V · qV ≡ α · qV ,

which thus provides the A(U)-module structure of (2.2). On the other hand, it is readily verified

that the collection (QA|U (E|U ,A|U), σUV ) is a complete presheaf of modules (the restriction maps

are defined as follows: if q ∈ QA|U (E|U ,A|U), then σUV (q) := (qW )V⊇W, open). The sheaf generated

by this complete presheaf is called the sheaf of quadratic morphisms of E and is denoted

Q(E ,A) ≡ Q(E).

Given an arbitrary A-bilinear form b on E , the morphism

qb := b ◦∆, (2.3)

where ∆ is the diagonal A-morphism of E (that is, for every open U in X and section s in E(U),

∆U(s) ≡ ∆(s) := (s, s)), is clearly a quadratic A-morphism on E .

Let B(E) ≡ L2
A(E , E ;A) be the A-module of A-bilinear forms (cf. [39]), the ShSetX- morphism

Ξ : B(E) −→ Q(E) such that

ΞU(b) := qb, (2.4)
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for any open U ⊆ X and section b ∈ B(E)(U) := L2
A|U (E|U , E|U ;A|U), where qb is given as in (2.3),

is clearly an A-morphism, with the sub-A-module A(E) of skew-symmetric A-bilinear forms being

the kernel of Ξ. On the other hand, it is immediate that Θ : Q(E) −→ B(E), such that, for every

open U ⊆ X and section q ∈ Q(E)(U),

ΘU(q) := Bq, (2.5)

where Bq is as given in 2.1, is an A-morphism of Q(E) into the sub-A-module S(E) of B(E) of

symmetric A-bilinear forms.

Suppose now that the characteristic of A is not 2, that is the characteristic of every individual

algebra A(U), where U is an open subset of X, is not 2. In the above A-morphism Θ, let’s replace

Bq in (2.5) by the symmetric A|U -bilinear form

bq :=
1

2
Bq (2.6)

for every quadratic A|U -form q ∈ Q(E)(U). So, one has

bq =
1

2
{(q ◦+)− (q ◦ pr1)− (q ◦ pr2)}, (2.7)

where pri : E|U ⊕E|U −→ E|U (i = 1, 2) is the i-th projection and, as expected, + : E|U ⊕E|U −→

E|U is the addition A|U -morphism. Clearly,

bq ◦∆ = q, (2.8)

with ∆ the diagonal A|U -morphism on E|U .

Setting

Θ̃ =
1

2
Θ,
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one has

Ξ ◦ Θ̃ = IdQ(E),

which implies that Θ̃ is injective and Ξ surjective. Clearly, ImΘ̃ ⊆ S(E). Conversely, for any

symmetric b ∈ B(E)(U), one has that ΞU(b) := qb = b ◦∆ and

bq = b.

Thus, if we consider Ξ|S(E), it is clear that

Θ̃ ◦ ΞS=IdS(E) .

Hence, we have proved:

Proposition 2.1 Let (E , q) be a quadratic A-module, with A a sheaf of algebras of characteristic

other than 2. Then,

Q(E) = S(E), (2.9)

within an A-isomorphism.

We come now to the following crucial notion.

Definition 2.8 Let (E , q) be a quadratic A-module, and K an associative and unital A-algebra. A

sheaf morphism ϕ ∈ HomA(E ,K) is called a Clifford sheaf morphism if

ϕ2 = ev(q,−) · 1, (2.10)

where: (a) ev : HomA(E ,A)⊕ E −→ A is the evaluation A-morphism. (b) 1 ∈ HomShSetX (K,K)

is the constant ShSetX-morphism 1W (t) = 1K(W ) for every open W ⊆ X and section t ∈ K(W ).
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For every open U ⊆ X and section s ∈ E(U), (2.10) becomes

ϕU(s)2 ≡ ϕ(s)2 := q(s) · 1 ≡ qU(s) · 1K(U).

On the other hand, let us consider another section t ∈ E(U); then, we have

ϕU(s)ϕU(t) + ϕU(t)ϕU(s) = 2bU(s, t) · 1K(U), (2.11)

where

b := Θ̃X(q).

We will call b the A-bilinear morphism induced by the quadratic A-morphism q.

2.2 Tensor, Symmetric, and Exterior Algebra Sheaves of A-

modules

In this section we briefly discuss tensor, symmetric and exterior algebra sheaves since they relate to

Clifford A-algebras.

Definition 2.9 LetA ≡ (A(U), πUV ) be a commutative and unital algebra sheaf and E ≡ (E(U), ρUV )

be an A-module. One defines the tensor algebra sheaf of E , denoted T (E), as the sheafification of

the Γ(A)-presheaf

T (Γ(E)) ≡ (T (Γ(E))(U) := T (E(U)), σUV ), (2.12)

where T (E(U)) is the tensor algebra of the A(U)-module E(U), viz.,

T (E(U)) = ⊕∞n=0T
n(E(U)),
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where

T n(E(U)) := E(U)⊗A(U) · · · ⊗A(U) E(U)︸ ︷︷ ︸
n times

,

with

T 0(E(U)) := A(U) and T 1(E(U)) := E(U).

Remark 2.5

i) By taking the respective sheafifications of the presheaves (T 0(E(U)), πUV ) and (T 1(E(U)), ρUV ),

one obtains

T 0(E) = A and T 1(E) = E

within A-isomorphisms. Moreover, for any finite sequence (s1, · · · , sn), n > 2, of sections in

E(U), where U ∈ τX , and any open V ⊆ U ,

σUV (s1 ⊗ · · · ⊗ sn) = ρUV (s1)⊗ · · · ⊗ ρUV (sn) ≡ s1|V ⊗ · · · ⊗ sn|V .

.

ii) Let E and F be A-modules on X and U ∈ τX . Then for any A(U)-morphism ϕU : E(U) −→

F(U), there is a unique morphism of A(U)-algebras T (ϕU) : T (E(U)) −→ T (F(U)) making

the following diagram of A(U)-modules commute.

E(U)

��

ϕU // F(U)

��
T (E(U))

T (ϕU )// T (F(U))

This defines a functor T : A−PShX −→ A−AlgX from the category of Γ(A)-presheaves of

modules over the topological space X into the category of Γ(A)-presheaves of algebras over

X (see [35, p. 111]).
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Lemma 2.1 Let (X,A) be an algebraized space, E and K, respectively, an AX-module and an

AX-algebra, and ϕ : E −→ K an A-morphism. Then, ϕ extends uniquely to an A-morphism

ψ : T (E) −→ K of AX-algebras.

Proof. We consider the generating presheaf

T (Γ(E)) :=
(
T (Γ(E))(U) ≡ T (E(U)), σUV

)
of the AX-algebra T (E). For any sections s1, s2, . . . , sk in E(U), where U ⊆ X is open, let

(Γ(ψ))U(s1 ⊗ · · · ⊗ sk) := ϕU(s1) · · ·ϕU(sk)

where (Γ(ψ))U : T (E(U)) −→ K(U) is the (unique) extension of the A(U)-morphism ϕU :

E(U) −→ K(U) on T (E(U)), (cf. [25, p. 8, Proposition 1.4.1]). It is clear that the family

(Γ(ψ))U∈τX yields a unique Γ(A)-morphism

Γ(ψ) : T (Γ(E)) −→ Γ(K)

extending the Γ(A)-morphism Γ(ϕ) ≡ ϕ : Γ(E) −→ Γ(K). Thus, the sheafification S(Γ(ψ)) ≡ ψ

extends uniquely the A-morphism ϕ.

Definition 2.10 Let E be an A-module and T (E) the tensor algebra sheaf of E . For each open

subset U of the topological space X, let I(U) be the two sided ideal of T (E(U)) generated by

elements of the form s1 ⊗ s2 − s2 ⊗ s1 where s1, s2 ∈ E(U). The quotient algebra sheaf S(E)

generated by the Γ(A)-presheaf U 7−→ T (E(U))/I(U) is called the symmetric algebra sheaf of E .

Definition 2.11 Let X be a topological space and R ≡ (R, π,X) a sheaf of rings on X. A left

ideal sheaf J in R is a subsheaf J of R satisfying the following conditions:
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(1) J is a sheaf of abelian groups in R,

(2) For every x ∈ X and z ∈ Rx, zJx ⊆ Jx.

Equivalently (see [35, p. 104, (1. 67)]), an ideal sheaf J in a sheaf of rings R is a subsheaf of R

such that J is a sheaf of abelian groups in R and

R(U)J (U) ⊆ J (U),

for every open U in X.

Remark 2.6

i) The ideal sheaf I, obtained by sheafifying the presheaf I ≡ (I(U))U∈τX (cf. Definition

2.10) is a graded subsheaf of the tensor algebra sheaf T (E) since its corresponding presheaf

is generated by homogeneous elements. Therefore S(E) is also a graded algebra sheaf with

grading

S(E) = ⊕∞n=0Sn(E).

ii) S(E) is a commutative A-algebra. Indeed, T (E) is generated by T 0(E) = A and T 1(E) = E ,

and therefore S(E) is generated by S0(E) and S1(E). Note that, for each open U ⊆ X,

S0(E(U)) lies in the center of S(E(U)) (for T 0(E(U)) lies in the center of T (E(U))), and by

construction any two elements of S1(E(U)) commute. Thus, S(E(U)) is generated by a set

of pairwise commuting elements, and therefore S(E) is commutative.

Definition 2.12 Let E be an A-module and T (E) the tensor algebra sheaf of E . For each open

subset U of the topological space X, let I(U) be the two sided ideal of T (E(U)) generated by

elements of the form s ⊗ s where s ∈ E(U). The quotient algebra sheaf
∧

(E) generated by the

Γ(A)-presheaf U 7−→ T (E(U))/I(U) is called the exterior algebra sheaf of E .
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As is in ([35, pp.307-315]), the exterior algebra of E , which is denoted by
∧
E , is given by

∧
E := ⊕∞n=0

∧
nE ,

where
∧

nE , is the sheafification of the presheaf of A(U)-algebras
U 7−→

∧
n(E(U)) ≡

∧
n
A(U)(E(U)), n ≥ 2

U 7−→
∧

n(E(U)) := E(U), n = 1

U 7−→
∧

n(E(U)) := A(U), n = 0

where U ranges over the open subsets of X.

From the definition it follows that

∧
0E = A and

∧
1E = E ,

within A-isomorphisms. Moreover, the exterior algebra
∧
E can be constructed (ibid.) as the

sheaf generated by the presheaf of A(U)-algebras, which to each open set U ⊆ X, assigns the

corresponding exterior algebra

∧
E(U) ≡ ⊕∞n=0

∧
n(E(U)).

Remark 2.7

i) Similar to the case of symmetric algebra sheaves, the exterior algebra sheaf of an A-module

E has a natural grading. That is,
∧

(E) is also a graded algebra sheaf with grading

∧
(E) = ⊕∞n=0

∧
n(E).

ii) We will show in the next section that, given an AX-module E , the exterior A-algebra
∧

(E)

is isomorphic to the Clifford A-algebra of the quadratic A-module (E , q ≡ 0).
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Definition 2.13 Let R be a sheaf of rings on a topological space X and S ⊆ R a sheaf of

nonempty sets in R. By a subring sheaf in R, generated by S, we mean the smallest subring sheaf

in R containing S. Likewise, the ideal sheaf in R generated by S is the smallest ideal sheaf in R

containing S.

As in the classical case, we have the following.

Lemma 2.2 Let S ⊆ R be a sheaf of nonempty sets in a sheaf of unital rings R, defined on a

topological space X. Then, the ideal sheaf in R, generated by the presheaf of sets S, is the sheaf

obtained from the presheaf of sets J(S) such that, for every open U in X,

J(S)(U) := {
n∑
i=1

αisiβi : αi, βi ∈ R(U), si ∈ S(U), n ≥ 1}.

Moreover, if R is commutative, then

J(S)(U) = {
n∑
i=1

αisi : αi ∈ R(U), si ∈ S(U), n ≥ 1}.

Proof. Let τ be the topology considered on X. For any U, V ∈ τ with V ⊆ U , let

λUV (
n∑
i=1

αisiβi) :=
n∑
i=1

ρUV (αi)σ
U
V (si)ρ

U
V (βi) ≡

n∑
i=1

αi|V si|V βi|V ,

where the (ρUV )U, V ∈T and (σUV )U, V ∈τ are the restriction maps for the (complete) presheaves of

sections of the sheaves R and S, respectively. It clearly follows that the collection J(S) ≡

(J(S)(U), λUV )U,V ∈τ is a subpresheaf of ideals of the (complete) presheaf of sections Γ(R) ≡

(R(U), ρUV )U, V ∈τ . Hence, S(J(S)) is an ideal sheaf in R.

The second statement of the lemma is simply a particular case of the first statement.
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2.3 Clifford A-algebras of Quadratic A-modules

Roughly speaking, a sheaf of Clifford algebras or a Clifford A-algebra of a quadratic A-module (E , q)

on a topological space X is a universal A-algebra into which we can embed E , and such that the

square of an A-morphism in the sought A-algebra corresponds to the quadratic A-morphism on E .

This loose definition of a Clifford A-algebra may be traced back to [32, p. 749].

Definition 2.14 By a Clifford A-algebra of a quadratic A-module (E , q), we mean any pair (C, ϕC),

where C is an associative and unital A-algebra and ϕC ∈ HomA(E , C) is a , which satisfies the

following conditions:

(1) C is generated by the sub-A-algebra ϕC(E) and the unital line sub-A-algebra 1C of C.

(2) Every Clifford A-morphism ϕ ∈ HomA(E ,K), where K is an associative and unital A-algebra,

factors through the Clifford A-morphism ϕC, i.e., there is a 1-respecting A-algebra morphism

Φ ∈ HomA(C,K) such that

ϕ = Φ ◦ ϕC.

Since Φ(ϕC(E)) = ϕ(E), C is generated by its unital line sub-A-algebra and the sub-A-algebra

ϕC(E), and Φ is 1-respecting, it follows that Φ is uniquely determined by the Clifford A-morphism

ϕ. If we denote by

HomCl
A (E ,K)

the sheaf of Clifford maps, then HomCl
A (E ,K) is isomorphic to a subsheaf of HomA(C,K). In fact,

given any open subset U of X, let ϑ ∈ HomCl
A (E ,K)(U), that is, ϑ ∈ HomCl

A|U (E|U ,K|U). Since C ≡

(C, ϕC) is a CliffordA-algebra of (E , q), for any open V ⊆ U , there is a ΘV ∈ HomA(V )(C(V ),K(V ))

such that ΘV (1C(V )) = 1K(V ) and ϑV = ΘV ◦(ϕC)V . We contend that the family Θ ≡ (ΘV ) openV⊆U
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defines an A|U -morphism Θ ∈ HomA|U (C|U ,K|U) ≡ HomA(C,K)(U). Since, for any open V ⊆ U ,

ΘV ∈ HomA(V )(C(V ),K(V )) and ΘV (1C(V )) = 1K(V ), we need only show that if (λUV ), (ρUV ) and

(σUV ) are the families of restriction maps of the sheaves K, E and C, respectively, then

λUV ◦ΘU = ΘV ◦ σUV ,

for any open sets U , V in X with V ⊆ U . With no loss of generality, let s ∈ C(U), with s = (ϕC)U(e)

for some e ∈ E(U). Then, based on the diagram below

E(U)
ϑU //

ρUV

{{
(ϕC)U
��

K(U)

λUV

��

E(V )

(ϕC)V ## ϑV
++

C(U)

σUV
��

ΘU

;;

C(V )
ΘV
// K(V )

,

clearly, one has

(λUV ◦ΘU)((ϕC)U(e)) = (λUV ◦ ϑU)(e) = (ϑV ◦ ρUV )(e)

= (ΘV ◦ (ϕC)V ◦ ρUV )(e) = (ΘV ◦ σUV )((ϕC)U(e)).

Next, for every open U in X, we denote by HomA|U (C|U ,K|U) the A(U)-module consisting of

A|U -morphisms Θ, uniquely determined by Clifford A|U -morphisms ϑ ∈ HomCl
A|U (E|U ,K|U). Fur-

thermore, let (αUV ) be the collection of restriction maps for the A-module HomA(C,K). The

collection

(HomA|U (C|U ,K|U), αUV ) (2.13)

clearly determines a presheaf. Moreover, it is a complete presheaf. Indeed, if U = ∪i∈IUi and

Θ1, Θ2 ∈ HomA|U (C|U ,K|U) with

αUUi(Θ1) ≡ Θ1|Ui = Θ2|Ui ≡ αUUi(Θ2)
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for every i ∈ I, then, clearly, Θ1 = Θ2. Now, let (Θi) ∈
∏

i∈I HomA|U (C|U ,K|U) such that, for any

Uij ≡ Ui ∩ Uj 6= ∅ in U ≡ {Ui, i ∈ I}, one has

Θi|Uij = Θj|Uij .

Then, since HomA|U (C|U ,K|U) ⊆ HomA|U (C|U ,K|U) = HomA(C,K)(U), for any open U in X,

there is Θ ∈ HomA(C,K)(U) such that

Θ|Ui = Θi,

for every i ∈ I. It follows that Θ is 1-respecting; in addition, since it is linear, Θ ∈ HomA|U (C|U ,K|U).

Hence,

HomCl
A (E ,K) ' HomA(C,K) ⊆ HomA(C,K),

where HomA(C,K) is the sheafification of the complete presheaf (2.13).

Condition (2) of Definition 2.14 could therefore be restated as follows:

(2′) For every associative and unital A-algebra K, HomCl
A (E ,K) is isomorphic to a subsheaf of

HomA(C,K).

Lemma 2.3 Let (C, ϕC) be a Clifford A-algebra of a quadratic A-module (E , q). Then, (C ′, ϕC′) is

also a Clifford A-algebra of (E , q) if and only if there is an A-isomorphism Φ : C −→ C ′ such that

Φ ◦ ϕC = ϕC′ .

Proof. Suppose (C ′, ϕC′) is also a Clifford A-algebra. Then, there exist unique A-morphisms

Φ : C −→ C ′ and Φ′ : C ′ −→ C such that Φ ◦ ϕC = ϕC′ and Φ ◦ ϕC′ = ϕC. Since Φ′ ◦ Φ ◦ ϕC =

Φ′ ◦ ϕC′ = ϕC, the diagram

E ϕC //

ϕC
��

C

C
Φ′◦Φ

??
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is commutative. But, only one A-morphism exists making the above diagram commutative; and

clearly IdC does just that. As C is generated by ϕC(E) and its unital line sub-A-algebra, Φ′ ◦Φ = 1C.

In a similar way, one shows that Φ ◦ Φ′ = 1C′ , whence we see that Φ is an A-isomorphism with

Φ−1 = Φ′.

Let (E , q) be a quadratic AX-module, and denote by ACl(E , q) ≡ ACl(E) the category, described

as follows (see [25] for classical notations) : (i) its objects are the Clifford A-morphisms

ϕ ∈ HomCl
A (E ,K) ⊆ HomA(E ,K) (2.14)

where K is any associative and unital AX-algebra.

(ii) Given objects ϕ ∈ HomCl
A (E ,K) and ψ ∈ HomCl

A (E ,L) (K and L are associative and unital

AX-algebras), a morphism u : ϕ −→ ψ is a 1-respecting A-morphism of AX-algebras K and L

such that

ψ = u ◦ ϕ.

If the categoryACl(E , q) contains an initial universal object ρ (which is unique up toA-isomorphism),

its target is called the Clifford AX-algebra sheaf associated with the quadratic AX-module (E , q);

we shall denote it by ClA(E , q) ≡ Cl(E , q) ≡ Cl(E).

The universality of ρ means that, for every object ϕ ∈ HomCl
A (E ,K), there exists a unique 1-

respecting A-morphism u of A-algebra sheaves ClA(E , q) and K such that ϕ = u ◦ ρ. It is clear

that ClA(E , q) ' A when E is reduced to the zero sheaf on X.

For the purpose of Theorem 2.1 below, we recall (see, for instance, [35, p. 129, (5.5)]) that given

two presheaves of sections Γ(E) ≡ (E(U), ρUV ) and Γ(F) ≡ (F(U), σUV ) on a topological space X,

the correspondence

U −→ E(U)⊗A(U) F(U),
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with U running over the open sets in X, along with the obvious restriction morphisms, yields a

presheaf of Γ(A)-modules on X, which we denote by

Γ(E)⊗Γ(A) Γ(F).

In the same vein, we denote by T (Γ(E)) the tensor algebra presheaf

Γ(A)⊕ Γ(E)⊕ Γ(E)⊗Γ(A) Γ(E)⊕ Γ(E)⊗Γ(A) Γ(E)⊗Γ(A) Γ(E)⊕ · · ·

on X.

Theorem 2.1 Let (E , q) be a quadratic AX-module and I(E , q) the two-sided ideal presheaf in the

tensor algebra presheaf T (Γ(E)) such that, for every open U in X, I(E , q)(U) is a two-sided ideal

of the algebra T (Γ(E))(U) ≡ T (E(U)) generated by elements of the form

s⊗ s− qU(s) ≡ s⊗ s− q(s),

with s running through E(U). Moreover, let T (E) and I(E , q) denote the tensor algebra sheaf and the

two-sided ideal sheaf generated by the presheaves T (Γ(E)) and I(E , q), respectively. Furthermore,

set

Cl(E , q) := T (E)/I(E , q); (2.15)

the A-morphism

ρ : E // T (E) // Cl(E , q) (2.16)

is an initial universal object in the category ACl(E , q).

Proof. Let ϕ : E −→ K be an object of ACl(E , q). By Lemma 2.1, ϕ extends to a 1-respecting

A-algebra morphism ϕ : T (E) −→ K, obtained by sheafifying the Γ(A)-morphism φ : T (Γ(E)) −→
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Γ(K), where, for each open U in X, the morphism φU , which sends T (Γ(E))(U) ≡ T (E(U)) into

K(U), is the extension of ϕU . Since, for any open U ⊆ X and section s ∈ E(U),

ϕU(s)2 = qU(s) · 1K(U),

it follows that

φU(s⊗ s− qU(s)) = ϕU(s)2 − qU(s) · 1K(U) = 0,

that is,

φU |I(E,q)(U) = 0. (2.17)

Thus,

ϕ|I(E,q) = 0.

On the other hand, I(E , q)(U) being an ideal of the algebra T (E(U)), Equation (2.17) implies that

there is an A(U)-morphism

ψU : Cl(E(U), qU) −→ K(U)

such that

ϕU = ψU ◦ ρU ,

where ρU is the CliffordA(U)-morphism E(U) −→ Cl(E(U), qU). Clearly, the family ψ ≡ (ψU) openU⊇X

yields a Γ(A)-morphism such that

ϕ = ψ ◦ ρ; (2.18)

ψ is the only A-morphism satisfying the equality (2.18). By sheafification, one has

ϕ = S(ϕ) = S(ψ) ◦ S(ρ) ≡ ψ ◦ ρ.
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Since inductive limits commute with quotients and tensor products, it follows from (2.15) that, for

any x ∈ X,

ClA(E , q)x =
(
T (E)/I(E , q)

)
x
' T (E)x/I(E , q)x ' T (Ex)/I(Ex, qx)

= ClAx(Ex, qx) ≡ ClAx(Ex) ≡ Cl(Ex).

Here, we will assume that, for any quadratic AX-module E , the canonical mappings A −→ ClA(E)

and E −→ ClA(E) are injective; thus, by [35, pp. 60- 62, Lemma 12.1], for any x ∈ X, 1Ax is

identified with the unit element 1qx of ClA(E , q)x, and every z ∈ Ex is identified with its image

ρx(z) ≡ ρ(z) in ClA(E , q)x. Whenever these identifications are guaranteed, the pair (E , q) is called

a quadratic AX-module. From now on, all quadratic AX-modules are understood to be Cliffordian.

If (E , qE) and (F , qF) are quadratic AX-modules; by definition, an A-morphism ϕ : E −→ F is

called an AX-Modq morphism if

qF ◦ ϕ = qE .

Now, consider an AX-Modq morphism ϕ : (E , qE) −→ (F , qF) and let ClA(E , qE) and ClA(F , qF)

be Clifford A-algebras of quadratic A-modules (E , qE) and (F , qF), respectively. If ρE and ρF

are the universal objects in ACl(E , qE) and ACl(F , qF), respectively, corresponding to the Clifford

A-algebras ClA(E , qE) and ClA(F , qF), one has

(ρF ◦ ϕ)2 = qE · 1A,

that is,

ρF ◦ ϕ ∈ HomCl
A (E , ClA(F , qF)).

By the universal property of ρE , there exists a unique AX-Alg morphism, denoted by ClA(ϕ), such

that

ClA(ϕ) ◦ ρE = ρF ◦ ϕ,
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that is, such that the diagram

(E , qE)
ρE //

ϕ

��

ClA(E , qE)
ClA(ϕ)

��
(F , qF) ρF

// ClA(F , qF)

commutes. It is easily seen that the map ClA : AX-Modq −→ AX-Alg induces a covariant functor

between these two categories.

Example 2.1 Let E ≡ (E(U), ρUV ) be a line A-module on a topological space X (i.e., E ' A),

with a family of nowhere-zero sections (sU) openU⊆X for its generators; that is, sU is the generator

of the corresponding E(U) and

ρXU (sX) = sU ,

for any U . Next, we note that the tensor algebra sheaf

T (E) = A⊕ E ⊕ E ⊗A E ⊕ E ⊗A E ⊗A E ⊕ · · ·

is A-isomorphic to the sheaf P of A-algebras of polynomials in indeterminate sU . In fact, consider

the A-morphism ϕ : T (E) −→ P such that, for any a ∈ A(X),

ϕX(a+ s+ s⊗ s+ · · ·+ s⊗ · · · ⊗ s︸ ︷︷ ︸
n

) = a+ s+ s2 + · · ·+ sn,

where s := sX . Clearly, ϕ is an A-isomorphism. By this A-isomorphism and since the presheaf

T (Γ(E)) is complete (one has, for every open U ⊆ X, T (E)(U) ' T (Γ(E))(U) ≡ T (Γ(E)(U))),

I(E , q) is the ideal sheaf in T (E) such that, for every open U ⊆ X, I(E , q)(U) is generated by

s2
U − qU(sU). Thus, Cl(E , q)(U) is a free A(U)-module with basis (1, sU); whence

ClA(E , q) = ClA(A, q) = A2,

with the equality signs being actually A-isomorphisms.

63



2.4 Clifford Algebras for Riemannian Quadratic Free A-modules

of Finite Rank

Making use of techniques underlying the proof in [15, pp 294, 295, Theorem VIII.2.B] that every

quadratic vector space of finite dimension admits a Clifford algebra, we show in Theorem 2.4, deemed

to be the main result of this section, that with every Riemannian quadratic free A-module of finite

rank is associated up to A-isomorphism a Clifford free A-algebra of rank 2n if the rank of the

Riemannian quadratic free A-module is n.

Remark 2.8 We recall (see [35, pp. 335- 340]) that an ordered algebraized space (X,A) satisfies

the inverse-closed section condition ([41])if every nowhere-zero section of A is invertible and is

enriched with square root if every nonnegative section of A has a square root. For the remainder

of this section, unless otherwise mentioned, any pair (E , q) will denote a Riemannian quadratic free

A-module of finite rank, where the sheaf A of algebras satisfies the inverse-closed section condition

and is enriched with square root. In this context, if ϕ is a Clifford A-morphism of (E , q) into K,

then, for any orthogonal gauge (e1, . . . , en) ⊆ E(U)n of E on an open U ⊆ X, ϕU(ei), for any

i = 1, . . . , n, is nowhere zero. Indeed, if b is the Riemannian A-metric associated with q, then

qU(ei) = bU(ei, ei); since b is Riemannian and ei is nowhere zero, therefore ϕU(ei) is nowhere zero.

Proposition 2.2 Let (E , q) be a Riemannian free A-module of rank n. For every open U in X,

let B(U) be the set consisting of all the orthogonal bases of E(U). If, for every U, V ∈ τX with

V ⊆ U ,

ρUV : B(U) −→ B(V )

denotes the natural restriction, the collection B := (B(U), ρUV ) determines a complete presheaf of

sets (of orthogonal bases).
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Proof. That B is a presheaf is immediate. Now, let U be an open subset of X and U ≡ (Ui)i∈I

a covering of U . Next, let s ≡ (s1, . . . , sn) and t ≡ (t1, . . . , tn) be orthogonal bases of E(U), i.e.

s, t ∈ B(U), such that s|Ui = t|Ui for every i ∈ I. More explicitly, sj|Ui = tj|Ui for every i ∈ I and

j = 1, . . . , n. Since sj, tj ∈ E(U) (j = 1, . . . , n), it follows that sj = tj; thus, s = t. Hence, axiom

(i) Definition 2.3 is fulfilled.

For axiom (ii) Definition 2.3, let si ∈ B(Ui) such that, for every Ui ∩ Uj ≡ Uij 6= ∅ in U ,

si|Uij = sj|Uij .

Again, using the fact that Γ(E) is complete, one has that there exists tk ∈ E(U) such that tk|Ui = ski ,

k = 1, . . . , n. Therefore, t ≡ (t1, . . . , tn) is such that t|Ui = si, i ∈ I. Clearly, t is orthogonal.

Keeping with the notation of Proposition 2.2, we will call the sheaf generated by B the sheaf of

orthogonal bases of E , and will denote it by B, i.e. B = SB.

Theorem 2.2 Let (E , q) be a Riemannian quadratic free A-module of rank n, C an associative

and unital A-algebra, and ϕC ∈ HomA(E , C) a Clifford A-morphism such that, given the sheaf of

orthogonal bases eU := (eU,1, . . . , eU,n) of E , the sheaf of sets, consisting of elements of the form

(ϕC)U(eU,J) := (ϕC)U(eU,j1)(ϕC)U(eU,j2) · · · (ϕC)U(eU,jm),

where J = (1 ≤ j1 < j2 < · · · < jm ≤ n), assuming that (ϕC)U(eU,∅) = 1C(U), is a sheaf of bases

for the underlying free A-module of C. Then, the pair (C, ϕC) is a Clifford A-algebra of (E , q).

Proof. In fact, let ϕ be a Clifford A-morphism of (E , q) into some associative and unital A-algebra

K. Moreover, let Φ be an A-morphism of C into K, given by:

ΦU((ϕC)U(eU,J)) := ϕU(eU,J),
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where

ϕU(eU,J) := ϕU(eU,j1)ϕU(eU,j2) · · ·ϕU(eU,jm)

with J := (1 ≤ j1 < j2 < · · · < jm ≤ n).

We claim that Φ is multiplicative and 1-respecting, hence an A-morphism of the A-algebras C and

K. To this end, it suffices to show that every ΦU is multiplicative on ((ϕC)U(eU,J))J∈P(In), where

In = {1, . . . , n}.

Let us consider the product in C(U):

(ϕC)U(eU,J) · (ϕC)U(eU,J ′) =

(ϕC)U(eU,j1) · · · (ϕC)U(eU,jm)(ϕC)U(eU,j′1) · · · (ϕC)U(eU,j′p), (2.19)

and the following product in K(U):

(ϕU)(eU,J) · (ϕU)(eU,J ′) =

(ϕU)(eU,j1) · · · (ϕU)(eU,jm)(ϕU)(eU,j′1) · · · (ϕU)(eU,j′p). (2.20)

The right-hand sides of (2.19) and (2.20) reduce to

(ϕC)U(eU,J) · (ϕC)U(eU,J ′) = λ(ϕC)U(eU,L), where λ ∈ A(U)

ϕU(eU,J) · ϕU(eU,J ′) = λϕU(eU,L),

where L = (1 ≤ l1 < l2 < · · · < lr ≤ n). Therefore, given J and J ′:

ΦU((ϕC)U(eU,J)(ϕC)U(eU,J ′)) = ΦU(λ(ϕC)U(eU,L)) = λΦU((ϕC)U(eU,L))

= λϕU(eU,L) = ϕU(eU,J)ϕU(eU,J ′) = ΦU((ϕC)U(eU,J))ΦU((ϕC)U(eU,J ′));

furthermore, since ΦU(1C(U)) = ΦU((ϕC)U(eU,∅)) = ϕU(eU,∅) = 1K(U), ΦU is an A(U)-morphism,

taking C(U) into K(U). Hence, Φ ∈ HomA(C,K) and is 1-respecting. As C is generated by the
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sub-A-algebra ϕC(E) and the unital line sub-A-algebra 1C of C, then C is a Clifford A-algebra of

(E , q).

We also recall (see [35, pp. 335- 340]) that for any ordered algebraized space (X,A) satisfying the

inverse-closed section condition ([41]) and enriched with square root, if (E , ρ) is a free Riemannian

A-module of finite rank n ∈ N and

(s1, . . . , sn) ⊆ E(U)n ' En(U),

where U is open in X, is a (local) gauge of E([41]), then there exists an orthonormal gauge of E ,

obtained from (s1, . . . , sn), say,

(t1, . . . , tn) ⊆ E(U)n;

more accurately, t1, . . . , tn are such that

ρU(ti, tj) = δij

where δij is the Kroneecker sections of A over U for all 1 ≤ i, j ≤ n, and

[t1, . . . , tm] = [s1, . . . , sm],

for every 1 ≤ m ≤ n.

Hence, we have

Proposition 2.3 Let (X,A) be an ordered algebraized space, enriched with square root, and sat-

isfying the inverse-closed section condition. Moreover, let (E , q) be a Riemannian quadratic free

A-module of rank n, K an associative and unital A-algebra, and ϕ an A-morphism of E into K.

Then, ϕ is Clifford if and only if

ϕU(ei)
2 = qU(ei) · 1K(U), i = 1, . . . , n (2.21)
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and

ϕU(ei)ϕU(ej) + ϕU(ej)ϕU(ei) = 0, 1 ≤ i 6= j ≤ n, (2.22)

for any open U ⊆ X and orthogonal gauge (e1, . . . , en) of (E(U), qU) ≡ (E(U), bU), where b ≡

(bU) openU⊆X is the q-induced Riemannian A-metric.

Proof. The condition is obviously necessary. Indeed, let us consider an open subset U of X, and

an orthogonal basis (e1, . . . , en) of (E(U), qU). Clearly, for any i = 1, . . . , n,

ϕU(ei)
2 = qU(ei) · 1K(U).

As for (2.22), one easily applies (2.17) and the fact that (e1, . . . , en) is orthogonal.

Conversely, for any open U ⊆ X and section s ∈ E(U), with s =
∑n

i=1 α
iei, we have

ϕU(s)2 =

[
n∑
i=1

αiϕU(ei)

]2

=
n∑
i=1

(αi)2ϕU(ei)
2

=

[
n∑
i=1

(αi)2qU(ei)

]
1K(U) =

[
n∑
i=1

qU(αiei)

]
1K(U) = qU(s) · 1K(U).

In the same vein, we observe the following. As in [15, p. 288], we reduce the number of terms in

products over K(U) as follows: For a product

a ≡ ϕU(ei1)ϕU(ei2) · · ·ϕU(eip), 1 ≤ p ≤ n,

i) if ik > ik+1, we interchange ϕU(eik) and ϕU(eik+1
) and multiply by (−1): since

ϕU(eik)ϕU(eik+1
) + ϕU(eik+1

)ϕU(eik) = 0.

ii) if ik = ik+1, we replace ϕU(eik)ϕU(eik+1
) = ϕU(eik)

2 by qU(eik) · 1K(U).
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This process will ultimately yield the following expression:

a = λϕU(ej1)ϕU(ej2) · · ·ϕU(ejm),

where λ ∈ A(U), and J ≡ (1 ≤ j1 < j2 < · · · < jm ≤ n) an increasing sequence of indices.

As a convention, we let

ϕU(eJ) := ϕU(ej1)ϕU(ej2) · · ·ϕU(ejm),

where J ≡ (1 ≤ j1 < j2 < · · · < jm ≤ n), and

ϕU(e∅) := 1K(U)

for the empty sequence ∅. Clearly, the 2n elements ϕU(eJ) of K(U) linearly span the sub-A(U)-

algebra L(U) of K(U), generated by 1K(U) and ϕU(E(U)) ≡ ϕ(E)(U). Thus, we have proved the

following.

Theorem 2.3 Let ϕ be a Clifford A-morphism of a Riemannian quadratic free A-module (E , q)

of rank n into an associative and unital A-algebra K. Then, K contains a generalized locally

free A-module with maximum rank ≤ 2n, and containing the unital line sub-A-module and the

sub-A-module ϕ(E).

Theorem 2.4 With every Riemannian quadratic freeA-module (E , q), there is an associated Clifford

free A-algebra C ≡ C(E , q); moreover, rank C = 2n if n = rank E .

Proof. Let B be a sheaf of orthogonal bases of E ≡ (E , q), and P the sheaf of algebras of

anticommutative polynomials over A, such that if p ∈ P(U), for some open U in X, then p is

an anticommutative polynomial in e1, e2, . . . , en, where (e1, e2, . . . , en) is a fixed orthogonal basis

in B(U). If U and V are open subsets of X with V ⊆ U , we fix orthogonal bases (e1, . . . , en)
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and (f1, . . . , fn) in E(U) and E(V ), respectively, in such a way that ρUV (ei) ≡ ei|V = fi, for every

i = 1, . . . , n, where the (ρUV ) are restriction maps for the (complete) presheaf of sections of E .

Furthermore, we denote by 1P(U) ≡ 1 the polynomial em1
1 em2

2 . . . emnn , where mi = 0, i = 1, . . . , n.

On every open U ⊆ X, define the product in P(U) as follows:

(ep11 e
p2
2 . . . epnn ) · (eq11 e

q2
2 . . . eqnn ) = (−1)

∑
i<j qipjep1+q1

1 . . . epn+qn
n . (2.23)

Moreover, still under the assumption that (e1, . . . , en) is the fixed orthogonal basis of E(U), the

section em1
1 em2

2 . . . emnn of P over U such that

mi =

 0 i 6= j

1 i = j

is denoted ej. This notation ensures an identification of E with a sub-A-module of P . On the other

hand, in every P(U), one has

eiej = −ejei i 6= j.

The product thus defined on every P(U) is associative, for one easily shows that, by multiplying both

members of (2.23) on the right by a polynomial er11 e
r2
2 . . . ernn , one obtains the following equality:

∑
i<j

qipj +
∑
i<j

ri(pj + qj) =
∑
i<j

(qi + ri)pj +
∑
i<j

riqi.

For every i, 1 ≤ i ≤ n, let qU(ei) := ai ∈ A(U). Next, consider the correspondence

U 7−→ C(U) ⊆ P(U), (2.24)

where C(U) is the free A(U)-module, with a basis consisting of the 2n sections

em1
1 em2

2 . . . emnn ,
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where 0 ≤ mi ≤ 1 for every i. It is clear that the correspondence (2.24) together with the restriction

maps restricted to the C(U), where U runs over the open subsets of X, yield a free A-module of

rank 2n. We will denote the free A-module thus obtained by C ≡ (C(U), λUV ). Let’s also consider

the projection A-morphism π ∈ HomA(P , C), defined by:

πU(ep11 e
p2
2 · · · epnn ) := a

b p1
2
c

1 · · · ab
pn
2
c

n ep11 e
p2
2 · · · epnn ,

where (e1, e2, · · · , en) is the fixed orthogonal basis of E(U),

bpi
2
c = max{x ∈ Z : x ≤ pi

2
}

for every 1 ≤ i ≤ n, and

pi = 2li + pi, li ∈ Z, pi ∈ Z,

viz. pi is the remainder of pi modulo 2.

Given sections f and g of the A-algebra P over an open subset U of X, one has

πU(f · g) = πU(πU(f) · πU(g)),

which is easily verified by taking f = ep11 · · · epnn and g = eq11 · · · eqnn .

Finally, we define on the free A-module C the following multiplication: if s, t ∈ C(U), where U is

open in X, then

s ∗ t := πU(s · t).

∗ is associative; the proof of this fact may be found in [15, p. 295]. Hence, C is an associative and

unital free A-algebra, which contains E . Let’s denote by ιC the inclusion E ⊆ C. Since, for every

open U ⊆ X and orthogonal basis (e1, · · · , en) of E(U),

(ιC)U(ei)
2 = ai · 1C(U)
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and

(ιC)U(ei)(ιC)U(ej) + (ιC)U(ej)(ιC)U(ei) = 0, 1 ≤ i 6= j ≤ n,

the pair C ≡ (C, ιC) is a Clifford A-algebra of (E , q), by virtue of Theorem 2.2.
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Chapter 3

The Commutative Property of the Clifford

and Localization Functors

In this chapter we try to investigate the commutative property that the Clifford functor has with

the algebra extension (mainly through the tensor product) functor of the ground algebra sheaf of a

quadratic A-module (E , q). As a particular case, we also show that the Clifford functor commutes

with the localization functor. With regard to the organization of the chapter, we start with brief

remarks on extension of the scalars of A-modules, which is dealt with in Section 3.1. Section 3.2

is a discussion about sheaves of A-modules of fractions (with denominator a monoid-subsheaf S of

A) and change of the algebra sheaf A of scalars, on a topological space X. The main results in

this section include: Theorem 3.4, which stipulates that given a sheaf A of unital and commutative

algebras on a topological space X and S a sheaf of submonoids in A, the sheaf S−1A is an algebra

sheaf on X; and Theorem 3.6, which shows that the functor S−1 : A-ModX −→ (S−1A)-ModX

is exact and equivalent to the functor S−1A⊗ –, i.e., S−1E ' S−1A⊗ E .
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Section 3.3 deals with localization of A-modules at prime ideal subsheaves of A and at locally

maximal-idealized subsheaves of A. For this purpose, a Nakayama’s lemma for this sheaf-theoretic

setting is investigated. Finally, in Section 3.4, we establish the commutativity between the Clifford

and the extension of the algebra sheaf A of scalars of an A-module E functors, which, in turn, gives

rise to the isomorphism depicted by the diagram of Corollary 3.8.

3.1 Extension of Scalars of A-modules

Given a sheaf morphism ϕ : B −→ A of unital and commutative algebra sheaves A ≡ (A, τA, X)

and B ≡ (B, τB, X) and an A-module E ≡ (E , π,X), E may be made into a B-module as follows:

for all x ∈ X, b ∈ Bx and e ∈ Ex, the product be is defined to be ϕx(b)e, i.e., Ex is also a Bx-module.

This follows from the fact that ϕ is stalk preserving,(ϕx(Bx) ⊆ Ax) and Ex is an Ax-module for

every x ∈ X. And clearly, the “exterior module multiplication in E”, viz. the map

B ◦ E −→ E : (b, e) 7−→ be ≡ ϕx(b)e ∈ Ex ⊆ E ,

with τB(b) = π(e) = x ∈ X, is continuous. Actually, it is a consequence of the fact that ϕ : B −→ A

is a continuous map and the exterior module multiplication in E is continuous with respect to A.

(For the sake of convenience, we have used the notation B ◦ E := {(b, e) ∈ B × E : τB(b) = π(e)}

in conformity with [35, p. 87, (1.1)].) Such an algebra sheaf morphism ϕ : B −→ A is called an

B, even though ϕ is not necessarily injective. Our terminology is different from the terminology of

Mallios, [35, p. 260ff], which states the following: given two A-modules E and F on X, any short

exact A-sequence of the form

0 // F // S // E // 0
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is called an A-extension of E by F .

Now, let us suppose that E is a free B-module of finite rank n on X; we may derive from E two free

A-modules, called the extensions of E , which are A⊗B E and HomB(A, E); in this vein, see [38] for

complexification of A-modules, which is defined to be the process of obtaining new free A-modules

by enlarging the R-algebra sheaf A to a C-algebra sheaf, denoted AC. Indeed, for any x ∈ X, an

element a ∈ Ax multiplies with an element a′⊗e ∈ (A⊗BE)x = Ax⊗BxEx = Ax⊗Bx (Bx)n = (Ax)n

(the last three equalities actually stand for Bx-isomorphisms; to corroborate this fact, see [35, p.123,

(3.18); p.130, (5.9); p.131, (5.18)]) or an element z ∈ HomB(A, E)x = HomB(A,Bn)x = (A∗)nx =

(Anx)∗ = HomBx(Ax,Bnx), with these equalities being valid within Bx-isomorphisms, in the following

way:

a(a′ ⊗ e) = (aa′)⊗ e and (az)(a′) = z(aa′).

Yet, still under the assumption that E is a free B-module of finite rank on a topological space X,

and ϕ : B −→ A a sheaf morphism of unital and commutative algebra sheaves A and B, the next

lemma is related to the canonical B-morphisms, E −→ A⊗B E and HomB(A, E) −→ E , given, for

any x ∈ X, e ∈ Ex and z ∈ HomB(A, E)x ' HomBx(Ax, Ex), by e 7−→ 1Ax ⊗ e and z 7−→ z(1Ax),

respectively; the former is not always surjective, whereas the latter is not always injective. When

A = B, these B-morphisms are bijective for any given B-module E , not necessarily free, and both

B ⊗B E and HomB(B, E) are B-isomorphic to E .

Lemma 3.1 Let A, B be unital and commutative algebra sheaves on a topological space X, ϕ :

B −→ A a surjective sheaf morphism, and E ≡ (E , π,X) a locally free B-module of rank n

(i.e., a vector sheaf ). Then, A ⊗B E is canonically B-isomorphic to the quotient E/(kerϕ)E , and

HomB(A, E) is B-isomorphic to the sub-B-module of E , whose stalks consist of elements z ∈ Ex

(π(z) = x ∈ X) such that (kerϕ)xz = (ker(ϕx))z = 0x.

75



Proof. Let ι : kerϕ −→ B be the natural injection, then, clearly,

0 // kerϕ ι // B ϕ // A // 0 (3.1)

is exact. Tensoring (3.1) with the vector sheaf E yields an exact B-sequence (see [35, p.131, Theorem

5.1]), viz.

0 // kerϕ⊗B E // B ⊗B E // A⊗B E // 0. (3.2)

Note that, for x ∈ X,

(kerϕ⊗B E)x = kerϕx ⊗Bx Ex = (kerϕx)Ex = ((kerϕ)E)x, (3.3)

within Bx-isomorphisms (the second Bx-isomorphism in (3.3) is a classical result; see, for instance,

the proof of [25, p.18, Lemma 1.9.1]). (kerϕ)E is the B-module, obtained by sheafifying the

presheaf

U 7−→ 〈(kerϕU)E(U)〉,

where 〈(kerϕU)E(U)〉 is the B(U)-module generated by the set (kerϕU)E(U), that is, the set of

t ∈ E(U) such that t = α · s, with α ∈ kerϕU and s ∈ E(U). The restriction maps for this presheaf

are obvious. It follows from (3.3) that

kerϕ⊗B E = (kerϕ)E , (3.4)

within B-isomorphism. Since B ⊗B E = E within B-isomorphism, it follows, taking also account of

(3.4), that A⊗B E = E/(kerϕ)E within B-isomorphism.

For any x ∈ X, the following sequence of Bx-modules, namely

0 // HomBx(Ax, Ex)
µ // HomBx(Bx, Ex)

ν // HomBx(ker(ϕx), Ex) , (3.5)

where µ := HomBx(ϕ
∗
x, Ex) and ν := HomBx(ι

∗
x, Ex), is exact. (µ and ν are given by: for

f ∈ HomBx(Ax, Ex), µ(f) = HomBx(ϕ
∗
x, Ex)(f) := f ◦ϕx; similarly, for g ∈ HomBx(Bx, Ex), ν(g) =
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HomBx(ι
∗
x, Ex)(g) := g ◦ ιx.) For (3.5), see, for instance, [8, p.227, Theorem 1]. The exactness

of (3.5) implies that HomBx(Ax, Ex) is Bx-isomorphic to the sub-Bx-module of HomBx(Bx, Ex) '

Ex consisting of z such that HomBx(ι
∗
x, Ex)(z) = 0x, i.e., ker(ϕx)z = 0x. Obviously, if U ≡

(Uα)α∈I is a local frame of E , i.e., for all α ∈ I, E|Uα = Bn|Uα , within B|Uα-isomorphism,

then HomB(A, E)(Uα) = (A∗|Uα)n, within B|Uα-isomorphism; consequently, for any x ∈ X,

HomB(A, E)x = (A∗x)n within Bx-isomorphism. On the other hand, HomBx(Ax, Ex) = HomBx(Ax,Bnx) =

(A∗x)n, within Bx-isomorphism (cf. [35, p.299, (5.8)]). Thus, HomB(A, E)x = HomBx(Ax, Ex),

within Bx-isomorphism. Hence, for all x ∈ X, the corresponding stalk HomB(A, E)x is Bx-

isomorphic to the sub-Bx-module of Ex consisting of z such that ker(ϕx)z = 0x.

Using the results discussed above, it is possible to obtain the following A-isomorphisms:

TA(A⊗B E) = A⊗B TB(E) (3.6)

and

SA(A⊗B E) = A⊗B SB(E), (3.7)

where TB(E) and SB(E) are the tensor algebra and symmetric algebra sheaves of E on X, respectively;

they both are sheaves of B-algebras (or B-algebras, for short) on X. From Section 2.2 of this thesis,

we recall that the B-algebra TB(E) may be constructed equivalently as the sheaf generated by the

presheaf TE ≡ ((TE)(U) := T (E(U))) open U⊆X of B(U)-algebras, given by

U 7−→ ⊕∞n=0T
n(E(U)) ≡ T (E(U)),

where U ⊆ X is open, along with the obvious restriction maps. Indeed, with every open U ⊆ X,

one associates the following (canonical) B(U)-morphism

TE(U) ≡ ⊕∞n=0T
n(E(U))

φU // (TBE)(U) := ⊕∞n=0(T nB E)(U); (3.8)
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therefore one obtains a morphism φ of the sheaves, generated by the presheaves of B(U)-algebras,

which appear in the two members of (3.8). It suffices to prove that φ is a fiber-wise B-isomorphism.

To this end, we observe the following Bx-isomorphisms

(S(TE))x = (⊕∞n=0T
n(E(U)))x = lim−→

x∈U
(⊕∞n=0T

n(E(U)))

≡ lim−→
x∈U

(T (E(U))) = T (lim−→
x∈U
E(U)) = T (Ex) = ⊕∞n=0(T n(E(U)))x

= ⊕∞n=0(lim−→
x∈U

T n(E(U))) = (⊕∞n=0T nE)x ≡ (T E)x,

for every x ∈ X.

Since, by virtue of [35, p.130, (5.9)],

TA(A⊗B E)x = (TA)x(A⊗B E)x = TAx(Ax ⊗Bx Ex) = Ax ⊗Bx TBx(Ex),

within Ax-isomorphisms (see [25, p.18] for the last Ax-isomorphism), it follows, on the basis of [35,

p.68, Theorem 12.1], that (3.6) is fulfilled. Likewise, one obtains (3.7).

Now, the next theorem is a connection between the functor Hom and the bifunctor ⊗, which is

classically called the adjoint associativity of Hom and tensor product. This result is also established

by Kashiwara and Schapira [27, p.439, Proposition 18.2.3(ii)] for presheaves and sheaves constructed

on a site X with values in a certain category with suitable properties. We recall that a site X is

a small category CX endowed with a Grothendieck topology. The adjunction associativity formula

suggests the following: Let R be a sheaf of rings on a site X, and kX a sheaf of k-algebras on X,

where k denotes a commutative unital ring. If we denote by PSh(R) the category of presheaves of

R-modules, then, given F ∈ PSh(Rop), G ∈ PSh(R) and H ∈ PSh(kX), there is an isomorphism

HomkX (F ⊗R G,H) ' HomR(G,HomkX (F,H)), (3.9)

functorial in F , G and H. (The notations used are those of [27, p.439, Proposition 18.2.3(ii)].)

For the purpose of a version of the adjunction associativity formula in our setting, let us notice that
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given algebra sheaves K and L on a given topological space X, a (K,L)-bimodule E on X and a

left K-module F on X, the sheaf HomK(E ,F) is a left L-module. We assume that all the sheaves

involved in Theorem 3.1 are defined on a given topological space X.

Theorem 3.1 Let A, B be unital and commutative algebra sheaves, E a locally free left B-module

of rank m, G a left A-module. Moreover, let F be an (A,B)-bimodule such that as a left A-module,

F is locally free and of rank n. Then,

HomB(E ,HomA(F ,G)) = HomA(E ⊗B F ,G) (3.10)

within isomorphism of group sheaves.

Proof. Let U and V be local frames of E and F , respectively. That W ≡ U ∩V := {U ∩ V : U ∈

U , V ∈ V} is a common local frame of E and F is clear. So, if U ∈ W , then, applying [35, p.

137, (6.22), (6.23), (6.24′)], one has the following B|U -isomorphisms:

HomB(E ,HomA(F ,G))|U = HomB|U (Bm|U ,HomA|U (An,G|U)),

that is,

HomB(E ,HomA(F ,G))|U = Gmn|U . (3.11)

In the same way, one shows that

HomA(E ⊗B F ,G)|U = Gmn|U (3.12)

within an A|U -isomorphism. On the other hand, for any open subset W of X, one has the following

morphism

HomB|W (E|W ,HomA(F ,G)|W )
ϕW // HomA|W (E|W ⊗B|W F|W ,G|W ),
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which is given by

ϕW (α)(s⊗ t) := (αZ(s))Z(t) ≡ α(s)(t),

where α ∈ HomB|W (E|W ,HomA(F ,G)|W ), s ∈ (E|W )(Z) = E(Z), t ∈ F(Z), with Z an open

subset of W . Clearly, the family ϕ ≡ (ϕW ) open W⊆X yields an A-morphism. We shall indeed show

that the sheafification S(ϕ) ≡ ϕ̃ of ϕ is an A-isomorphism. For this purpose, we notice that, by

virtue of (3.11) and (3.12),

HomB(E ,HomA(F ,G))x = Gmnx = HomA(E ⊗B F ,G)x, (3.13)

for any x ∈ X. The equalities in (3.13) are valid up to group isomorphisms. Furthermore, as

HomB(E ,HomA(F ,G))x = HomBx(Ex,HomA(F ,G)x)

and

HomA(E ⊗B F ,G)x = HomAx(Ex ⊗Bx Fx,Gx),

for any x ∈ X, ϕx is a Bx-isomorphism (see [5, p. 198, Theorem 15.6]). Whence, by [35, p. 68,

Theorem 12.1], ϕ is an A-isomorphism, and the proof is complete.

When E is a locally free B-module of finite rank as in Theorem 3.1, and F an A-module, the

following canonical A-isomorphisms follow from (3.10)

HomA(A⊗B E ,F) = HomA(E ⊗B A,F) = HomB(E ,F). (3.14)

Moreover, by [35, p.130, (5.14) and (5.15)], one has

E ⊗B F = (A⊗B E)⊗A F (3.15)

within A-isomorphism.

The fact that the category A-ModX of sheaves of A-modules, where A is commutative and unital,

on a fixed topological space X is an abelian category [35, p.158] heralds the following.
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Definition 3.1 (i) An object P ∈ A-ModX is projective object if the functor

HomA(P , ·) : A-ModX −→ A(X)-Mod, (3.16)

where A(X)-Mod is the category of modules over the algebra A(X), is exact.

(ii) An object F ∈ A-ModX is flat object if the functor E 7−→ F ⊗A E is exact.

(iii) Given a unital and commutative algebra sheaf B on X, an extension B −→ A is called flat

extension of A-algebras if A is a flat B-module.

Lemma 3.2 Let A, B be unital and commutative algebra sheaves on a given topological space X,

and ϕ : B −→ A a unity-preserving sheaf morphism. For any locally free B-module E of finite rank

on X, A⊗B E is A-projective if E is B-projective. On the other hand, for any B-module F on X,

the A-module A⊗B F is A-flat if F is B-flat.

Proof. By the A-isomorphism (3.14), one has

HomA(A⊗B E ,F) = HomA(A⊗B E ,F)(X)

= HomB(E ,F)(X) = HomB(E ,F).

Therefore, if HomB(E , ·) is exact, then HomA(A ⊗B E , ·) is exact, which means that A ⊗B E is

A-projective whenever E is B-projective. The remaining assertion is also easy to prove.

Now, as in Lemma 3.2, we assume that E is a locally free B-module of rank n, and F any B-

module, both on the same topological space X. Moreover, let us consider the following canonical

A-morphism

Φ ≡ (Φx)x∈X : A⊗B HomB(E ,F) −→ HomA(A⊗B E ,A⊗B F) (3.17)
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such that, for all x ∈ X,

Φx(a⊗ z)(a′ ⊗ e) := aa′ ⊗ z(e), (3.18)

where a, a′ ∈ Ax, z ∈ HomB(E ,F)x = lim−→
x∈U

HomB|U ((B|U)n,F|U) = Fnx = HomBx(Bnx ,Fx) (with

U a local gauge of E) and e ∈ Ex. Observe the following Ax-isomorphisms

HomA(A⊗B E ,A⊗B F)x = lim−→
x∈U

HomA|U (A|U ⊗B|U E|U ,A|U ⊗B|U F|U)

= lim−→
x∈U

HomA|U (A|U ⊗B|U (B|U)n,A|U ⊗B|U F|U)

= lim−→
x∈U

HomA|U ((A|U)n,A|U ⊗B|U F|U)

= lim−→
x∈U

(A|U ⊗B|U F|U)n

= (Ax ⊗Bx Fx)n

(U is a local gauge of E); therefore, Φ is well-defined.

Lemma 3.3 Let E be a locally free B-module of rank n on a topological space X such that every

stalk Ex is Bx-projective. Then, E is B-projective.

Proof. In fact, let

0 // S ′ // S // S ′′ // 0

be a B-exact sequence. Since exactness is transferred to stalks of sheaves (cf. [35, p.113, (2.34)])

and, for any x ∈ X and B-module F on X, HomBx(Ex,Fx) = Fnx = HomB(E ,F)x, one has

0 //HomB(E ,S ′)x //HomB(E ,S)x //HomB(E ,S ′′)x // 0. (3.19)

The exactness of (3.19) follows from the fact that Ex, x ∈ X, is Bx-projective (see, for instance,

[8, p.231, Proposition 4]). On the other hand, since any complex G ′ ϕ // G ψ // G ′′ of sheaves
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is exact if and only if, for any x ∈ X, the induced complex G ′x
ϕx // Gx

ψx // G ′′x is exact (cf. [48,

p.99, Proposition 5.3.4], [35, p. 113, (2.34)]), one obtains the following exact B-sequence

0 //HomB(E ,S ′) //HomB(E ,S) //HomB(E ,S ′′) // 0;

whence the vector sheaf E is B-projective.

Keeping with the notations of Lemma 3.2, we have.

Theorem 3.2 Suppose that every stalk Ex of the vector sheaf E is Bx-projective, then the canonical

sheaf morphism (3.17) is A-isomorphic.

Proof. Since every Ex is projective, it follows, by means of [25, p.19, Proposition 1.9.7], that

Ax ⊗Bx HomB(E ,F)x = HomAx(Ax ⊗Bx Ex,Ax ⊗Bx Fx)

within Ax-isomorphism; whence the A-morphism Φ is isomorphic (see, for instance, [35, p.68,

Theorem 12.1]).

Definition 3.2 [27, p.446, Definition 18.5.1] An A-module E on a topological space X is said to

be locally finitely presented if there is an open covering U ≡ (Uα)α∈I of X such that, for every

α ∈ I, the A-sequence

(A|Uα)m = Am|Uα // An|Uα // E|Uα // 0, (3.20)

where m, n ∈ N, is exact.

We shall state a useful property of flat A-extensions, which stipulates that under certain conditions

the functors ⊗ and Hom commute.

First, let us recall the following result.
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Lemma 3.4 [51, p.114, Exercise 12] Let (X,A) be an algebraized space and E a finitely presented

A-module on X. Then, for any A-module F on X and x ∈ X, the natural morphism

(HomA(E ,F))x −→ HomAx(Ex,Fx) (3.21)

is an isomorphism.

Theorem 3.3 Let A, B be unital commutative algebra sheaves on a topological space X, and

ϕ : B −→ A a flat extension. For any locally finitely presented B-module E on X,

A⊗B HomB(E ,F) = HomA(A⊗B E ,A⊗B F) (3.22)

within A-isomorphism, for any B-module F on X.

Proof. That (3.22) holds for free B-modules of finite rank is obvious. In fact, suppose that E ' Bn

(n ∈ N), then, one has,

A⊗B HomB(E ,F) = A⊗B Fn = (A⊗B F)n, (3.23)

with the preceding equalities being valid within A-isomorphisms. On the other hand,

HomA(A⊗B E ,A⊗B F) ' HomA(An,A⊗B F) ' (A⊗B F)n. (3.24)

Fix x ∈ X; if a ∈ Ax, z ∈ HomB(E ,F)x = Fnx , and

Φx(a⊗ z)(a′ ⊗ e) := aa′ ⊗ z(e) = 0

for all a′ ∈ Ax and e ∈ Ex, then a⊗ z = 0; this implies that Φx is injective. Moreover, since both

A ⊗B HomB(E ,F) and HomA(A ⊗B E ,A ⊗B F) are free as finite direct sums of A ⊗B F (cf.

(3.23) and (3.24)), it follows that Φx is bijective. Hence, Φ is an isomorphism (see, for instance,

[35, p.68, Theorem 12.1]).
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Now, let us suppose that E is properly locally finitely presented; so, for every x ∈ X, there are an

open set U ⊆ X and locally free B-modules E1 and E0 of finite rank such that

E1|U ' Bm|U // E0|U ' Bn|U // E|U // 0

is right exact. One thus obtains, by virtue of Lemma 3.4, the following diagram, for every x ∈ X,

0 // Ax ⊗ Hom(Ex,Fx) // Ax ⊗ Hom(E0x,Fx) // Ax ⊗ Hom(E1x,Fx),

with Ax ⊗ Hom(E0x,Fx) = Hom(Ax ⊗ E0x,Ax ⊗ Fx) and Ax ⊗ Hom(E1x,Fx) = Hom(Ax ⊗

E1x,Ax ⊗Fx) within Ax-isomorphisms. On the other hand, since

0 // Hom(Ax ⊗ Ex,Ax ⊗Fx) // Hom(Ax ⊗ E0x,Ax ⊗Fx),

it follows that

Ax ⊗Bx HomB(E ,F)x = Ax ⊗Bx HomBx(Ex,Fx)

= HomAx(Ax ⊗Bx Ex,Ax ⊗Bx Fx) = HomA(A⊗B E ,A⊗B F)x

within Ax-isomorphisms. Since the last Ax-isomorphisms hold for any x ∈ X,

Φ : A⊗B HomB(E ,F) −→ HomA(A⊗B E ,A⊗B F),

where Φx is given by (3.18), is an A-isomorphism.

3.2 A-modules of Fractions

As part of the required generalities on A-quadratic morphisms for the attainment of the goal set

for our ongoing project are sheaves of A-modules of fractions on a topological space X, which
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are also simply called A-modules of fractions on X. Indeed, given a sheaf A of unital algebras, a

subsheaf of multiplicative sets (also called a sheaf of multiplicatively closed subsets) is a subsheaf

S of submonoids of A. In other words, for every open U in X, S(U) is a multiplicative subset of

the unital algebra A(U) (cf. [8, pp. 17-20], [25, p. 21], [32, pp. 107- 109]), that is, a subset

containing 1A(U), and such that, if s, t ∈ S(U), then st, ts ∈ S(U). Let C be the category of all

sheaf morphisms ϕ : A −→ B such that ϕ(S) ⊆ B•, where B• is the subsheaf of groups of units

of B; so for any open U in X and section s ∈ S(U) ⊆ A(U), ϕU(s) is invertible in B(U). If

ϕ : A −→ B and ψ : A −→ C are two objects of C, a morphism u of ϕ into ψ is a sheaf morphism

u : B −→ C making the diagram

A ϕ //

ψ ��

B
u
��
C

commute. The sheaf morphism A −→ 0 is a final universal object in C, and in this case, if every Sx

contains 0x, then the morphism A −→ 0 is the unique object of C. If C contains an initial universal

object ϕ : A −→ K, it is unique up to sheaf isomorphism, and K is called the sheaf of algebras of

fractions of A with denominator in S, and is denoted S−1A.

Definition 3.3 Let X be a topological space, A ≡ (A, π,X) a sheaf of unital and commutative

algebras, and S ≡ (S, π|S , X) a sheaf of submonoids in A. A sheaf of algebras of fractions of A by

S is a sheaf of algebras, denoted S−1A, such that, for every point x ∈ X, the corresponding stalk

(S−1A)x is an algebra of fractions of Ax by Sx; in other words,

(S−1A)x = S−1
x Ax (3.25)

for all x ∈ X.
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Explicitly, fix x in X; the stalk Sx is a submonoid of the unital and commutative algebra Ax. The

algebra of fractions of Ax by Sx is defined (see [32, pp. 107- 111]) by considering the equivalence

relation, on the set Ax × Sx:

(r, s) ∼ (r′, s′)

provided there exists an element t ∈ Sx such that

t(s′r − sr′) = 0.

The equivalence class containing a pair (r, s) is denoted by r
s
, and the set of all equivalence classes

is denoted by S−1
x Ax. The set S−1

x Ax becomes an algebra by virtue of the operations

r

s
+
r′

s′
:=

s′r + sr′

ss′

and

r

s

r′

s′
:=

rr′

ss′
.

Theorem 3.4 S−1A is an algebra sheaf on X.

Proof. Let us consider the projection map

q : A ◦ S −→ S−1A (3.26)

given by

qx(r, s) :=
r

s
, (3.27)

for every x ∈ X, r ∈ Ax and s ∈ Sx. (A ◦ S is the subsheaf of the sheaf A × S, given by

A◦S := {(a, s) ∈ A×S : π(a) = π|S(s)}.) By considering the topology coinduced by q on S−1A,
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that is, U ⊆ S−1A is open if and only if q−1(U) is open in A ◦ S, with A ◦ S carrying the relative

topology from A× S, we quickly show that the map

σ : S−1A −→ X

such that

A ◦ S q //

τ
##

S−1A
σ

{{
X

,

where τ is the obvious projection, is a local homeomorphism; hence S−1A ≡ (S−1A, σ,X) is a

sheaf of algebras on X. Indeed, for any open U in X, we clearly have that σ−1(U) is open in

S−1A, which implies that σ is continuous. To show that σ is a local homeomorphism, consider

a point z ∈ S−1A and let V be an open neighborhood of z in S−1A. Then, q−1(z) ⊆ q−1(V ),

with q−1(V ) open in A ◦ S. Next, let u ∈ q−1(z) and W an open neighborhood of u such

that τ |W is a homeomorphism. (The projection τ is a local homeomorphism for the following

reason: Given two sheaves of A-modules E ≡ (E , π,X) and E ′ ≡ (E ′, π′, X) on X, the triple

(E ⊕ E ′, σ,X), where E ⊕ E ′ := {(z, z′) ∈ E × E ′ : π(z) = π′(z′)} and σ : E ⊕ E ′ −→ X :

(z, z′) 7−→ σ(z, z′) := π(z) = π′(z′), is a sheaf on X, viz. σ is a local homeomorphism. See

[35, p. 120].) Since σ(z) ∈ X and σ is continuous, there exists an open neighborhood O of σ(z)

in X such that z ∈ σ−1(O). That σ|σ−1(O∩τ(W )) is homeomorphic is clear. Indeed, let us first

show that σ is bijective on σ−1(O ∩ τ(W )). To this end, consider z1 6= z2 in σ−1(O ∩ τ(W )); so

q−1(z1)∩q−1(z2) = ∅, whence τ(q−1(z1)∩W )∩τ(q−1(z2)∩W ) = ∅. Consequently, σ(z1) 6= σ(z2);

hence, σ|σ−1(O∩τ(W )) is injective. For surjectiveness, let α ∈ O ∩ τ(W ). Then, σ(q(τ−1(α))) = α,

with q(τ−1(α)) ∈ σ−1(O∩τ(W )). Finally, let V be open in σ−1(O∩τ(W )). It follows that q−1(V )

is open, and since

q−1(V ) ⊆ q−1(σ−1(O ∩ τ(W ))) = τ−1(O ∩ τ(W )) ⊆ W,
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τ(q−1(V )) is open. But

τ(q−1(V )) = (σ ◦ q)(q−1(V )) = σ(V ),

therefore σ(V ) is open in O∩ τ(W ). Thus, as required, σ is a homeomorphism on σ−1(O∩ τ(W )).

Theorem 3.5 Every sheaf A of unital and commutative algebras admits a sheaf S−1A of algebras

of fractions of A with denominator in S.

Proof. Fix an open set U in X. We consider pairs (a, s) and (a′, s′) of (A×S)(U) = A(U)×S(U);

they are said to be equivalent if there exists t ∈ S(U) such that

t(s′a− sa′) = 0;

it is easy to verify that the above condition defines an equivalence relation on A(U) × S(U). We

denote by S(U)−1A(U) the set of equivalence classes; the equivalence class containing a pair (a, s)

is denoted by a
s
. By defining a multiplication and an addition on S(U)−1A(U) by the rules

(a
s

)(a′
s′
)

:=
aa′

ss′
(3.28)

and

a

s
+
a′

s′
=
s′a+ sa′

ss′
, (3.29)

respectively, S(U)−1A(U) acquires a ring structure. One can easily verify that (3.28) and (3.29)

are well-defined. The zero and unity sections are the fractions 0
1

and 1
1
, respectively.

Next, let us show that the collection (S(U)−1A(U)) open U⊆X induces a complete presheaf on X.

First, it is clear that the collection in question yields a presheaf. Now, let us show that this presheaf
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is complete. Indeed, let U = (Ui)i∈I be an open covering of an open subset U of X, and let a
s
, a′

s′

be two elements (“sections”) of S(U)−1A(U) such that

ρUUi
(a
s

)
= ρUUi

(a′
s′
)
,

where the (ρUUi)(U,Ui)∈τ∗ are the restriction maps of the aforementioned presheaf. But, assuming

that the (αUUi)(U,Ui)∈τ∗ are the restriction maps of the underlying presheaf of A, if (a, s) and (a′, s′)

are pairs representing the classes a
s

and a′

s′
, respectively, then

ρUUi(
a
s
) =

αUUi
(a)

αUUi
(s)
, ρUUi(

a′

s′
) =

αUUi
(a′)

αUUi
(s′)

;

since A is a sheaf and S a subsheaf of A,

a

s
=
a′

s′
,

which means that axiom (i) of Definition 3.2 is satisfied.

For axiom (ii) of Definition 3.2, let (ai
si

) ∈
∏

i∈I S(Ui)
−1A(Ui) such that, for any Uij ≡ Ui∩Uj 6= ∅

in U , one has

ρUiUij
(ai
si

)
= ρ

Uj
Uij

(aj
sj

)
. (3.30)

For any i ∈ I, let (ai, si) represent the corresponding equivalence class ai
si

. From Equation (3.30),

it follows that

αUiUij(ai) = α
Uj
Uij

(aj)

and

αUiUij(si) = α
Uj
Uij

(sj).

Clearly, there are a ∈ A(U) and s ∈ S(U) such that

αUUi(a) = ai, αUUi(s) = siforalli ∈ I;
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so

ρUUi
(a
s

)
=
ai
si
.

By considering the prescription

A(U)× S(U)−1A(U) −→ S(U)−1A(U)

such that (
λ,
a

s

)
7−→

(λ
1

)(a
s

)
=
λa

s

defines an A(U)-algebra structure on S(U)−1A(U). Thus, the sheafification S−1A of the presheaf

(S(U)−1A(U), ρUV )(U,V )∈τ∗ is an A-algebra sheaf.

Finally, let us show that the sheaf morphism ϕS : A −→ S−1A such that, for any open U ⊆ X and

section a ∈ A(U),

(ϕS)U(a) :=
a

1

is an initial universal object in the category C; in other words, S−1A is a sheaf of algebras of fractions

of A with denominator in S. To this end, suppose that a
s

= a′

s′
∈ (S−1A)(U). Let f : A −→ B be

an object of C. By an easy calculation, one sees that

fU(a)fU(s)−1 = fU(a′)fU(s′)−1;

the map

hU : (S−1A)(U) −→ B(U)

given by hU(a
s
) := fU(a)fU(s)−1, for all a

s
∈ (S−1A)(U) is thus well-defined and is such that

hU ◦ (ϕS)U = fU
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which is unique. It is trivially verified that

ρUV ◦ (ϕS)U = (ϕS)V ◦ αUV ,

for any pair (U, V ) ∈ τ ∗, corroborating the fact that ϕS is a sheaf morphism and the required initial

universal object.

Corollary 3.1 For any open U ⊆ X,

(S−1A)(U) = S(U)−1A(U)

within an A(U)-bijection.

Given a sheaf A of unital and commutative algebras on a given topological space X, let C be the

category of morphisms ϕ : A −→ P of sheaves of unital algebras such that ϕ(S) ⊆ P•, where P•

is the subsheaf of units of P ; so, for any point x ∈ X and element z ∈ Sx, ϕx(z) is invertible in

Px. If ϕ : A −→ P and ψ : A −→ Q are two objects in C, a morphism u of ϕ to ψ is a sheaf

morphism u : P −→ Q making the diagram

A ϕ //

ψ ��

P
u

��
Q

commute. The sheaf morphism A −→ 0 is a in C, and in this case, if every Sx contains 0x, then

the morphism A −→ 0 is the unique object of C.

Lemma 3.5 The sheaf morphism

ϕS : A −→ S−1A (3.31)

such that (ϕS)x(r) := r
1x
≡ r

1
, for every x ∈ X and r ∈ Ax, is a initial universal object in C.
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Proof. Clearly, ϕS can be decomposed as

ϕS = q ◦ ι, (3.32)

where ι : A −→ A ◦ S is the injection given by

ιx(r) = (r, 1),

for any r ∈ Ax ⊆ A (x ∈ X), and q is the projection (3.26). Thus, ϕS is continuous. Since, in

addition, ϕS is “fiber preserving”, it is a morphism of sheaves of algebras A and S−1A.

Now, let ϕ : A −→ P be an object of C. It is clear that if r, r′ ∈ Ax, s, s′ ∈ Sx, where x ∈ X, and

r
s

= r′

s′
,

ϕx(r)ϕx(s)
−1 = ϕx(r

′)ϕx(s
′)−1;

so that we can define a map

ψ : S−1A −→ P

such that

ψx(
r

s
) = ϕx(r)ϕx(s)

−1,

for all r
s
∈ (S−1A)x. It is trivially verified that, for every x ∈ X, ψx is the unique algebra

homomorphism such that ψx ◦ (ϕS)x = ϕx. By virtue of (3.32), we have that, for every open U in

P ,

ϕ−1(U) = (ϕS)−1(ψ−1(U)) = ι−1q−1(ψ−1(U)),

with ϕ−1(U) open in A. But ι(A) is open in A ◦ S, therefore q−1(ψ−1(U)) is open in A ◦ S; so

ψ−1(U) is open in S−1A, whence ψ is continuous. We deduce that ψ is the unique sheaf morphism

such that ψ ◦ ϕS = ϕ, which means that ϕS is the required initial universal object.
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In keeping with the above notations, let, now, E ≡ (E , ρ,X) be an A-module on a topological space

X, and D the category whose objects are the A-morphisms ϕ : E −→ P from E into any (S−1A)-

module P ; given an A-morphism ϕ′ : E −→ P ′, a morphism from ϕ to ϕ′ is an (S−1A)-morphism

u : P −→ P ′ such that ϕ′ = u ◦ ϕ. If D contains an initial universal object ϕSE ≡ ϕE : E −→ M,

then M is called the sheaf of (S−1A)-modules of fractions of E with denominator in S and is

denoted by S−1E .

We need to show that ϕE exists in the category D. For this purpose, we define, on every stalk

Ex×Sx, the following equivalence relation: Two elements (e, s) and (e′, s′) of Ex×Sx, x ∈ X, are

said to be equivalent if there exists an element t ∈ Sx such that

t(s′e− se′) = 0;

the set of all equivalence classes in Ex ×Sx is called the module of fractions of the module Ex with

denominator in Sx (see, for instance, [9, pp. 60-70], [25, pp. 21-25]), and is denoted by S−1
x Ex.

The equivalence class containing the pair (e, s) in S−1
x Ex is denoted by e

s
. It is easy to see that

every S−1
x Ex becomes an S−1

x Ax-module under the operations

e1

s1

+
e2

s2

:=
s2e1 + s1e2

s1s2

and

p

q

e

s
:=

pe

qs
,

where e
s
, e1
s1

, e2
s2
∈ S−1

x Ex and p
q
∈ S−1

x Ax.

As was the case for the sheaf of algebras of fractions S−1A above, one shows that the space

S−1E :=
∑
x∈X

S−1
x Ex,
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endowed with the final topology determined by the natural map

q : E ◦ S −→ S−1E

is a sheaf of (S−1A)-modules. (Again we have assumed the notation E ◦ S := {(e, s) ∈ E × S :

ρ(e) = π(s)}.) Moreover, the mapping

ϕE : E −→ S−1E (3.33)

such that

(ϕE)x(e) :=
e

1x
=
e

1
,

is an A-morphism; similar to the proof of Lemma 3.5, one shows that ϕE is an initial universal object

in D.

Every sheaf S of submonoids in a sheaf A of unital and commutative algebras over a topological

space X yields a functor from the categoryA-ModX ofA-modules into the category (S−1A)-ModX

of (S−1A)-modules; more accurately, with every (A-ModX)-object E , we associate the (S−1A)-

module S−1E , and with every A-morphism ψ : E −→ F we associate the (S−1A)-morphism

S−1ψ : S−1E −→ S−1F , which is obtained in the following way: because of the universal property

of S−1E , the A-morphism

E −→ F −→ S−1F

can be factorized in a unique way through S−1E , that is,

S−1ψ : S−1E −→ S−1F

is unique with respect to satisfying the equation

S−1ψ ◦ ϕSE ≡ S−1ψ ◦ ϕE = ϕF ◦ ψ ≡ ϕSF ◦ ψ. (3.34)
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In particular, (3.34) implies that, for any x ∈ X and element e
s
∈ (S−1E)x,

(S−1ψ)x(
e

s
) :=

ψx(e)

s
. (3.35)

Theorem 3.6 The functor S−1 : A-ModX −→ (S−1A)-ModX , S−1(E) := S−1E , S−1(ψ) :=

S−1ψ, for all (A-ModX)-objects E and A-morphisms ψ, is exact. Moreover, there is a one-to-one

correspondence between functors S−1 and S−1A ⊗ – : A-ModX −→ (S−1A)-ModX such that

E 7−→ S−1A⊗ E , and ψ 7−→ S−1A⊗ ψ := 1S−1A ⊗ ψ, for all A-modules E and A-morphisms ψ.

Proof. Let us consider an exact sequence E ′ ϕ // E ψ // E ′′ in the category A-ModX . Since

ψ ◦ ϕ = 0 and, for any x ∈ X and element e′

s′
∈ (S−1E ′)x, on applying (3.35), one has

(S−1ψ ◦ S−1ϕ)x(
e′

s′
) = (S−1ψ)x(

ϕx(e
′)

s′
) =

ψx(ϕx(e
′))

s′
=

(ψ ◦ ϕ)x(e
′)

s′
= 0;

it follows that

S−1ψ ◦ S−1ϕ = 0,

i.e., im S−1ϕ ⊆ kerS−1ψ. Now, let us show, for every x ∈ X, the inclusion

ker(S−1ψ)x ' (kerS−1ψ)x ⊆ (im S−1ϕ)x ' im(S−1ϕ)x

(cf. [35, pp. 108, 109; (2.11), (2.13)]); in other words, we must prove that every fraction

e
s
∈ ker(S−1ψ)x is contained in im(S−1ϕ)x. Since S−1E is an (S−1A)-module, claiming that

(S−1ψ)x(
e
s
) = 0 implies that (S−1ψ)x(

e
1
) = 0; whence ψx(e) ∈ ker(ϕE ′′)x, where ϕE ′′ is the canon-

ical mapping E ′′ −→ S−1E ′′. By the classical result (cf. [25, p. 22]), which states that, given a

unital and commutative ring K, a multiplicative subset S of K, and a K-module M , an element

x ∈ M belongs to the kernel of the canonical morphism M −→ S−1M , x 7−→ x
1
, if and only if

there exist t ∈ S such that tx = 0, we have that ψx(e) ∈ ker(ϕE ′′)x if and only if there exists t ∈ Sx
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such that tψx(e) = ψx(te) = 0x ≡ 0. Therefore there exists e′ ∈ E ′x such that ϕx(e
′) = te, whence

e
s

= (S−1ϕ)x(
e′

st
) as required.

The proof of the second part is just as straightforward. In fact, there is an (S−1A)-morphism

S−1E −→ S−1A⊗E resulting from the universal property of S−1E ; more precisely, for every x ∈ X

and e ∈ Ex, we have the following commutative diagram

e //

""

e
1

��
1x ⊗ e.

(3.36)

On the other hand, the tensor product S−1A⊗E yields an (S−1A)-morphism S−1A⊗E −→ S−1E

such that, for any x ∈ X and elements r
s
∈ (S−1A)x and e ∈ Ex, r

s
⊗ e is mapped onto re

s
.

The vertical arrow in (3.36) yields an (S−1A)-morphism which maps re
s
∈ (S−1E)x onto r

s
⊗ e ∈

(S−1A ⊗ E)x = (S−1A)x ⊗ Ex (the preceding equality actually stands for an Ax-isomorphism, cf.

[35, p. 130, (5.9)]). Clearly, the (S−1A)x-morphisms re
s
7−→ r

s
⊗ e and r

s
⊗ e 7−→ re

s
are inverse

isomorphisms. By [35, p. 68, Theorem 12.1], S−1E = S−1A⊗ E within (S−1A)-isomorphism, and

if we denote this isomorphism by S−1
E , clearly, it follows that S−1

E ′′ ◦ψ = (1S−1A⊗ψ) ◦ S−1
E , i.e., the

S−1
E ’s form an equivalence transformation.

Corollary 3.2 The algebra sheaf extension A −→ S−1A is flat.

Proof. Indeed, the exactness of the functor S−1A⊗− follows immediately from the exactness of

the functor S−1 (cf. Theorem 3.6).

Corollary 3.3 For all A-modules E and F , one has

S−1(E ⊗A F) = S−1E ⊗S−1A S−1F (3.37)

within (S−1A)-isomorphism.
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Proof. Indeed, by an easy calculation, one has:

(S−1A⊗A E)⊗S−1A (S−1A⊗A F) =
[
(S−1A⊗A E)⊗S−1A S−1A

]
⊗A F

=
[
S−1A⊗A (E ⊗S−1A S−1A)

]
⊗A F

= (S−1A⊗A E)⊗A F

= S−1A⊗A (E ⊗A F)

= S−1(E ⊗A F),

valid within (S−1A)-isomorphisms.

Relation (3.37) shows that the functors S−1 and ⊗ commute. In Theorem 3.7 below, we show that

the functor S−1 commutes with the functor Hom under certain conditions. See, for instance, [25,

p. 19, Proposition 1.9.7] and [9, p. 76, Proposition 19] for the classical case.

Theorem 3.7 For all A-modules E and F on a topological space X, the (S−1A)-morphism

ϑ : S−1HomA(E ,F) −→ HomS−1A(S−1E ,S−1F), (3.38)

given by

ϑx(f/s)(e/t) := f(e)/st, (3.39)

where x ∈ X, s, t ∈ Sx, e ∈ (S−1E)x, f ∈ HomA(E ,F)x, is an (S−1A)-isomorphism whenever E

is a locally finitely presented A-module.

Proof. On the basis of Lemma 3.4, since E is a locally finitely presented A-module, one has

(
S−1HomA(E ,F)

)
x

= (S−1A)x ⊗Ax HomA(E ,F)x

= S−1
x Ax ⊗Ax HomAx(Ex,Fx)

= S−1
x HomAx(Ex,Fx),
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therefore elements of the (S−1
x Ax)-module S−1

x HomAx(Ex,Fx) are of the form f/s, with f ∈

HomAx(Ex,Fx) and s ∈ Sx ⊆ Ax. By Theorem 3.6, the functor S−1 is exact, therefore, S−1E is

locally finitely presented, so that

HomS−1A(S−1E ,S−1F)x = Hom(S−1A)x

(
(S−1E)x, (S−1F)x

)
;

hence, (3.39) is well-defined, and ϑ is clearly an (S−1A)-morphism. By virtue of Theorem 3.3 and

Corollary 3.2, (3.38) is an (S−1A)-isomorphism whenever E is a locally finitely presented A-module

on X.

3.3 Localization of Vector Sheaves

In Section 3.2 of this thesis, we saw the introduction of localization of A-modules. For easy

referencing, we herewith recall results that are useful for the sequel. Given a sheaf AX := A ≡

(A, π,X) of unital and commutative algebras and a sheaf SX := S ≡ (S, π|S , X) of submonoids

in A, a sheaf of algebras of fractions of A by S is a sheaf of algebras, denoted S−1A or AS , such

that, for every point x ∈ X, the corresponding stalk (S−1A)x is an algebra of fractions of Ax by

Sx; in other words,

(S−1A)x := S−1
x Ax ≡ AxSx =: (AS)x, for all x ∈ X, (3.40)

that is, the localization functor S−1 commutes with direct limits. For a fixed sheaf A of unital and

commutative algebras and a fixed subsheaf S ⊆ A of submonoids, we obtain a category, denoted C,

whose objects are morphisms ϕ : A −→ P of sheaves of unital and commutative algebras such that

ϕ(S) ⊆ P•, where P• is the subsheaf of units of P ; so, for any point x ∈ X and element z ∈ Sx,

ϕx(z) is invertible in Px. If ϕ : A −→ P and ψ : A −→ Q are two objects in C, a morphism u
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of ϕ to ψ is a sheaf morphism u : P −→ Q such that u ◦ ϕ = ψ. Next, we recall that the sheaf

morphism ϕS : A −→ S−1A such that (ϕS)x(r) := r
1
, for every x ∈ X and r ∈ Ax, is a universal

object in C.

Again assuming that AX ≡ A and S ⊆ A are as above, let EX ≡ E be an A-module, and D the

category whose objects are the A-morphisms ϕ : E −→ P from E into an (S−1A)-module P . Given

an A-morphism ϕ′ : E −→ P ′, a morphism from ϕ to ϕ′ is an (S−1A)-morphism u : P −→ P ′

such that ϕ′ = u ◦ ϕ. If D contains an initial universal object ϕSE ≡ ϕE : E −→ M, then M,

an (S−1A)-module, is called the sheaf of (S−1A)-modules of fractions of E with denominator in

S and is denoted by S−1E or ES . Every sheaf S of submonoids in A yields a functor, called the

localization functor , from the category A-ModX of A-modules into the category (S−1A)-ModX of

(S−1A)-modules; precisely, it is the functor that sends an object E of the category A-ModX to the

(S−1A)-module S−1E , and as for morphisms, it associates with every A-morphism ψ : E −→ F the

(S−1A)-morphism S−1ψ : S−1E −→ S−1F , described as follows: because of the universal property

of S−1E , the A-morphism

E // F // S−1F

can be factorized in a unique way through S−1E , that is,

S−1ψ : S−1E −→ S−1F

is unique and satisfies the equation

S−1ψ ◦ ϕSE ≡ S−1ψ ◦ ϕE = ϕF ◦ ψ ≡ ϕSF ◦ ψ. (3.41)

More explicitly, (3.41) means that, for any x ∈ X and element e
s
∈ (S−1E)x,

(S−1ψ)x(
e

s
) :=

ψx(e)

s
.
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Now, we recall (see [24, p. 109]) that, given an algebraized space (X,A), a sheaf of ideals on X is

a subsheaf a of A such that, for every open set U , a(U) is an ideal in A(U). Fibre-wise, we have

that, for all x ∈ X, ax is an ideal in Ax. For any A-module E , if a is a sheaf of ideals in A, the

notation aE means that, for all open U ⊆ X, (aE)(U) = a(U)E(U); in other words, for all x ∈ X,

(aE)x = axEx.

Let us now consider a sheaf of prime ideals p in AX ; in other words, for every open set U , p(U) is

a prime ideal in A(U). Clearly, if A− p is the sheaf obtained by sheafifying the presheaf

U 7−→ A(U)− p(U),

A− p is a subsheaf of A of submonoids. Let S ≡ Sp := A− p; for any AX-module E , the sheaves

S−1A and S−1E are denoted Ap and Ep, respectively, and are called the For all x ∈ X,

(Ap)x = (Ax)px and (Ep)x = (Ex)px .

In the sequel, we will adopt the following abuse of language: by a sheaf of rings on a topological

space X, we shall mean a sheaf of unital and commutative rings. We recall that a is a commutative

ringed space (X,R) such that, for all x ∈ X, the stalk Rx is a local ring. See [23, p. 92, (4.1.9)].

Analogously, a is an algebraized space (X,A) in which every stalk Ax is a local algebra.

We now give different fibre-wise characterizations of locally algebraized spaces. For the proof of the

following theorem, see [6, p. 18, Proposition 2].

Theorem 3.8 Let AX be a sheaf of algebras and, for all x ∈ X, mx  Ax a proper ideal. At every

x ∈ X, the following properties are equivalent:

(i) Ax is a local algebra with mx the maximal ideal in Ax.
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(ii) Every element of Ax −mx is a unit in Ax.

(iii) mx is a maximal ideal and every element of the form 1x + mx ≡ 1 + m, with m ∈ mx, is a

unit in Ax.

Let A ≡ AX be a sheaf of algebras and S ⊆ A a sheaf of submonoids in A. For any sheaf of ideals

a ⊆ A, by the extension of a to S−1A ≡ AS , we shall mean the sheaf of ideals, denoted aAS , in

AS , generated by τ(a), where τ is the canonical mapping A −→ AS . Clearly, for any x ∈ X,

(aAS)x = ax(AS)x = {a
s

; a ∈ ax, s ∈ Sx}.

On the other hand, given a sheaf of ideals b in AS , its pre-image τ−1(b) is called the restriction of

b to A. For all x ∈ X, if we let τx(z) := z for any z ∈ Ax, then

τ−1(b) = b ∩ A.

Now, consider a subsheaf p of prime ideals of AX . We denote by S := A− p the sheaf whose stalk

at a point x ∈ X is the multiplicative system Sx = Ax − px; we call AS := AA−p the localization

of A at p. By an abuse of language, we will write Ap instead of the more accurate but cumbersome

notation AA−p.

Lemma 3.6 For any subsheaf p of prime ideals of a sheaf AX of algebras, the localization Ap is a

locally ringed space with px(Ap)x being the maximal ideal of (Ap)x, where x ∈ X.

Proof. For all x ∈ X, it is easy to see that (Ap)x − px(Ap)x consists of units in (Ap)x. By virtue

of Theorem 3.8, Ap is a sheaf of local algebras, with, for all x ∈ X, px(Ap)x being the maximal

ideal for the corresponding ring (Ap)x.

Let us now introduce a version of .
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Lemma 3.7 (Nakayama) Let E be a locally finitely generated AX-module and a ⊆ AX ≡ A a

subsheaf of ideals such that, for all x ∈ X, ax is contained in every maximal ideal of Ax. If aE = E ,

then E = 0.

Proof. Since E is locally finitely generated, there locally exists an exact sequence

L0
// E // 0,

where L0 is locally free of finite rank over A, i.e., for all x ∈ X, there is an open neighborhood U

of x ∈ X such that

An|U ' L0|U // E|U // 0.

Since inductive limits preserve exactness of sequences (see, for instance, [7, p. 206, Corollary 2,

Proposition 7]),

Anx ' L0,x
// Ex // 0

for all x ∈ X. Moreover, for all x ∈ X, axEx = (aE)x = Ex, where ax is an ideal of Ax, contained

in every maximal ideal of Ax. Applying Nakayama’s lemma on the stalks of E , we have that Ex = 0,

for all x ∈ X. Thus, E = 0.

Under the same conditions of Lemma 3.11, we have:

Corollary 3.4 Let F ⊆ E be a sub-AX-module such that E = F + aE . Then, E = F .

Proof. For all x ∈ X, (E/F)x = (Fx + (aE)x)/Fx = (Fx + axEx)/Fx = ax(Ex/Fx). Since Ex/Fx,

just as Ex, is finitely generated, by the classical Nakayama’s lemma, Ex/Fx = 0. Thus, Ex = Fx,

for all x ∈ X; hence, E = F .

As in the classical case, see, for instance, [25, pp. 30, 31, Corollary(1.12.3)], one shows the following.
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Corollary 3.5 Let E be a locally finitely generated AX-module and a an ideal sheaf in AX , where

AX ≡ A is a sheaf of local algebras such that, given any open U ⊆ X, a(U) is the maximal ideal

of A(U). Moreover, let s1, s2, · · · , sn be n (local) sections of E over some open U ⊆ X. Then,

the following conditions are equivalent:

(a) (s1, s2, · · · , sn) is a minimal family of generators of E(U);

(b) the image (s1, s2, · · · , sn) in E(U)/a(U)E(U) is a basis of E(U)/a(U)E(U) as a module over

the residue field A(U)/a(U).

Clearly, given A as in Corollary 3.8, we deduce that if E is a locally free A-module of finite rank,

then E/aE is locally free of the same rank as E .

The next theorem, patterned after [25, p. 31, Theorem 1.12.4], too derives from Nakayama’s

lemma. First, let us recall the following notions which were discussed in Section 3.1: Given an

algebraized space (X,A), an A-module E is called projective if the functor Hom(E , –) is exact; it

is called flat if the functor E ⊗ – is exact. Equivalently, E is projective if and only if the mapping

Hom(E ,F) → Hom(E ,F ′′) is surjective whenever F → F ′′ is surjective, and E is flat if and only

if the mapping E ⊗ F ′ → E ⊗ F is injective whenever F ′ → F is injective. Flatness is a local

property and one can easily verify that E is flat if and only if its stalk Ex, at any point x ∈ X, is a

flat module over the algebra Ax (see [19, p. 112] or [27, p. 446, Proposition 18.5.2]).

Let us recall a classical notion. An A-module E is called if there exists an exact sequence

L1
// L0

// E // 0, (3.42)

where L1 and L0 are free A-modules of finite rank. This is equivalent to saying that there exists an

exact sequence

0 // K // N // E // 0, (3.43)
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where N is free of finite rank and K is finitely generated.

Theorem 3.9 Let (X,A) be an algebraized space, where A is a locally algebraized space on X,

with, for all x ∈ X, mx is the maximal ideal in Ax. Moreover, let E be a finitely presented A-module.

Then, the following assertions are equivalent:

(a) E is free;

(b) E is projective;

(c) E is flat;

(d) The morphism m⊗ E ϕ // E , ϕx(m⊗ e) := me (m ∈ mx, e ∈ Ex, x ∈ X), is injective.

Proof. The implications (a) ⇒ (b) ⇒ (c) are evident, due to the fact that, for any open U ⊆ X,

E(U) is a finitely presented module over a local algebra A(U). See, for instance, [25, p. 31,

Theorem 1.12.4]. Therefore, for any open U ⊆ X, E(U) is free if and only if it is projective if and

only if it is flat. Hence, E is free if and only if it is projective if and only if it flat. Let us show that

(c) ⇒ (d). Since A ⊗ E ' E and m −→ A is injective, one has that m ⊗ E −→ A ⊗ E ' E is

injective. It remains to show that (d)⇒ (a). Since, for all x ∈ X, Ax is a local algebra, it is known

that the injectivity of the morphism ϕx : mx ⊗ Ex −→ Ex, m ⊗ e 7−→ me, implies that Ex is free,

that is to say there exists n ∈ N such that Ex ' Anx (n ≤ rank L0, where L0 is as in the sequence

(3.42)). As n is the same for all x, E ' An, which ends the proof.

For the purpose of the sequel, let us recall (cf. [43]) the following: Given a sheaf AX := A ≡

(A, π,X) of unital and commutative algebras and a sheaf SX := S ≡ (S, π|S , X) of submonoids

in A, the localization functor S−1 : A-ModX −→ (S−1A)-ModX , S−1(E) := S−1E , satisfies the
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property that, given any locally finitely presented A-module E and any A-module F , the (S−1A)-

morphism

ϑ : S−1HomA(E ,F) −→ HomS−1A(S−1E ,S−1F)

such that, for any x ∈ X,

ϑx
(f
s

)(e
t

)
:=

f(e)

st
,

where s, t ∈ Sx, e ∈ (S−1E)x, f ∈ HomA(E ,F)x, is an (S−1A)-isomorphism. This result is based

on the fact that, for such E and F , the natural morphism
(
HomA(E ,F)

)
x
−→ HomAx(Ex,Fx) is

an Ax-isomorphism (see, Theorem 3.7 or [51, p. 114, (*) and subsequent remarks] or [23, p. 110,

(5.2.6)]).

We shall now show that flatness of A-modules is a local property. We begin with two auxiliary

results.

Lemma 3.8 Let A, A′, A′′ be algebra sheaves on a topological space X and ϕ : A −→ A′,

ϕ′ : A′ −→ A′′ be morphisms. Moreover, let E be an A-module and E ′ an A′-module. Then,

Φ : (E ⊗A A′)⊗A′ E ′ ' E ⊗A E ′, (3.44)

such that, for any x ∈ X, z ∈ Ex, a′ ∈ A′x and z′ ∈ E ′x,

Φx

(
(z ⊗ a′)⊗ z′

)
= z ⊗ a′z′. (3.45)

Proof. Since, for any x ∈ X, Φx is an Ax-isomorphism (cf. [6, p. 124, Remark 2]), Φ is an

A-isomorphism.

Lemma 3.9 Let (X,A) be an algebraized space and E an A-module on X. For every x ∈ X, the

canonical map

Ex −→
∏

mx∈SpmAx

(Ex)mx ,
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where SpmAx is the maximal spectrum of Ax, is injective.

Proof. See [6, p. 126, Lemma 4].

Now, before we proceed to show that flatness of A-modules is a local property, let us construct

a sheaf with maximal ideals as stalks. In fact, let (X,A) be a locally algebraized space; for every

x ∈ X, let mx be the unique maximal ideal in the corresponding local ring Ax. Furthermore, we

assume that we have a family of sections of A, say G = {s}, that is, the generic element of G,

which is a function s : U −→ m ⊆ A, is also given as a triple (U, s,m), where U ≡ Dom(s) is

open in X and m :=
⋃
x∈X mx =

∑
x∈X mx. Next, suppose that the family G satisfies the following

three conditions: (i) For every x ∈ U ≡ Dom(s), s(x) ∈ mx; equivalently, every s is identified with

a family s ∈
∏

x∈U mx; (ii) For each x ∈ X, mx ⊆
⋃
s∈G im(s), i.e., m =

⋃
s∈G s(U); (iii) Let s,

t ∈ G, with U ≡ Dom(s) and V ≡ Dom(t). If z ∈ s(U)
⋂
t(V ), there exists an open set W in X

such that x ∈ W ⊆ U
⋂
V (where z = s(x) = t(x)) and s|W = t|W .

With the projection map π : m −→ X, π(mx) = {x}, x ∈ X, one shows (cf. [35, pp. 12-14,

Theorem 3.1]) that the triple (m, π,X) turns out to be a sheaf. Indeed, the family

B := {s(V ) : s ∈ G and V open in X with V ⊆ Dom(s)}

is a basis for the topology of m with respect to which the map π : m −→ X is a local homeo-

morphism. We shall call the sheaf m, thus obtained, the sheaf induced by the maximal ideals mx,

x ∈ X. It is clear that m is a sheaf of prime ideals.

Theorem 3.10 Let (X,A) be an algebraized space and (X,A′) a locally algebraized space. For

any morphism ϕ : A −→ A′ and any A′-module E , the following conditions are equivalent:

(i) As an A-module, E is flat.
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(ii) The A′-module Em′ , where m′ is the sheaf induced by the maximal ideals m′x ⊂ Ax, is a flat

A-module. (As a set, Em′ =
∑

x∈X(Ex)m′x .)

(iii) The A′-module Em′ of (ii) is a flat Am-module, where m := ϕ−1(m′).

Proof. Suppose that (i) holds; since small filtrant inductive limits of flat A-modules are flat (cf.

[27, p. 446, Proposition 18.5.2(iv)]), for every x ∈ X, Ex is Ax-flat. As in the classical case

(cf. [6, p. 127, Proposition 5]) one shows that, for any maximal ideal m′x ⊂ A′x, the localization

(Ex)m′x is a flat Ax-module. Now, let F ′ −→ F be an A-monomorphism. Since, for every x ∈ X,

F ′x⊗Ax (Ex)m′x −→ Fx⊗Ax (Ex)m′x is an Ax-monomorphism, it follows (cf. [35, pp. 60, 61, Lemma

12.1]) that F ′ ⊗A Em′ −→ F ⊗A Em′ is an A-monomorphism. Thus, (i) implies (ii).

Next, let us show that (ii) ⇔ (iii). Assume first that Em′ is a flat A-module. As m := ϕ−1(m′)

is a subsheaf of ideals of A, we can derive from ϕ by means of the localization functor associated

with m′ a morphism ϕm′ : Am −→ A′m′ such that the diagram

A ϕ //

σm
��

A′

σ′
m′
��

Am ϕm′
// A′m′ ,

where σm and σ′m′ are canonical, commutes; it is clear that Em′ can be regarded as an Am-module.

Now, if F ′ −→ F is a monomorphism of Am-modules, the flatness of Em′ over A induces an

A-monomorphism:

F ′ ⊗A Em′ −→ F ⊗A Em′ .

Using the Am-isomorphisms F ⊗A Am ' F and F ′ ⊗A Am ' F ′, one has

F ′ ⊗Am Em′ ' (F ′ ⊗A Am)⊗Am Em′ −→ (F ⊗A Am)⊗Am Em ' F ⊗Am Em;
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whence Em′ is a flat Am-module. Conversely, let F ′ −→ F be any monomorphism of A-modules. As

localization functors are exact (See Theorem 3.6), F ′m −→ Fm is a monomorphism of Am-modules;

and since Em′ is Am-flat,

F ′m ⊗Am Em′ −→ Fm ⊗Am Em′

is an Am-monomorphism. By Lemma 3.8,

F ′m ⊗Am Em′ ' (F ′m ⊗A Am)⊗Am Em′ ' F ′m ⊗A Em′

and

Fm ⊗Am Em′ ' (Fm ⊗A Am)⊗Am Em′ ' Fm ⊗A Em′ ,

therefore

F ′m ⊗A Em′ −→ Fm ⊗A Em′

is injective; whence Em′ is A-flat.

Finally, let us show that (ii)⇒ (i) in order to obtain all the remaining equivalences. Suppose that

Em′ is A-flat, where m′ is a sheaf of ideals such that, for all x ∈ X, m′x is maximal in Ax. Let

F ′ −→ F be a monomorphism of A-modules. For all x ∈ X, if (F ′ ⊗A E)x ' F ′x ⊗Ax Ex and

(F ⊗A E)x ' Fx ⊗Ax Ex are considered as A′x-modules, in the commutative diagram (cf. [6, pp.

127, 128, Proposition 5])

(F ′ ⊗A E)x //

��

(F ⊗A E)x

��∏
m′x∈Spm(A′x)

(
(F ′ ⊗A E)x

)
m′x

//
∏

m′x∈Spm(A′x)

(
(F ⊗A E)x

)
m′x
,

the upper horizontal arrow is injective. Hence, F ′⊗A E −→ F ⊗A E is injective, and, consequently,

E is A-flat.
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In classical theory, see for instance [25, p. 30, Corollary 1.11.8], localization of modules with

respect to prime ideals is equivalent to localization with respect to maximal ideals. Though, we

have reservation as to whether sheaves of maximal ideals do, indeed, exist, we nevertheless show,

in the corollary below, that localization of A-modules with respect to prime ideal subsheaves is

equivalent to localization with respect to sheaves induced (in the sense of the paragraph just before

Theorem 3.10) by maximal ideals. To do this, we consider A-modules, with A admitting prime ideal

subsheaves.

Corollary 3.6 For any A-module E , the following conditions are equivalent:

(i) E is A-flat;

(ii) Ep is Ap-flat for every sheaf p of prime ideals in A;

(iii) Em is Am-flat for every sheaf induced by the maximal ideals mx, x ∈ X.

Proof. The A-module E is flat if and only if, given any injective A-morphism F ′ −→ F , the

induced A-morphism E ⊗A F ′ −→ E ⊗A F is injective. Since localization functors commute with

tensor products (See Corollary 3.3), (E ⊗A F)p ' Ep ⊗Ap Fp and (E ⊗A F ′)p ' Ep ⊗Ap F ′p, the

implication (i) ⇒ (ii) follows from the exactness of localization functors (See Theorem 3.6) and

from the fact that Fp = F (resp. F ′p = F ′) if F (resp. F ′) is an Ap-module. The implication

(ii)⇒ (ii) is trivial, and the implication (iii)⇒ (i) is taken care of by Theorem 3.10.
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3.4 Change of the Algebra Sheaf of Scalars in Clifford Alge-

bras

We are now in the position to use the definition of sheaves of Clifford A-algebras (Clifford A-

algebras in short) of quadratic A-modules, set over arbitrary topological spaces as quotient sheaves

of tensor algebra sheaves over certain ideal sheaves to show that direct limits commute with the

Clifford functor Cl : A-ModX −→ A-AlgX , where A-ModX and A-AlgX stand for the categories

of sheaves of A-modules and A-algebras on X, respectively. Theorem 3.12, which is concerned with

the commutativity of the Clifford functor Cl with the extension functor through tensor product, is

proved by means of Lemma 3.10. [25, p. 54, Lemma 2.1.3] is a classical counterpart of Lemma

3.10.

Lemma 3.10 Let E be a free A-module on a topological space X, and F any A-module, also on

X. For any open subset U of X, let (eUi ≡ ei)i∈I be a basis of E(U) and (tUi,j ≡ ti,j)i,j∈I be a

family of sections in F(U) such that ti,j = tj,i. Then, there exists a unique A|U -quadratic morphism

q ∈ QuadA|U (E|U ,F|U) ≡ QuadA(E ,F)(U) such that

qV (ei|V ) = ti,i|V , i ∈ I, (3.46)

and

(Bq)V (ei|V , ej|V ) = ti,j|V , i 6= j in I, (3.47)

where Bq is the associated A|U -bilinear morphism of q.

Proof. If g is an A-bilinear morphism E ⊕ E −→ F , the sheaf morphism ϕ : E −→ F such that

ϕV (s) = gV (s, s),
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for any open V ⊆ X and section s ∈ E(V ), is A-quadratic; clearly, the associated A-bilinear

morphism is the sheaf morphism Bϕ ≡ (Bϕ,V ) openV⊆X such that

Bϕ,V (s, t) = gV (s, t) + gV (t, s),

for all s, t ∈ E(V ). Next, define a total order on the indexing set I and let g : E|U ⊕ E|U −→ F|U

be the A|U -bilinear morphism such that

gV (ei|V , ej|V ) = ti,j|V , i, j ∈ I with i ≤ j,

and

gV (ei|V , ej|V ) = 0, i, j ∈ I with i > j.

The A|U -quadratic morphism q : E|U −→ F|U such that

qV (s) = gV (s, s),

for any open set V ⊆ X and section s ∈ (E|U)(V ), satisfies the conditions of the lemma.

Now, let us prove the uniqueness of q. To this end, suppose that there is another A|U -quadratic

q : E|U −→ F|U satisfying (3.40) and (3.41), that is,

(q)V (ei|V ) = ti,i|V , i ∈ I,

and

(Bq)V (ei|V , ej|V ) = ti,j|V , i 6= j in I,

for any open V ⊆ U . It follows that, for any i, j ∈ I and open V ⊆ U ,

(
(q)V − (q)V

)
(ei|V ) = 0

and (
Bq−q

)
V

(ei|V , ej|V ) = Bq

(
(ei|V , ej|V )

)
−Bq

(
(ei|V , ej|V )

)
= 0.
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By an easy calculation, one shows that, for any s ∈ E(U)

(
Bq−q

)
V

(s|V , s|V ) = 2(q − q)|V (s|V ) = 0,

whence

q = q.

Here is a very useful result of this section.

Theorem 3.11 Let A, A′ be unital algebra sheaves on a topological space X, ϕ : A −→ A′ a

sheaf morphism, E and F two A-modules on X, and q : E −→ F an A-quadratic sheaf morphism.

Then, there exists a unique A′-quadratic morphism q′ : A′ ⊗A E −→ A′ ⊗A F such that

q′ ◦ (1⊗ idE) = 1⊗ (q ◦ idE), (3.48)

where 1 ∈ EndA′A′ is the constant endomorphism of the underlying sheaf of sets of A′ such that,

for every s ∈ A′(U), where U is open in X, 1U(s) := 1A′(U) ≡ 1 ∈ A′(U).

Section-wise, (3.48) means that, for every open set U in X and sections r ∈ A′(U), s ∈ E(U),

[q′U ◦ (1U ⊗ (idE)U)](s) := q′U(1⊗ s)

= 1⊗ qU(s) := [1U ⊗ (qU ◦ (idE))U ](r ⊗ s). (3.49)

Proof. It is clear that q′ is unique; we therefore simply need to prove its existence. Suppose that E

is free. For a fixed open set U in X, we let (si)i∈I be a basis of E(U) and set ti,i = qU(si) ≡ q(si)

for all i ∈ I, ti,j = (Bq)U(si, sj) for all i, j ∈ I such that i 6= j. Since A′(U) ⊗A(U) E(U) is a

free A′(U)-module with basis (1 ⊗ si)i∈I , according to Lemma 3.10, there exists a unique A′(U)-

quadratic mapping q′U : A′(U)⊗A(U)E(U) −→ A′(U)⊗A(U)F(U) such that q′U(1⊗si) = 1⊗ti,i for
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all i ∈ I and (Bq′U
)(1⊗si, 1⊗sj) = 1⊗ ti,j for all i, j ∈ I with i 6= j. Obviously, q′U satisfies (3.49).

Since q′U is unique and U is arbitrary, the family (q′U) openU⊆X yields an A′-quadratic morphism

q′ : A′ ⊗A E −→ A′ ⊗A F satisfying the required condition (3.49).

Suppose now that E is not free. As above, fix an open set U in X; E(U) being an A(U)-module

is isomorphic to a quotient A(U)-module of a free A(U)-module. By [25, p. 57, Theorem 2.2.3],

one shows that there exists a unique A′(U)-quadratic morphism

q′U : A′(U)⊗A(U) E(U) −→ A′(U)⊗A(U) F(U)

such that

q′U(1′ ⊗ s) = 1′ ⊗ qU(s)

for any s ∈ E(U). Furthermore, we note that the collections (A′(U) ⊗A(U) E(U)) open U⊆X and

(A′(U)⊗A(U) F(U) open U⊆X induce the presheaves of modules Γ(A′)⊗Γ(A) Γ(E) and Γ(A′)⊗Γ(A)

Γ(F), respectively; if τ ∗ denotes the set of pairs (U, V ), where both U and V are open in X and

such that V ⊆ U , we shall let (µUV )(U,V )∈τ∗ and (σUV )(U,V )∈τ∗ denote the restriction maps of the

preceding presheaves, that is, Γ(A′)⊗Γ(A) Γ(E) and Γ(A′)⊗Γ(A) Γ(F), respectively. Since, for any

(U, V ) ∈ τ ∗,

σUV ◦ q′U = q′V ◦ µUV ,

it follows that the family (q′U) openU⊆X yields the sought presheaf morphism of Γ(A′) ⊗Γ(A) Γ(E)

into Γ(A′)⊗Γ(A) Γ(F). It is obvious that (q′U) open U⊆X is unique.

The relevance of Lemma 3.11 will be evident in the proof of Theorem 3.12, below.

Lemma 3.11 If (E , q) is a quadratic A-module on a topological space X, then, for every x ∈ X,

Cl(E)x = Cl(Ex) (3.50)
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within Ax-isomorphism, where Cl(Ex) is the usual Clifford algebra associated with the quadratic

Ax-module (Ex, qx).

Proof. If I(E , q) ≡ I(E) is the two-sided ideal sheaf in the tensor algebra (sheaf) T (E) determined

by the presheaf J(E , q), where, for any open set U in X, J(E , q)(U) is a two-sided ideal of the

tensor algebra T (E(U)) generated by elements of the form

s⊗ s− qU(s) ≡ s⊗ s− q(s),

with s running through E(U), then, by Theorem 2.1, the Clifford A-algebra of E , denoted by

Cl(E) ≡ Cl(E , q) ≡ ClA(E), is given by

Cl(E) := T (E)/I(E).

On account of an equivalent result stated in the proof of Theorem 2.1[see p.62], for every x ∈ X,

Cl(E)x = T (E)x/I(E)x = T (Ex)/I(Ex) = Cl(Ex),

where the preceding equalities actually stand for Ax-isomorphisms.

As is known (cf. [25, p.110, Proposition 3.1.9]), let K and K ′ be unital commutative algebras,

f : K −→ K ′ an algebra morphism, which respects 1, and (E, q) an object in the category KM̃od

of quadratic K-modules. Moreover, let S : KM̃od −→ K′M̃od be such that

S(M, q) ≡ S(M) = K ′ ⊗K M ≡ K ′ ⊗K (M, q),

then

ClK′ ◦ S ' S ◦ ClK ; (3.51)

that is, for every quadratic K-module (M, q),

ClK′(K
′ ⊗K (M, q)) = K ′ ⊗K ClK(M, q) (3.52)
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within K ′-isomorphism. We shall see in Theorem 3.12 that the isomorphism (3.51) also holds for

categories of sheaves of quadratic modules. For the classical case, see, for instance, [14, p. 46,

Proposition 3.1.4].

Theorem 3.12 Let A, B be unital commutative algebra sheaves on a topological space X, ϕ :

A −→ B a morphism of algebra sheaves, and (E , q) a quadratic A-module on X. The Clifford

algebra sheaf ClB(B⊗A E) of the quadratic B-module B⊗A (E , q) ≡ B⊗A E ≡ B⊗E , obtained by

extending A to B via ϕ, is canonically isomorphic to the B-algebra B ⊗A Cl(E), that is,

ClB(B ⊗A E) = B ⊗A ClA(E) (3.53)

within B-isomorphism.

Proof. First, let’s observe the following fact. As in Lemma 3.11, let I(E , q) be the two-sided ideal

sheaf in the tensor A-algebra T (E), generated by the presheaf (⊗◦∆− q)(E) of sets, which is such

that, for any open U in X, and section s ∈ E(U),

(⊗ ◦∆− q)U(s) := s⊗ s− qU(s) ≡ s⊗ s− q(s).

(∆ is the diagonal A-morphism E −→ E ⊕ E with ∆U(s) := (s, s).) The Clifford A-algebra Cl(E)

is generated by the presheaf (Cl(E(U)), ρUV )(U,V )∈τ∗ , where

Cl(E(U)) = T (E(U))/I(E(U)) (3.54)

and

ρUV (s+ I(E(U))) = λUV (s) + I(E(V ));

assuming that (T (E(U)), λUV )(U,V )∈τ∗ is a generating presheaf of the tensor A-algebra T (E). Indeed,

(3.54) is guaranteed by the definition of quotient A-modules and the completeness of the presheaves
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(T (E(U)), λUV )(U,V )∈τ∗ and (I(E(U)), λUV )(U,V )∈τ∗ . Now, consider a point x ∈ X; by Lemma 3.11,

(
ClB(B ⊗A E)

)
x

= ClBx(Bx ⊗Ax Ex)

and (
B ⊗A Cl(E)

)
x

= Bx ⊗Ax Cl(Ex),

within Bx-isomorphisms. By [25, p.110, Proposition 3.1.9], which is summarized by the isomorphism

(3.52),

ClBx(Bx ⊗Ax Ex) = Bx ⊗Ax Cl(Ex) (3.55)

within Bx-isomorphism. We denote the Bx-isomorphism by ϕx. Next, let ρA and ρB be the Clifford

maps that make ClA(E) and ClB(B⊗A E), respectively, into sheaves of Clifford algebras; then (ρA)x

and (ρB)x are Clifford morphisms associated with the Clifford algebras ClAx(Ex) and ClBx(Bx ⊗Ax

Ex), respectively. The Bx-isomorphism maps every (ρB)x(λ ⊗ z) (λ ∈ Bx and z ∈ Ex) onto

λ⊗ (ρA)x(z). Since the presheaf, written loosely as (B(U)⊗A(U) Cl(E(U))) because its restriction

maps are obvious, is a monopresheaf, it follows, from [35, p.68, Theorem 12.1], that the family

(ϕx)x∈X of Bx-isomorphisms yields the required B-isomorphism of ClB(B ⊗A E) onto B ⊗A Cl(E).

Corollary 3.7 Let A be a unital commutative algebra sheaf on a topological space X, and S a

sheaf of submonoids in A. Then, for any quadratic A-module E on X, one has

ClS−1A(S−1E) = ClS−1A(S−1A⊗A E) = S−1A⊗A ClA(E) = S−1ClA(E),

valid within (S−1A)-isomorphisms.

One more corollary, indeed, follows from Theorem 3.12. Recall that the A-quadratic morphisms

into a fixed target A-module F constitute the objects of a category, denoted CA(F); given two
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CA(F)-objects q ≡ (E , q,F) and q′ ≡ (E ′, q′,F), a morphism between them is an A-morphism

ϕ : E −→ E ′ such that q′ ◦ ϕ = q.

Let’s assume the notations of Theorem 3.12. Then, we have

Corollary 3.8 The sheaf isomorphism of Theorem 3.12 yields an isomorphism of functors ClB(B⊗–),

B⊗Cl(–) : CA(A) −→ CA(A) of the category CA(A) of A-quadratic morphisms into A. Specifically,

for any morphism ϕ : (E , q,A) ≡ (E , q) −→ (E ′, q′) ≡ (E ′, q′,A), the diagram

ClB(B ⊗ (E , q))
Cl(B⊗ϕ)

��

// B ⊗ Cl(E , q)
B⊗Cl(ϕ)
��

ClB(B ⊗ (E ′, q′)) // B ⊗ Cl(E ′, q′)

commutes. (The horizontal arrows in the diagram are isomorphisms.)
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Chapter 4

Filtration and Gradation of Clifford

A-algebras

Let (X,A) be an algebraized space. Earlier in this thesis(see Section 2.2), we introduced sheaves

of Clifford A-algebras on X associated with arbitrary quadratic A-modules as quotient sheaves of

tensor algebra sheaves over certain ideal sheaves. In this chapter, we will need to resort to some

category theory and we study two main A-isomorphisms of Clifford A-algebras: the main involution

and the anti-involution A-isomorphisms, which split each Clifford A-algebra into an even sub-A-

algebra and a sub-A-module of odd products. Next, we give a definition for the natural filtration

of Clifford A-algebras and show that for every A-algebra sheaf E , endowed with a regular filtration,

one obtains a new graded A-algebra sheaf , denoted Gr(E), which turns out to be A-isomorphic to

E . We conclude the chapter by discussing the parity grading of Clifford A-algebras.

The chapter is divided into three sections. In §1, we establish that Clifford A-algebras are Z2-

graded A-algebras. §2 is devoted to the natural filtration of Clifford A-algebras, which is modeled
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after the classical case (cf. [25]). For any quadratic AX-module (E , q), the canonical A-morphism

E −→ Cl≤1(E , q) −→ Gr1(Cl(E , q)) induces a surjective A-morphism
∧

(E) −→ Gr(Cl(E , q)) of

AX-algebras. This foregoing result is strengthened whenever (E , q) is locally free, for one has that∧
(E) ' Gr(Cl(E , q)) within A-isomorphism. Another result of this section is that, given a quadratic

locally free AX-module of rank n, endowed with q-orthogonal bases, its Clifford A-algebra Cl(E , q)

is locally free of rank 2n. §3 addresses the parity grading of Clifford A-algebras.

4.1 Main Involution and Anti-Involution

Let (X,A) be an algebraized space, (E , q) a quadratic AX-module; and, for any n ∈ N, let T n(E)

be the A-module on X, generated by the Γ(A)-presheaf, defined by the correspondence

U 7−→ T n(E(U)), (4.1)

where U is open in X and T n(E(U)) the A(U)-module of homogeneous elements (sections) of

degree n of the tensor algebra T (E(U)). (See Section 2.2. Elements of T n(E(U)) are called

homogeneous of degree n.) The restriction maps for the presheaf induced by correspondences of

the form (4.1) are obvious. For every open set U in X, set

T (E(U))+ := ⊕∞m=0T
2m(E(U)) (4.2)

and

T (E(U))− := ⊕∞m=0T
2m+1(E(U)). (4.3)

Clearly, the families (T (E(U))+) open U⊆X and (T (E(U))−) open U⊆X yield two Γ(A)-presheaves,

the sheafifications of which are denoted by T (E)+ and T (E)−; so

T (E) = T (E)+ ⊕ T (E)− (4.4)
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within A-isomorphism. For every open U ⊆ X, it is easy to see that

T (E(U))+T (E(U))+ ⊆ T (E(U))+, T (E(U))+T (E(U))− ⊆ T (E(U))−, (4.5)

and

T (E(U))−T (E(U))+ ⊆ T (E(U))−, T (E(U))−T (E(U))− ⊆ T (E(U))+. (4.6)

From (4.5) and (4.6), we deduce that

T (E)+T (E)+ ⊆ T (E)+, T (E)+T (E)− ⊆ T (E)− (4.7)

and

T (E)−T (E)+ ⊆ T (E)−, T (E)−T (E)− ⊆ T (E)+. (4.8)

For every open U ⊆ X, the ideal I(E , q)(U) ≡ I(E(U)) is generated by elements of T (E(U))+;

since T (E(U)) = T (E(U))+ ⊕ T (E(U))−,

I(E(U)) =
(
I(E(U)) ∩ T (E(U)

)
)+ ⊕

(
I(E(U))) ∩ T (E(U)

)
−. (4.9)

Set

C(E(U))+ := T (E(U))+/
(
I(E(U)) ∩ T (E(U))+

)
(4.10)

and

C(E(U))− := T (E(U))−/
(
I(E(U)) ∩ T (E(U))−

)
, (4.11)

for every open U ⊆ X. If C(E)+ and C(E)− denote the A-modules generated by the presheaves

obtained by means of the families (C(E(U))+) open U⊆X and (C(E(U))−) open U⊆X , respectively,

one has

Cl(E , q) = C(E)+ ⊕ C(E)− (4.12)
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within an A-isomorphism,

C(E)+C(E)+ ⊆ C(E)+; C(E)+C(E)− ⊆ C(E)− (4.13)

and

C(E)−C(E)+ ⊆ C(E)−; C(E)−C(E)− ⊆ C(E)+. (4.14)

The sections of C(E)+ are called even section, those of C(E)− odd section; it is clear that C(E)+

is a sub-A-algebra of the Clifford A-algebra Cl(E , q). An A-algebra with a decomposition (4.12),

satisfying (4.13) and (4.14), is called, as in the classical case (see for instance [33, p. 9]), a Z2-graded

A-algebra. The A-morphism Π : Cl(E , q) −→ Cl(E , q) such that

ΠU(s) := s if s ∈ C(E)(U)+

ΠU(s) := −s if s ∈ C(E)(U)−

is an A-automorphism of Cl(E , q), called the main involution. Clearly, if A is of characteristic 2, Π

is the identity on Cl(E , q).

The A-algebra Cl(E , q) also inherits a canonical A-antiautomorphism from the tensor algebra T (E).

More accurately, for any open U ⊆ X and sections (s1, · · · , sn) ∈ En(U) = E(U)n, the map

TαnU : T n(E(U)) −→ T n(E(U)), given by

TαnU(s1 ⊗ · · · ⊗ sn) := sn ⊗ · · · ⊗ s1,

clearly, defines an A(U)-antiautomorphism of T n(E(U)). Let TαU be the A(U)-endomorphism of

T (E(U)), given by

TαU = ⊕∞n=0
TαnU ,

that is, an extension of all the A(U)-endomorphisms TαnU . Clearly, one has

(TαU)2 = idT (E(U)).
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The family (TαU) open U⊆X yields an A-antiautomorphism of the tensor algebra T (E). For every

open U in X,

(TαU)(s) = s, if s ∈ T 0(E(U)) := A(U)

(TαU)(s) = s, if s ∈ T 1(E(U)) := E(U),

that is, the elements of T 0(E(U)) ⊕ T 1(E(U)) are preserved by TαU . Moreover, TαU preserves the

two-sided ideal I(E(U)) because

(TαU)(s⊗ s− qU(s) · 1) = s⊗ s− qU(s) · 1,

for every section s ∈ E(U). Hence, the family (TαU) open U⊆X defines an A-antiautomorphism on the

Clifford A-algebra Cl(E , q), whose square is the identity; we will call it the main A-antiautomorphism

of Cl(E , q), and by an abuse of notation, also denote it by α.

4.2 The Natural Filtration of a Clifford A-algebra

In this section, we set up the definition of graded AX-algebras over Z, or simply Z-graded AX-

algebras, following rather closely the classical notion of Z-graded vector spaces, as laid down in

[15, 25, 32]. Thus, we start first with filtration of AX-algebras: Let E be a sheaf of unital AX-

algebras (for short, a unital AX-algebra). A family (E≤k)k∈Z of sub-AX-modules of E is called an

increasing filtration of E if it satisfies the following conditions: (i) E≤k ⊆ E≤k+1, (ii) E≤jE≤k ⊆

E≤j+k, (iii) If L is the unital line sub-A-algebra of E , then L ⊆ E≤0.

An increasing filtration (E≤k)k∈Z is said to be regular filtration if (iv)
⋂
k∈Z E≤k = 0, and (v)⋃

k∈Z E≤k = E .

In the classical theory of Clifford algebras, Clifford algebras of quadratic modules admit several

filtrations (see Definition 1.19); for instance, as given in Definition 1.19, given a quadratic module
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(M, q), where M is a module over a unital and associative ring K, the following filtration of the

Clifford algebra Cl(M, q) is called natural filtration: For every negative integer k, set Cl≤k(M, q) =

0, and for every k ≥ 0, Cl≤k(M, q) is the submodule of Cl(M, q) generated by products of the form

ρ(a1)ρ(a2) · · · ρ(aj), 0 ≤ j ≤ k, (4.15)

where a1, . . . , aj ∈ M , and ρ : M −→ Cl(M, q) the natural linear map making Cl(M, q) into a

Clifford algebra. When j = 0, the product in (4.15) means 1K . Now, for the Clifford A-algebra

ClA(E , q) of a quadratic AX-module E , the natural filtration is defined in a similar way. In fact, for

k < 0, Cl≤kA (E , q) = 0, i.e., the constant zero sheaf; for k ≥ 0, Cl≤kA (E , q) is the sub-A-module of

ClA(E , q) obtained by sheafifying the presheaf induced by assignments of the form

U 7−→ Cl≤kA(U)(E(U), qU),

where Cl≤kA(U)(E(U), qU) is the sub-A(U)-module of ClA(U)(E(U), qU) generated by products

ρU(s1)ρU(s2) · · · ρU(sj), 0 ≤ j ≤ k, (4.16)

where s1, . . . , sj ∈ E(U), and ρ ≡ (ρU) open U⊆X : (E , q) −→ ClA(E , q) is the defining A-morphism

for the Clifford A-algebra ClA(E , q). As in (4.15), when j = 0, the product in (4.16) means 1qU .

Clearly,

Cl≤0
A (E , q) = I,

where I is the unital line sub-A-algebra of ClA(E , q) (section-wise, one has that I(U) = A(U)1qU ),

and

Cl≤kA (E , q) = I ⊕ ρ(E)⊕ · · · ⊕ ρ(E) · · · ρ(E)︸ ︷︷ ︸
k

,

where ρ(E) · · · ρ(E)︸ ︷︷ ︸
k

is the sheafification of the presheaf, given by correspondences

U 7−→ ρU(s1) · · · ρU(sk)

124



along with restrictions

(
ρU(s1) · · · ρU(sk)

)
|V := ρV (s1|V ) · · · ρV (sk|V ),

with s1, . . . , sk sections of E over an open subset U of X.

It is clear that the family (Cl≤kA (E , q))k∈Z is a regular increasing filtration of the Clifford A-algebra

ClA(E , q).

Definition 4.1 Let (X,A) be an algebraized space and F an A-algebra on X. A regular increasing

filtration (F≤k)k∈Z of F is said to derive from a grading if, for every k ∈ Z, there exists a sub-A-

module Fk of F such that: (i) F≤k−1 ⊕Fk = F≤k, (ii) (Fk)k∈Z is a grading of F .

The next lemma is useful for deriving isomorphic graded A-algebras from given ones; its proof is

classical.

Lemma 4.1 Let (X,A) be an algebraized space; the exactness of the two A-sequences

E ′ // E // E ′′ // 0 and F ′ // F // F ′′ // 0

implies the exactness of the A-sequence

(E ′ ⊗A F)⊕ (E ⊗A F ′) // E ⊗A F // E ′′ ⊗A F ′′ // 0. (4.17)

Proof. Since E ′′ ⊗A F ′′ // 0 is surjective if and only if E ′′x ⊗Ax F ′′x // 0 is surjective for any

x ∈ X, it suffices to show that

(E ′ ⊗A F)x ⊕ (E ⊗A F ′)x // (E ⊗A F)x // (E ′′ ⊗A F ′′)x // 0 (4.18)
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is exact for any point x ∈ X. (For this sufficient condition, see, for instance, [51, p. 50, Theorem

6.5].) But, for x ∈ X, the Ax-sequence (4.18) is equivalent to

(E ′x ⊗Ax Fx)⊕ (Ex ⊗Ax F ′x) // Ex ⊗Ax Fx // E ′′x ⊗Ax F ′′x // 0,

which is exact (see, for instance, [25, p. 13, (1.6.3)]).

Given a quadratic A-module on a topological space X, there is a natural filtration

F̃0 ⊆ F̃1 ⊆ F̃2 ⊆ . . . ⊆ T (E) (4.19)

of the tensor A-algebra T (E), where

F̃ j ≡ S
(∑
i≤j

⊗iΓ(E)
)
'
∑
i≤j

S(⊗iΓ(E)), (4.20)

for any integer j ≥ 0, and

F̃ i ⊗ F̃ j ⊆ F̃ i+j. (4.21)

Set

F i := ρ(F̃ i) = F̃ i/(I(E , q) ∩ F̃ i) (4.22)

so as to obtain a filtration

F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Cl(E , q) (4.23)

of the Clifford A-algebra Cl(E , q). Clearly, for any open U ⊆ X and sections s ∈ F̃ i(U) and

t ∈ F̃ i(U), one has

[
s+

(
F̃ i(U) ∩ Iq(E)(U)

)]
·
[
t+
(
F̃ j(U) ∩ Iq(E)(U)

)]
:= (s⊗ t) +

[
(F̃ i ⊗ F̃ j)(U) ∩ Iq(E)(U)

]
,

from which we deduce, by property (4.21), that

F i · F j ⊆ F i+j (4.24)
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for all i, j. Thus, Cl(E , q) is a filtered A-algebra over X. Since F i−1 ⊆ F i, for all i ≥ 0, (4.24)

yields the A-morphism

(F i/F i−1) · (F j/F j−1) −→ F i+j/F i+j−1 (4.25)

for all i, j. For all i ≥ 0, on setting

Gi := F i/F i−1, (4.26)

we thus obtain the associated graded A-algebra

G∗ :=
⊕
i≥0

Gi. (4.27)

Let F be a Z-graded A-algebra, i.e., there is a family (Fk)k∈Z of sub-A-modules of F such that

F = ⊕k∈ZFk and F jFk ⊆ F j+k for all j, k ∈ Z. It is obvious that, by setting

F≤k :=
⊕
i≤k

F i,

the family (F≤k)k∈Z is a regular increasing filtration of F . Indeed, the only condition that needs

checking is the requirement whether ∩k∈ZF≤k = 0; in fact, suppose that there exists an open

set U in X such that ∩k∈ZF≤k(U) 6= 0, so there is a non-zero section s ∈ ∩k∈ZF≤k(U). But

F(U) = ⊕k∈ZFk(U), therefore s = ⊕k∈Zs, which is absurd. On the other hand, a regular filtration

(E≤k)k∈Z of an A-algebra E is said to derive from a grading if, for every k ∈ Z, there exists a

sub-A-module Ek such that E≤k−1 ⊕ Ek = E≤k with the family (Ek)k∈Z being a grading of E , i.e.,

E =
⊕

k∈Z Ek.

Lemma 4.2 Let (X,A) be an algebraized space and F an AX-algebra, endowed with a regular

filtration (F≤k)k∈Z. Then,

Gr(F) :=
⊕
k∈Z

Grk(F), (4.28)
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where

Grk(F) := F≤k/F≤k−1, k ∈ Z, (4.29)

is a graded AX-algebra. Moreover, if (F≤k)k∈Z is derived from a grading, then F is canonically

isomorphic to Gr(F).

Proof. We define multiplication fiber-wise on Gr(F) as follows: For every x ∈ X and elements

z ∈ F≤kx , z′ ∈ F≤lx ,

(z + F≤k−1
x )(z′ + F≤l−1

x ) := zz′ + F≤k+l−1
x .

It is easy to check that the above multiplication, which, in fact, is induced by that of F , is well-

defined. Next, let us consider the diagram

F≤i ⊗F≤j
ϕ≤i,≤j//

λi,j
��

Gri(F)⊗ Grj(F)

Gr(λi,j)
��

F≤i+j ϕ≤i+j
// Gri+j(F),

(4.30)

where ϕ≤i,≤j := ϕ≤i ⊗ ϕ≤j, with ϕ≤i the canonical A-morphism F≤i −→ Gri(F). As for the

A-morphism λi,j, we notice that this is the A-morphism corresponding to the A-bilinear morphism

F≤i ×F≤j −→ F≤i+j in the commutative diagram

F≤i ×F≤j //

��

F≤i+j

F≤i ⊗F≤j
λi,j

88 .

We now show that the diagram (4.30) commutes. Indeed, first, we easily observe that since

F≤i−1 // F≤i // Gri(F) // 0, i ∈ Z (4.31)

is exact, the same property is transferred to the stalks of the corresponding presheaves of sections,

i.e., for every x ∈ X,

F≤i−1
x

// F≤ix // Gri(F)x // 0, i ∈ Z , (4.32)
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is exact, which implies, by virtue of Lemma 4.1, the exactness of the following Ax-sequence

(F≤i−1
x ⊗F≤jx )⊕ (F≤ix ⊗F≤j−1

x ) // F≤ix ⊗F≤jx

// Gri(F)x ⊗ Grj(F)x // 0, i, j ∈ Z, (4.33)

and subsequently the exactness of

(F≤i−1 ⊗F≤j)⊕ (F≤i ⊗F≤j−1) // F≤i ⊗F≤j

// Gri(F)⊗ Grj(F) // 0, i, j ∈ Z. (4.34)

Then, we observe that

ker(ϕ≤i,≤j) =
〈
(F≤i−1 ⊗F≤j)⊕ (F≤i ⊗F≤j−1)

〉
,

that is, ker(ϕ≤i,≤j) is generated by (F≤i−1 ⊗F≤j) and (F≤i ⊗F≤j−1). Thus,

(ϕ≤i+j ◦ λi,j)
(
(F≤i−1 ⊗F≤j)⊕ (F≤i ⊗F≤j−1)

)
= 0;

hence, there exists an A-morphism

Gr(λi,j) : Gri(F)⊗ Grj(F) −→ Gri+j(F)

making the diagram (4.30) commute. It is easy to see that the A-morphisms Gr(λi,j)i,j∈Z make

Gr(F) into a unital associative A-algebra. Finally, if the filtration of F is derived from a grading,

i.e., F =
⊕

k∈ZFk, then Fk = Grk(F) within an A-isomorphism; hence,

F = Gr(F),

within an A-isomorphism.
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The graded AX-algebra Gr(F) (4.28) is called the graded AX-algebra associated with F . Clearly,

for any x ∈ X, if (F≤kx )k∈Z is an increasing filtration of the stalk Fx, and (F≤k)x = F≤kx within

Ax-isomorphism, then

(Gr(F))x '
⊕
k∈Z

(Grk(F))x =
⊕
k∈Z

(F≤k/F≤k−1)x

=
⊕
k∈Z

(
(F≤k)x/(F≤k−1)x

)
=
⊕
k∈Z

(F≤kx /F≤k−1
x ) ≡

⊕
k∈Z

Grk(Fx)

=: Gr(Fx).

(Gr(Fx) is the associated graded Ax-algebra of Fx, see [25, p. 110].) Next, we apply the construc-

tion of Lemma 4.2 to the natural filtration of the Clifford AX-algebra of a quadratic AX-module

(E , q) to derive a surjective A-morphism of the exterior AX-algebra
∧

(E) onto the associated graded

AX-algebra Gr(Cl(E , q)).

Theorem 4.1 Let (E , q) be a quadratic AX-module. Then, the canonical A-morphism

E // Cl≤1(E , q) // Gr1(Cl(E , q))

induces a surjective A-morphism ∧
(E) −→ Gr(Cl(E , q)) (4.35)

of AX-algebras.

Proof. Let us consider the presheaf of sections (E(U), ρUV ) ≡ ((E(U), qU), ρUV ) of the AX-module

(E , q) and generating presheaves (ClA(U)(E(U), qU), σUV ) and (Gr1(ClA(U)(E(U), qU)), µUV ) of the

sheaves ClA(E , q) and Gr1(ClA(E , q)), respectively. (We recall the following:

Grk(ClA(U)(E(U), qU)) := Cl≤kA(U)(E(U), qU)/Cl≤k−1
A(U) (E(U), qU),
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for all k ∈ Z.) If s ∈ E(U), with U an open set in X, we denote by s̃ the image of s in

Gr1(ClA(U)(E(U), qU)) by the A(U)-morphism

E(U) // Cl≤1(E(U)) // Gr1(Cl(E(U))).

Now, let us consider the universalA-morphism ρ : E −→ Cl(E , q) (see (2.16)); since ρU(s)2 = qU(s)·

1 ∈ Cl≤0
A(U)(E(U), qU) ⊆ Cl≤1

A(U)(E(U), qU), and s̃2 is the image of ρU(s)2 in Gr2(ClA(U)(E(U), qU)),

it follows s̃2 = 0. Thus, there is an algebraA(U)-morphism ϑU of
∧

(E(U)) into Gr(ClA(U)(E(U), qU))

sending s onto s̃. The mapping ϑU is surjective as Gr(ClA(U)(E(U), qU)) is generated by the s̃.

By the sheafification process, from the presheaf morphism (ϑU) openU⊆X one obtains the desired

surjective A-morphism
∧

(E) −→ Gr(Cl(E , q)) of AX-algebras.

For the particular case where the pair (E , q) is a quadratic locally free AX-module, let us consider

the natural filtration
(
Ẽ≤k

)
k∈Z of the tensor AX-algebra T (E), which is given by

Ẽ≤k :=

 0, if k < 0∑
i≤k⊗iE , if k ≥ 0.

Clearly, we have an ascending filtration

· · · = 0 ⊆ A ⊆ Ẽ≤1 ⊆ Ẽ≤2 ⊆ · · · ⊆ T (E),

with

Ẽ≤i ⊗ Ẽ≤j ⊆ Ẽ≤i+j,

for all i, j. Next, let us set

E≤i := ρ(Ẽ≤i),

where ρ is the natural A-morphism ρ : E −→ Cl(E , q); we thus obtain a filtration

· · · = 0 ⊆ E≤0 ⊆ E≤1 ⊆ E≤2 ⊆ · · · ⊆ Cl(E , q), (4.36)
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which also satisfies the property that

E≤i · E≤j ⊆ E≤i+j,

for all i, j. We now show, for this particular case, that (4.35) becomes an A-isomorphism.

Theorem 4.2 For any quadratic locally free AX-module (E , q),

∧
(E) = Gr(Cl(E , q))

within A-isomorphism.

Proof. By Theorem 4.1, the canonical A-morphism
∧

(E) −→ Gr(Cl(E , q)) is surjective. But

this map is in addition injective for any quadratic locally free AX-module (E , q). In fact, since

(
∧
E)x =

∧
(Ex) for all x ∈ X (cf. [35, p. 310, (7.14′)]), and Gr(Cl(E , q)x) ' Gr(Cl(E , q)x) =

Gr(T (E , q)x/I(E , q)x) = Gr(T (Ex, qx)/I(Ex, qx)) = Gr(Cl(Ex, qx)), and since for any quadratic

form q on a free R-module M , Gr(Cl(M, q)) is naturally isomorphic to the exterior algebra
∧
M

(see [29, p. 197, (1.6)] or [33, p. 10, Proposition 1.2]), it follows that

(
∧
E)x ' Gr(Cl(E , q))x,

for all x ∈ X. On applying [35, p. 68, Theorem 12.1], one obtains an A-isomorphism
∧
E '

Gr(Cl(E , q)).

The Clifford AX-algebra of an orthogonal sum of two AX-modules requires, as in the classical case,

the notion of a twisted tensor product. In fact, let E and F be Z2-graded AX-modules; explicitly,

one has

E = E0 ⊕ E1, F = F0 ⊕F1,
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where Ei, Fi, i = 0, 1, are sub-AX-modules of E and F , respectively. The tensor product E ⊗ F is

also a graded AX-module, its grading is as follows:

E ⊗ F = (E ⊗ F)0 ⊕ (E ⊗ F)1,

where

(E ⊗ F)0 = (E0 ⊗F0)⊕ (E1 ⊗F1),

(E ⊗ F)1 = (E0 ⊗F1)⊕ (E1 ⊗F0).

The twisted tensor product E⊗̂F of AX-modules E and F is defined as follows: As an AX-module

E⊗̂F is the usual tensor product E ⊗ F , but where the product is induced by the Γ(A)-morphism

π ≡ (πU)X⊇U, open, where, for each open U in X,

πU : (E(U)⊗F(U))× (E(U)⊗F(U)) −→ E(U)⊗F(U)

is given by

πU(s⊗ t, s′ ⊗ t′) = (−1)∂s
′∂tss′ ⊗ tt′,

where ∂s′ (∂t, resp.) is the order of s′ (t, resp.) with respect to the parity grading of E(U) (F(U),

resp.).

Theorem 4.3 Let (E , q) = (E1, q1)⊥(E2, q2) be a q-orthogonal decomposition of the quadratic

AX-module E (qi = q|Ei , i = 1, 2). Then,

Cl(E , q) ' Cl(E1, q1)⊗̂ Cl(E2, q2). (4.37)

Proof. This result clearly derives from its classical counterpart; see, for instance, [25, p. 115,

Theorem 3.2.4] or [29, p. 195, Theorem 1.3.1]. In fact, since
(
Cl(E(U), qU)

)
X⊇U, open and
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(
Cl(Ei(U), qiU)

)
open U⊆X are generating presheaves of Cl(E , q) and Cl(Ei, qi), respectively, and

since, for each open U ⊆ X,

Cl(E(U), qU) ' Cl(E1(U), qU)⊗̂Cl(E2(U), qU),

one applies sheafification on the corresponding presheaves of algebras to conclude that AX-algebras

Cl(E , q) and Cl(E1, q1)⊗̂ Cl(E2, q2) are isomorphic.

Let us assume that the pair (X,A) is an ordered algebraized space endowed with square root, i.e.,

every positive section of A is invertible and has a square root. For further background on ordered

algebraized spaces, cf. [35, p. 96ff]. Next, recall that a subsheaf P ⊆ A defines an order if (i)

λP ⊆ P for any λ ∈ R+ ⊆ A, (ii) P + P ⊆ P , and (iii) P · P ⊆ P . See, for instance, [35,

pp. 316, 317]. The elements of P ⊆ A are called positive; more precisely, a (local) section of A

is called positive if it takes on values in P , i.e., if s is a section over U , for any x ∈ U , s(x) 6= 0

and s(x) ∈ Px. On the other hand, we assume that (E , q) is a quadratic locally free AX-module

of rank n, with q being such that its associated A-bilinear morphism b ≡ bq satisfies the following

condition:

b(s, s)(x) 6= 0,

for any nowhere-zero s ∈ E(U) and x ∈ U . We claim that for any local gauge U of E , we can

apply the standard Gram-Schmidt orthogonalization process to transform any given basis of E(U)

into an orthonormal one. The procedure is similar to the one in [35, pp. 337- 340]. Indeed, let

(si)1≤i≤n ⊆ E(U) ' An(U) ' A(U)n be a local gauge of E . Moreover, let

|si| :=
√
b(si, si), 1 ≤ i ≤ n,

so that if we set

s̃i := |si|−1 · si ∈ E(U), 1 ≤ i ≤ n,
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one has

|s̃i| = 1 ∈ A(U), 1 ≤ i ≤ n.

Thus, let

(s̃i)1≤i≤m ⊆ E(U), m ≤ n− 1,

such that

b(s̃i, s̃j) = δij, 1 ≤ i, j ≤ m.

Setting

t := sm+1 −
m∑
i=1

b(sm+1, s̃i)(s̃i),

we observe that, for every x ∈ U , t(x) 6= 0 and b(t, t)(x) 6= 0. We have obtained a new section of

A, which is

s̃m+1 = |t|−1 · t ∈ E(U).

Hence, step by step, one obtains a family

(s̃i)1≤i≤n ⊆ E(U)

such that

b(s̃i, s̃j) = δij, 1 ≤ i, j ≤ n.

We shall call such AX-modules (E , q) quadratic locally free AX-modules endowed with q-orthogonal

bases.

Theorem 4.4 Let (E , q) be a quadratic locally free AX-module of rank n, endowed with q-

orthogonal bases. Then, Cl(E , q) is a locally free AX-module of rank 2n.
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Proof. Let U ⊆ X be a local gauge of E , that is, U is open in X and such that

E ' An|U . (4.38)

As (4.38) is equivalent to

Ex ' (An)x ' (Ax)n, x ∈ U

(see, for instance, [35, p. 123, Definition 3.2]), it follows that, since, for all x ∈ U , Ex has an

orthogonal basis, Cl(E , q)x ' Cl(Ex, qx) is a free module of rank 2n (see [25, p. 116, Corollary]).

The latter implies that

Cl(E , q)|U ' A2n|U ' (A|U)2n,

where U is as above, that is a local gauge of E . Since U is arbitrary, Cl(E , q) is locally free of rank

2n.

4.3 The Parity Grading of Clifford A-algebras

The parity grading of a module is merely a decomposition of it into a direct sum of two submodules,

whose elements are either even or odd homogeneous elements. Cl(E , q) can inherit a parity grading

from T (E) over Z2. Indeed we can set

T0(E) := ⊕∞m=0T 2m(E) and T1(E) := ⊕∞m=0T 2m+1(E). (4.39)

where the lower indices 0 and 1 of T are elements of Z2. Consider the two-sided ideal sheaf I(E , q)

of the tensor algebra (sheaf) T (E) generated by the presheaf J(E , q) ≡ (J(E , q)(U), µUV ), where

J(E , q)(U) is a two-sided ideal of the tensor algebra T (Γ(E))(U) ≡ T (E(U)) generated by elements

of the form

s⊗ s− qU(s),
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with s running through E(U).

As a submodule, I(E , q) is graded since it is a direct sum of I0(E , q) := T0(E) ∩ I(E , q) and

I1(E , q) := T1(E) ∩ I(E , q). Consequently Cl(E , q) is the direct sum of two submodules Cl0(E , q)

and Cl1(E , q) respectively isomorphic to Ti(E)/Ii(E , q) with i = 0, 1. The elements of Cl0(E , q)

and Cl1(E , q) are said to be even and odd, respectively.

Now, if ϕC is the Clifford A-morphism of a Riemannian quadratic free A-module (E , q) into its

Clifford A-algebra C ≡ C(E , q), the A-morphism ϕ′, such that ϕ′ := −ϕC, is another Clifford A-

morphism of E into C; thus there exists an A-endomorphism Π of (the unital A-algebra) C such

that

Π(1C) = 1C, Π ◦ ϕC = ϕ′ = −ϕC. (4.40)

Clearly,

Π2(1C) = 1C, Π2 ◦ ϕC = ϕC; (4.41)

it follows that Π is an A-involutive automorphism of C, called the principal A-automorphism of the

Clifford A-algebra C(E , q).

For every open U ⊆ X, let C+(U) denote the sub-A(U)-module of the A(U)-algebra Γ(U, C) ≡

C(U) consisting of the eigenvector sections of ΠU for the eigenvalue section +1 (cf. [39]). It is

evident that C+(U) is a sub-A(U)-algebra of C(U), containing any product of any even number of

nowhere-zero sections in (ϕC)U(E(U)):

(ϕC)U(s1)(ϕC)U(s2) · · · (ϕC)U(s2p).

Conversely, if (e1, e2, . . . , en) is an orthogonal basis of E(U), reducing the number of terms in any

product

(ϕC)U(ei1)(ϕC)U(ei2) · · · (ϕC)U(eip),

137



does not change the parity of the number of terms involved. Thus, C+(U) is linearly generated by

the elements (ϕC)U(eJ), with J = (1 ≤ j1 < · · · < jm ≤ n) for an even m.

By letting U vary over the open subsets of X, the family (C+(U), +λ
U
V ), where +λ

U
V := σUV |C+(U),

with the (σUV ) being the restriction maps for the (complete) presheaf of sections Γ(C) of the A-

algebra C, forms a complete presheaf of algebras on X. Indeed, let U = (Uα)α∈I be an open covering

of U , and let s, t ∈ C+(U) such that

+λ
U
Uα(s) ≡ sα = tα ≡ +λ

U
Uα(t)

for every α ∈ I. Since C+(U) ⊆ C(U), and C is an A-algebra, it follows that s = t. Thus, axiom

(i) Definition 2.3 is fulfilled. For axiom (ii)of Definition 2.3, let sα ∈ C+(Uα), α ∈ I, such that for

any Uαβ ≡ Uα ∩ Uβ 6= ∅ in U , one has

+λ
Uα
Uαβ

(sα) ≡ sα|Uαβ = sβ|Uαβ ≡ +λ
Uβ
Uαβ

(sβ).

Without loss of generality, suppose that

sα = (ϕC)Uα(sα,1) · · · (ϕC)Uα(sα,2p)

and

sβ = (ϕC)Uβ(sβ,1) · · · (ϕC)Uβ(sβ,2q)

with sα,1, . . . , sα,2p ∈ E(Uα) and sβ,1, . . . , sβ,2q ∈ E(Uβ). It is evident that there exists an s ∈ C(U)

such that

σUUα(s) ≡ s|Uα = sα,

for every α ∈ I. Clearly, s is of the form

s = (ϕC)U(s1
1) · · · (ϕC)U(s1

2p1
) + · · ·+ (ϕC)U(sk1) · · · (ϕC)U(sk2pk),

138



where for any i = 1, . . . , k, pi is an integer ≤ n, and every si1, . . . , s
i
2pi
∈ E(U). Indeed, if s

contains a product of an odd number of terms, then, for any Uα ∈ U , s|Uα := sα /∈ C+(U). Thus,

C+ ≡ (C+(U), +λ
U
V ) is a complete presheaf of algebras. The sheafification of the presheaf C+,

denoted C+ ≡ SC+, is called the C.

Now, let C−(U) be the eigen sub-A(U)-module of C(U) for the eigenvalue section −1. Clearly,

elements of C−(U) ⊆ C(U) are linearly generated by products of an odd number of terms of

(ϕC)U(E(U)). One proceeds as above to show that pairs (C−(U), −λ
U
V ), where −λ

U
V = σUV |C−(U),

yield a complete presheaf. However, we notice that every C−(U) is not an algebra; so the presheaf

(C−(U), −λ
U
V ) is not a presheaf of algebras, but a presheaf of modules instead. Its sheafification,

denoted C−, is called the .

Definition 4.2 Let C be an A-algebra. The A-algebra C∗, in which products are defined to be

products in C but in the reverse order, is called the opposite A-algebra of C.

Specifically, let U be open in X and s, t ∈ C(U); then, if ∗ denotes the product in C∗(U), one has

s ∗ t := ts.

Now, considering ϕC as a Clifford A-morphism of the Riemannian quadratic free A-module (E , q)

into its Clifford A-algebra C, ϕC, which we denote by ϕ∗C, as an A-morphism from E into C∗, is

again a Clifford A-morphism. Thus, there exists a 1-respecting A-morphism τ : C −→ C∗ such that

τ ◦ ϕC = ϕ∗C.

But, τU((ϕC)U(s)) = (ϕ∗C)U(s) = (ϕC)U(s) for any open set U in X and section s ∈ E(U), and since

1C and ϕC(E) = ϕ∗C(E) generate both C and C∗, it follows that τ is bijective, hence, a 1-respecting A-

isomorphism of C into C∗. We conclude that τ is the only A-antiautomorphism, fixing the sections
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of ϕC(E). For any open U in X and sections s1, . . . , sk ∈ E(U), τU((ϕC)U(s1) · · · (ϕC)U(sk)) =

(ϕC)U(sk) · · · (ϕC)U(s1), it follows that τ 2 = 1, i.e., τ is an A-involution.

Using sections, one easily sees that Π ◦ τ = τ ◦ Π, which is the only A-antiautomorphism of C

sending sections of ϕC(E) to their opposites. On the other hand, Π ◦ τ is an A-involution and is

called the conjugate of C.
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Chapter 5

Conclusion and Future Work

The main foci of our investigation in this thesis were: the commutative property of the Clifford

functor on sheaves of Clifford algebras, the natural filtration of Clifford A-algebras, and localization

of vector sheaves. But there are classical results that need to be researched in connection to sheaves

of Clifford algebras. These include:

1. A-modules of fractions of non-commutative sheaves of rings

2. Globalization of A-modules

3. Graded quadratic extensions of scalars of A-modules
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[4] Borel Armand: Linear Algebraic Groups. Second edition. New York: Springer-Verlag. ISBN

0-387-97370-2.

[5] T.S. Blyth: Module Theory. An Approach to Linear Algebra. Second edition. Oxford Science

Publications. Clarendon Press. Oxford 1990.

[6] S. Bosch, Algebraic Geometry and Commutative Algebra, Springer-Verlag, London, 2013.

[7] N. Bourbaki, Elements of Mathematics, Theory of Sets, Hermann, Paris, 1968.
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