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Abstract 
 

The purpose of this study is to investigate the pricing of variable annuity embedded 

derivatives in a Lévy process setting. This is one of the practical issues that continues to face 

life insurers in the management of derivatives embedded within these products. It also 

addresses how such providers can protect themselves against adverse scenarios through a 

hedging framework built from the pricing framework. 

 

The aim is to comparatively consider the price differentials of a life insurer that prices its 

variable annuity guarantees under the more actuarially accepted regime-switching framework 

versus the use of a Lévy framework. The framework should address the inadequacies of 

conventional deterministic pricing approaches used by life insurers given the increasing 

complexity of the option-like products sold. The study applies finance models in the 

insurance context given the similarities in payoff structure of the products offered while 

taking into account the differences that may exist. 

 

The underlying Lévy process used in this study is the Variance-Gamma (VG) process. This 

process is useful in option pricing given its ability to model higher moments, skewness and 

kurtosis, and also incorporate stochastic volatility. 

 

The research results compare well with the regime-switching framework besides the added 

merit in the use of a more refined model for the underlying that captures most of the observed 

market dynamics. 

  

Keywords: Embedded option, variable annuity, Variance-Gamma 
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CHAPTER 1 
 

 

1.1.  Introduction 
 

The financial industry has, in the past century, been a haven of periods of market stability 

such as the 1970s and early 1980s followed by seasons of instability with market declines 

as in the late 1980s. The early 1990s were also relatively stable years in the markets with 

the latter part of the decade experiencing huge volatility. This trend has seen market 

variables such as interest rates and exchange rates fluctuating wildly at such times 

resulting in huge crises. Financial solutions have been sought for these market vagaries 

(see, for example, Zenios (1995), Schofield (2007), Sadr (2009), Cummins and Weiss 

(2009)) with hedging as a tool being widely used to protect market participants. 

  

In the same period, the pool of market participants has grown with different industries 

seeking solutions from the capital markets. This has been through various initiatives such 

as raising finance, moving from the traditional share capital as a source of finance and 

creating products that protect the market participants in times of adverse exposure. The 

insurance industry has been one of such. 

 

The industry strongly adopted actuarial principles in the asset-liability management 

(ALM) realm since its early days. The first actuaries sought to provide a solid basis in the 

management of assets and liabilities by solely using actuarial models. William Morgan the 

first actuary at the ‘Society for Equitable Assurances on Lives and Survivorships’ adopted 

a scientific actuarial basis in undertaking the first valuation in 1775. These principles 

would guide the asset-liability management of such insurers in the decades that followed. 

They were rooted in mathematical formulae on mortality and compound interest in an 

attempt to reduce uncertainty on life insurance surpluses/deficits (see Storr-Best (1970), 

Lewin (1998) and Dennett (2004)). During that time, ALM was just as important, failure 

to which Cornelius Walford as quoted in Storr-Best (1970) would note, “Companies 

sprang up like gnats on a summer’s evening and disappeared as quickly.”  

 

Refinements were gradually made to these formulae and actuarial bases became sounder. 

Ideas such as assessmentism, where incomes and outgos are matched annually without an 

attempt to smooth the policyholder premiums over the years, were employed but with their 

own challenges. The technological state of the time meant that the focus was to manually 

determine the expected present value of cashflows normally under more theoretical than 

practical assumptions. Reserving which is defined as, “… the setting aside of assets to 

cover negative expected future cashflows …” (Dickson, Hardy & Waters 2009) was used 

by insurers as a safe way of managing the asset-liability mismatch that may occur from 

time to time. In a recollection of the actuarial history, Skerman (1998) notes that asset 

returns remained a source of volatility in this ALM world with actuaries being little in 

control and resulting to setting up investment reserve funds. 

 

It was not until 1950s when actuaries began to more practically consider assets and 

liabilities together following on from the novel research by Frank Redington on the theory 

of immunization. Using this theory he noted that, “… a term can be found for the asset 

proceeds such that changes in the rate of interest change the value of the liability outgo 

and the asset proceeds by an equal amount…asset proceeds and liability outgo form two 

cash flows which must be treated consistently in valuation.” (Skerman 1998).  
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Not much later life insurers started investing in overseas assets, which meant exposure to 

currency fluctuations and further necessitated the need for a change in the way ALM was 

done.  

 

It is possibly the last three decades that have however brought the most radical changes in 

the operations of the insurance industry. In this period, the insurers have moved to 

combine their models of mortality with finance models in an endeavour to build a 

framework that will price their products fairly while ensuring sound risk management. The 

finance and actuarial worlds have become more interconnected than ever, a subject 

discussed in Embrechts (2000). 

 

Business competitiveness and awareness has resulted in insurers moving from their 

traditional assurance products to combined assurance and savings products. In the same 

period, policyholders have become more sophisticated in terms of their needs and these 

needs coupled with the advent of powerful computational facilities have led to 

increasingly complex products. 

 

The products have necessitated a new approach to managing risk or at the very least a 

modification of the old techniques and methods used. Hedging, defined by Stephens 

(2000) as the endeavour to try counteract or where possible offset the risks that an entity 

faces by holding an offsetting position, a concept hitherto left for the financial world, has 

slowly started to find its way in the insurance industry. Restructurings have been 

undertaken in some life insurance companies where treasury type operations have arisen in 

asset-liability management. These companies now have an asset management function and 

an intermediary that links up the insurer’s liabilities with its assets. This approach results 

in a link between policyholders and shareholders if the insurer is not a mutual and a 

possible conflict between covering the liabilities well with the assets available versus 

maximizing profits, which is what the latter want.  

  

In a scenario where there is such a shift in the management of assets and liabilities, 

inadvertently, new possibilities and risks arise. The begging question is whether the 

benefits of the new structures can be appropriately priced and the risks inherent in them 

better managed with efficacy being achieved. The central theme of this study is the 

variable annuity product and the different structural presentations of the product to the 

insureds. In particular, embedded derivatives in variable annuities will be considered and 

techniques to price and hedge them in view of the increasing complexity and competitive 

importance of these guarantees in the life insurance industry. 

 

1.2.  Dissertation objectives and structure 

 

A variable annuity is an annuity where the premiums are mainly invested in the financial 

markets with the receipts by the annuitant being dependent, in some way, on the 

performance of the premiums invested. 

 

The need for differentiation in the life insurance industry has meant that the insurers will 

normally provide guarantees of some form to the annuitant. There are four main 

guarantees in variable annuities namely: Guaranteed Minimum Maturity Benefit 

(GMMB), Guaranteed Minimum Death Benefit (GMDB), Guaranteed Minimum Income 

Benefit (GMIB), Guaranteed Minimum Accumulation Benefit (GMAB) and Guaranteed 

Minimum Withdrawal Benefit (GMWB).  
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The GMDB benefit guarantees a lump-sum on death regardless of the underlying asset’s 

account performance, the GMMB benefit gives a minimum guarantee to the policyholder 

at maturity, the GMIB benefit gives a guaranteed income until the policyholder dies and 

the GMAB benefit offers a guaranteed amount regardless of the performance of the 

underlying asset account this differing with the GMMB in that for the latter, the guarantee 

is only applicable at maturity. They are normally written as GMxB with ‘x’ representing 

the respective benefit concerned (Olivieri & Pitacco 2011). The report seeks to consider 

the first two with a perspective of how financial engineering can provide solutions to price 

and hedge against risks brought by the sale of these annuities. 

 

To this end, this study has five main objectives: 

 

1. To provide familiarity on practical issues, facing life insurers, which arise from 

embedded options in GMxB products world over. 

2. To implement two embedded option pricing frameworks: the regime-switching 

framework and the Variance-Gamma framework, the latter being a more refined 

model for movement of the underlying asset. 

3. To investigate which methods are suitable with the more conventional and 

actuarially accepted regime switching framework acting as the comparative base. 

4. To investigate how sensitivity to the underlying can be mitigated in a more refined 

model setting using financial engineering tools available in the capital markets and 

the continuing relevance of these tools in the insurance context. 

5. To provide recommendations on the use of these pricing and hedging strategies 

based on an appropriate risk measure calculation. 
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Figure 1.1: Objectives achievement flow 
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The research questions for this study are thus: 

 

a. Can the guarantees embedded in the GMxBs be effectively priced and hedged 

using available jump model financial engineering tools and is there a best practice? 

b. What impact would this have on the life insurer’s capital management and does 
this present itself as a solution? 

 

The research builds on propositions laid by Milevsky and Salisbury (2006), Bauer, Kling 

and Russ (2008), Bacinello et al. (2011) and Feng and Volkmer (2012) who after 

considering different aspects of variable annuities in a Black-Scholes setting, propose the 

research theme as an area for further research; in particular research question (a). Wu 

(2009) after considering the pricing of embedded options noted the importance of hedging 

these options in the wake of the market crises and recommended it as an area of further 

research. The study conducted by Wilkie, Waters and Yang (2003), Jaimungal (2004) and 

Ballotta (2010) in this direction will also be of relevance to this research forming a basis 

from which some of the objectives are addressed. 

 

The value of this study will be implementing the non-conventional embedded option 

pricing models in a South African (SA) life insurance setting using the JSE ALSI, 

analysing the results obtained and trying to find the best practice for the long-term 

sustainability of the industry. The author is not aware of such a study in an SA setting.  

 

Research in this path has been done by Foroughi, Jones and Dardis (2003) who discuss the 

topic of investment guarantees in an SA context but do not venture into hedging. Maitland 

(2001) discussed the immunization of nominal liabilities in SA and uses principal 

component analysis in his research. Thomson (2011) discusses the pricing of liabilities in 

an incomplete market with a specific application to the SA retirement fund whereas 

Raubenheimer and Kruger (2010) propose a dynamic stochastic programming model for 

use in ALM and note the necessity of further research on this area in SA.  
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CHAPTER 2 

Literature Review 
 

The previous chapter discussed briefly the state of the life insurance industry and the high-

level but significant changes that have occurred in the past. This chapter will delve into 

these issues in more detail. The experiences of some well-known life insurance companies 

are discussed and the need for a proactive undertaking in the endeavour to solve the 

challenges that face the industry identified. 

 

The story of Equitable Life, the first mutual company established as the ‘Society for 

Equitable Assurances on Lives and Survivorships’, is one of a solid structure for over two 

centuries when the actuarial and finance worlds were not very interconnected and a 

collapse partly attributable to the close interdependence of the two worlds in the latter 

years. The Equitable sold to policyholders deferred annuities with the option of having 

either a Guaranteed Annuity Rate (GAR) or the Current Annuity Rate (CAR). The 

exercise of these options was mostly reliant on the prevailing interest rate and although 

CAR was the more generous annuity, market volatility could lead to the GAR option being 

exercised. The insurer did not hedge itself against the exercise of these guarantees and was 

exposed to the possibility of heavy losses in case of adverse market movements.   

 

In the early 1990s, CAR fell below GAR due to interest rate movements and the option 

was exercised by the policyholders. In a sworn affidavit during his litigation, Christopher 

Headdon the ex-CEO of The Equitable noted that the cost of the guarantees to the 

company was in excess of £ 1 billion but, “… at no time did Equitable ever hedge or 

reinsure adequately against the GAR risk to counteract it …” (Hodson 2007). In the 

Penrose report submitted in 2004, the committee noted that the Equitable Life management 

could have taken measures to avoid the failure that occurred presumably by instituting a 

risk management framework that would protect it from the guarantees that lay embedded 

in its product offerings if they were to mature (Penrose 2004). 

 

As the Equitable case was waning, in the midst of the 2008 crises, life insurers that were 

not so well prepared were facing a crisis not so dissimilar. In the United States where a 

huge proportion of variable annuities with guarantees are offered, the risk exposure if the 

guarantees matured was huge. In a report delivered to the Actuarial Society of South Africa 

(ASSA) post the crises, the total losses from these annuities was in excess of $ 4 billion 

(approximately R 40 billion) as shown in Table 2.1 below. 

 

      Table 2.1: Variable annuity losses during the 2007/2008 crises 
 

Company Loss 

Manulife:  $1.5bn 

The Hartford:  $834m 

ING: $700m 

Axa:  $520m 

Old Mutual (Bermuda):  $500m 

Philadelphia Lincoln Financial:  $145m 

 

Source: Addae (2010) 
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Though all these losses were not solely due guarantees, a decent proportion could be 

attributed to poor risk management systems that did not totally understand the complex 

guarantees in question and never had structures in place to hedge against adverse 

exposure. 

 

In the case of Old Mutual-Bermuda (OMB), the insurer sold poorly priced policies with 

accumulation and death benefit guarantees. There were weaknesses in the overall risk 

management framework with the guarantees being underpriced and the hedging approach 

adopted being inadequate. None of these was picked up as the policy sales grew 

exponentially until the credit spreads started widening and global equity markets fell 

resulting in the maturity of the guarantees, huge losses and the need for capital injection. 

As Old Mutual noted in 2009 and 2010, the need for products with guarantees continued to 

grow but the challenge remained getting enough capital to sustain them (Old Mutual 

2010). 

  

The situation in Asia was no different and though the demographics of the region favours 

the sale of variable annuities, post the 2008 crises, major industry players Hartford Life, 

ING Life and Mitsui Life decided to discontinue from this market. In a report on the 

Japanese variable annuity industry, Asada (2009) notes that deficiencies in risk 

management were a major factor that led to the financial losses arising from the maturity 

of the guarantees. Though the use of reinsurance helped mitigate the risk in some 

instances, the author alludes to hedging as an important tool that could have assisted in the 

circumstances. 

 

The above are but a few of the many insurers that continue to face huge difficulties in 

pricing and hedging their guarantees and it is from this context that the study will be 

conducted. The dissertation will try to explore this issue further in the eyes of business 

agility which is defined as, “ … the ability to identify, anticipate and respond to relevant 

changes in operating conditions-those changes that directly impact an insurer’s ability to 

achieve sustained performance …” (Capgemini 2011).  

 

The issue of how to price for these guarantees has remained a challenge for many life 

insurance companies. The work done in the early 1980s by David Wilkie on the reserving 

of the guarantees in unit-linked products resulted in insurers shying away from such 

features but as the derivatives market continued to evolve, the guarantees started re-

emerging. Hedging the guarantees has however presented itself as an even bigger 

challenge in the wake of huge market volatility. Wu (2009) notes that the 2008 financial 

crises has made it an imperative task for insurance companies to not only be concerned 

about the correct valuation of the embedded options but also the containment of risks 

arising from holding the options through hedging. 

 

Statutory and professional bodies have continued to give guidance on the issue from the 

understanding that such financial guarantees, if not well checked, can lead to the collapse 

of some industry players and due to contagion effects greatly affect the industry.  

 

 

 

 

 

 



 

Page | 7 

 

The Actuarial Society of South Africa (ASSA) under Advisory Practice Note (APN) 110 

has recently sought to give actuaries clarity on the matter this replacing its predecessor 

Professional Guidance Note (PGN) 110. In the first PGN issued in 2003 and subsequent 

versions, ASSA has required that the nature and extent of risk inherent in the guarantees 

be appropriately recognized with a balance being struck between the practicality and 

complexity of the methodology adopted. The emphasis of the APN remains the calculation 

of reserves that serve as a buffer to the guarantees if they do mature. 

 

The APN notes that the guarantees above are closely linked to the derivatives traded in the 

financial markets with the only difference being that they are embedded in life insurance 

policies. It recommends, “…the use of market consistent stochastic models to quantify 

reserves required to finance shortfalls in respect of embedded investment derivatives.” 

(Actuarial Society of South Africa 2012). The variables that affect the future liabilities 

should be simulated stochastically and the future liabilities due to the guarantees projected 

to the maturity date. The present value of any shortfalls arising thereof is then treated as 

the reserve. The spirit of the guidance is that the reserve should be the expected present 

value of any shortfalls. Though the guidance alludes to a link between the embedded 

investment derivatives and the financial markets, it leaves it for the actuary to ensure that 

the insurer is well protected at all times.  

 

Hill, Visser and Trachtman (2008) through a research commissioned by the Society of 

Actuaries (SOA) discuss the stochastic pricing of these embedded derivatives. The 

necessity of such a proactive step is noted by the authors given changing market factors 

such as the low interest rates that have led to the maturity of some of the guarantees and 

competitive pressures that have led to the increasing incorporation of guarantees in life 

insurance products.  

 

The authors use the Black-Scholes (BS) model to assist in pricing the GMAB embedded 

derivative, which has a payoff pattern almost similar to a put option. As the markets 

become more unpredictable and guarantees more complex, the ability to use the BS 

method becomes harder and stochastic techniques become all the more important. The 

scenarios used in the stochastic techniques must be justifiable and Hill, Visser and 

Trachtman (2008) discuss three categories of scenarios that can be adopted: historic, long-

term risk neutral and market consistent. Of the three, the last approach is considered a 

viable approach for calculating the price and hedging costs of the derivative given that the 

value is expected to be linked, directly or indirectly, with other financial instruments 

trading in the financial markets. 

 

In the use of stochastic simulation, it is crucial that the scenarios used be large enough if a 

more comprehensive and accurate picture on the embedded derivative is to be attained. 

This can be done with more ease when the underlying distribution is well tabulated with 

desirable statistical properties but in other instances such as long-tailed distributions, “ … 

the number of scenarios, even focusing on the average may need to be much larger.” (Hill, 

Visser & Trachtman 2008). The authors then discuss the use of the Greeks in assessing the 

sensitivity of the option to certain market factors. 

 

The adoption of a stochastic approach in the valuation is justified by the unpredictability 

of most of the factors that affect the option value including interest rates, equity returns, 

and policyholder behaviour. These need to be given a stochastic consideration in both the 

pricing and hedging of the option with the authors being of the opinion that the 

expectations on pricing actuaries are changing in this regard.  
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Against the common convention of insurance companies, the spirit of the report is the use 

of financial market tools to assist in the pricing and hedging of these options. The use of 

stochastic reserving in the recent past by the insurance and actuarial worlds is seen as a 

step in this direction. 

 

This step is not in vain since in financial parlance, the insurance contracts can be seen as 

non-linear instruments with the underlying that leads to the exercise of the option, usually 

mortality, being non-linear. The insurer thus holds what are short ‘option’ positions on 

selling a product with guarantees. Reserving has been the past practice in ‘hedging’ such 

positions but looking at financial engineering techniques to try contain the risk is a 

promising recent development. 

 

Czernicki and Maloof (2008) discuss the topic of variable annuity (VA) guarantee hedging 

from the premise that volatility in the markets has made it a necessity. They note that some 

insurers have used first-order Greeks to try hedge themselves but this protection is only 

helpful in times of small market swings. There is always a fine line between offering 

competitive products versus hedgeable products with most insurers tending to offer 

competitive but complex products that are a challenge to hedge. The authors note the use 

of control-variate techniques and fund mapping as new but encouraging developments in 

meeting this challenge. The importance of adopting hedging as a key consideration during 

the VA product design phase is emphasized instead of having it as a post-product design 

consideration. Such an approach demands a thorough understanding of the guarantees and 

hence methodologies to price and hedge them. 

 

In a research conducted in 2011 by Langley et al. for Barclays Capital, the trend on VA is 

an upward one. The financial crises has however meant that hedging costs have increased 

dramatically and the question of whether hedging is still justifiable in this context is a 

necessary one. There are however companies that have displayed the necessity and 

benefits of hedging in the same period, Prudential Insurance US life company being a case 

in point.  

 

During the 2008/2009 crises, the insurer was able to reduce losses from its guarantees 

through efficient hedging. Langley et al. (2011) notes, “… Jackson’s hedging program is 

one example of how effective hedging can minimize the impact of changes in the value of 

GMWB guarantees.”  

 

In the same period however, other insurers offering VA have had to retreat or totally exit 

the market due to the guarantees biting with one-time US industry leaders AXA and ING 

being victims. The necessity of pricing and hedging the guarantees appropriately is vital 

and, in particular, a thorough analysis of market volatility and interest rates  which can 

prohibitively raise the cost of VA hedging as noted by Langley and Preston (2012). The 

authors note the importance of identifying the key factors affecting the guarantee, devising 

plausible future scenarios and using available derivatives, from simple to complex, to 

hedge the adverse scenarios.  

 

The fall in interest rates and/or equity price levels and increase in the volatility of the 

equity, forex and treasury markets are identified as factors leading to increasing hedge 

costs for the guarantees and thus the need to price using a framework that caters for these 

possibilities. In a paper delivered at the Actuaries’ Club of Harford/Springfield meeting, 

Heurtelou (2012) notes examples of capital market products that can be used to hedge 

against adverse eventualities if they were to occur.  
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Though risks do exist that cannot be hedged using the financial markets, the author notes 

that most of the risk sources in the VA guarantees can be hedged using tools such as equity 

futures, treasury futures and interest rate/equity variance swaps. The goal of this research 

is to delve further into such propositions in a South African context. 

 

The hedging strategy that should be adopted in finding a solution for the guarantees  is a 

tractable and robust hedge as in the work of, for example, Branger and Mahayni (2006). A 

hedging strategy is then said to be robust, “… if it dominates the claim to be hedged 

whenever the realized volatility path stays within some given deterministic volatility 

interval…” and tractable, “… if it can be written as the sum of Black-Scholes (BS) 

strategies.” (Branger & Mahayni 2006). 

 

A measure of the effectiveness of a hedge can then be the formula noted in Richards 

(2012): 

 

                        
  

   
        (2.1) 

 

where: 

 

     is the capital requirement with hedging assets, 

     is the capital requirement without hedging assets. 

 

The desire is that the percent of hedge effectiveness be as high as possible and certainly 

non-negative where the strategy adopted would be worse than not having a strategy at all. 

 

Coughlan et al. (2011) describe basis risk as, “… whenever there are differences, or 

mismatches, between the underlying hedged item and the hedging instrument.”  They then 

discuss a five-step framework for assessing hedge effectiveness in the context of longevity 

risk with their measure calculating the extent of risk reduction: 

 

                           
   

  
  (2.2) 

 

where: 

 

    is the risk measure value when the liability and hedge are considered together, 

   is the risk measure value when the liability is considered alone. 
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CHAPTER 3 

Life Contingencies and Embedded Options 
 

This chapter focuses on the fundamental mathematical concepts associated with 

embedded options for completeness purposes. Any reader who is unfamiliar with 

embedded options will find this brief chapter useful and for the familiar reader, the 

chapter provides a quick but useful reminder for later chapters. 

 

3.1. Embedded options/derivatives 

 

The Financial Accounting Standards Board (FASB) defines embedded derivatives as, “... 

components of contractual arrangements that, by themselves (i.e. on a stand-alone basis), 

would satisfy the criteria in the definition of a derivative.” (PricewaterhouseCoopers 

2013) The original contractual arrangement is referred to as the host contract and the 

combination of the embedded derivative and the host contract becomes a hybrid 

instrument. 

 

In many jurisdictions such as in the FASB, International Accounting Standards Board 

(IASB) standards and in particular under International Financial Reporting Standard 

(IFRS) 9, the requirement is that the embedded derivative be seen as a distinct financial 

instrument from the host contract and thus be accounted for separately though this has to 

be read in conjunction with IFRS 4. 

 

The distinction between embedded derivatives and embedded options underlies the fact 

that derivatives is a more encompassing word that includes but is not limited to options. 

In this research the two words are used interchangeably and assumed not to be 

significantly different. 

 

As noted in Chapters 1 and 2, purposefully or unpurposefully, life insurance companies 

find themselves selling products that contain embedded derivatives. The question of how 

to identify and value these options becomes all the more important more so in the wake of 

the recent financial crises. 

 

3.2. Embedded options in GMxB products 

 

The options that lie embedded in the GMxB contracts discussed above have a cost to the 

company usually referred to as the cost of guarantee.  This can be a maturity, surrender or 

death guarantee where the cost becomes borne on contract expiry, surrender or 

policyholder death respectively. 

 

3.2.1. Maturity guarantee 

 

The contract in this case guarantees a payoff that is at least:  

 

           (3.1) 

 

where:                        

       is the per time unit guarantee rate, 

    is the initial single premium. 
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If at maturity the investment by the insurance company,   , is less than this then the cost 

to the company at maturity time T is given by: 

 

                 (3.2) 

.  

If the investment is greater then the cost to the company is zero since the investment is 

more than sufficient to pay the guarantee (i.e. the cost to the company is the excess 

amount the insurer has to pay over the account value if the latter falls short). 

 

The expected value of the cost to the company at maturity is then given by the 

expression: 

 

                                                                 (3.3) 

 

where: 

 

        is the probability of a life aged   dying within the next   years, 

      is the probability of a life aged   surrendering within the next   years. 

 

3.2.2. Surrender guarantee 

 

The surrender guarantee undertakes to pay the policyholder a proportion of the original 

premium P: 

 

                 (3.4) 

 

with        to dissuade policyholders from surrendering too soon. 

 

If at any time the policy is surrendered and the value of the investment, 
  , is less than the surrender amount then the extra payout by the company is given by: 

 

                  
 

(3.5) 

The fair charge by the insurer today for a surrender that occurs in year      is then 

given by: 

 

                                                         
 

   (3.6) 

 

where: 

 

    is the risk-free rate of interest. 

 

3.2.3. Death guarantee 

 

The death guarantee amount that is paid to the estate for death that occurs at a random 

time   is at least: 

 

                  (3.7) 
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where:                        

       is the per time unit guarantee rate, 

    is the initial single premium. 

 

If death occurs at such a time   when the value of the investment,   , is less than this 

amount then the company has to make an extra payout of: 
 

 

                  (3.8) 

 

The fair charge by the insurer today for a guarantee that matures at year       is then 

given by: 

 

                                          

                                                                      
 

   
(3.9) 

 

The maturity or death amounts can be expressed in a continuous compounding sense as: 

 

                (3.10) 

 

where:   

 

     is the per time unit guarantee rate for the respective guarantee. 

 

and the above results still hold in this setting. 

 

The guarantees have payoffs very similar to the vanilla and exotic options that are 

widely traded in the financial markets. In particular, the GMxBs are put options whose 

maturity date is known for the maturity guarantee but random for the surrender and death 

guarantees. The payoff at such a maturity time,  , for the holder of the option with strike 

price   and underlying    is expressed as: 

 

                     
 

(3.11) 

If we consider the payout to be made at maturity time, , and a guarantee rate of   per 

unit time for the GMxB in question, the policyholder receives: 

 

                                          (3.12) 

 

The value of the guarantee at   is the account value    added to a put option with an 

exercise of   and the underlying being the discounted account value.  

 

Further, the guarantees can be a return of premiums, roll-up or the rising-floor guarantee. 

In this report, it is assumed that the guaranteed benefit does not change as the fund value 

changes or if it does it is a compound growth through a constant interest rate, essentially 

an interest guarantee. The policyholder also normally has the choice regarding which 

product to choose and in some instances the investment strategy to be followed. The 

insurance company should therefore be able to protect itself from adverse exercise of 

any of the above products.  
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CHAPTER 4 

Modelling the Dynamics of GMxB Embedded Options 
 

This chapter is a core chapter in the dissertation. It first introduces the notions of 

stochastic calculus and measure theory so as to ensure that the research is 

comprehensive enough, rigorous where needs be and self-contained. It starts by 

explaining the more commonly known Black-Scholes framework to set the background. 

The three main frameworks in this research namely the regime-switching, VG and 

VGSV frameworks are then presented from Section 4.3.  

 

The choice in this chapter is the adoption of a parallel approach where a framework is 

theoretically discussed and then applied to the JSE ALSI index data in the pricing of the 

guarantees. The leading motive in such an approach is so as to ensure that all the results 

are presented as closely as possible to the theoretical discussion of the framework and 

in so doing shed some immediate practical light on the theory while achieving 

continuity of structure.  

 

4.1. The Black-Scholes framework 

 

The theory of stochastic calculus has been heavily used to develop option pricing 

frameworks. This calculus is a generalisation of the ordinary calculus with the 

introduction of a random component from Brownian motion; an important ideal in the 

theory of finance given the random behaviour of financial markets. The theory of 

probability measures has equally been heavily applied in expressing option prices as 

expectations (see Bjӧrk (1998) and Shreve (2004)). The two alternative approaches are 

referred to as the partial differential equation (PDE) approach and the martingale 

approach. 

 

Inherently important in the PDE formulation is Itô calculus and Itô’s lemma which are 

applied a lot in the world of financial mathematics. Itô’s lemma states that if an asset    

has the dynamics: 

 

                            
 

(4.1) 

then 

 

          
  

  
          

  

  
           

 

 

   

   
          

   (4.2) 

 

where we use the Itô multiplication table: 

 

Table 4.1: Itô multiplication table 

 
              

   0 0 0 

     0    0 

     0 0    

 

with      and     being two independent Weiner processes. 
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4.1.1.   The Black-Scholes model 

 

A partial differential equation (PDE) that gives the price of an option can then be 

derived and Fischer Black and Myron Scholes in their seminal paper (Black & Scholes 

1973) derived such an equation for an option on an underlying    with expiry time  . 

 

The Black-Scholes equation can alternatively be derived using the concept of a 

martingale measure (see Harrison and Kreps (1979), Kreps (1981) and Harrison and 

Pliska (1981)). This approach is built from the premise that in order to avoid arbitrage 

in any trading strategy, the probabilities used must be such that, “...if at any trading time 

and state of the world we take the expectation of any asset’s future value, then it will be 

equal to the value it has in that state of the world at that trading time.” (Joshi 2003). 

 

Closely interlinked and important is the existence of risk-neutral measures where option 

prices ‘define’ probability measures. These measures always imply a ‘risk-neutral’ 

evolution where the asset grows at the risk-free rate but do not assert a probability 

distribution of such an asset’s future price behaviour. 

 

Bjӧrk (1998) and Joshi (2003) discuss the seminal work of the authors above starting 

from the fundamentals and arriving at the same PDE for an option. The less technical 

reader is referred there. 

 

Proposition 4.1 (Joshi 2003) 

 

If a contingent claim has a payoff function               and       is a 

sufficiently integrable function, then the price    of the contingent claim is given by 

           where f solves the Black-Scholes partial differential equation, 

 

 

  
             

 

  
       

 

 
    

  

   
                  

 
(4.3) 

where:    

 

  is the continuously compounded risk-free rate, 

  is the volatility parameter, 

  is the dividend yield. 

 

Proof:  (See Bjӧrk (1998)).  

 

Remark: A consequence of the PDE derivation is the obtainment of a hedging strategy 

that involves continuous trading in the underlying. This is referred to as delta-hedging 

and for an option with price         one should hold 
  

  
 units of the underlying at any 

time.  

 

Further, though the  ,   and   parameters can be variables, in subsequent sections they 

are assumed to be constants. 
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4.1.2.   Imperfections of the Black-Scholes model 

 

The Black-Scholes model is based on certain assumptions which have become 

“suspect” over time (see for example Cont and Tankov (2004)). 

 

Schoutens (2003) and Buesser (2013) note some of the Black-Scholes model 

assumptions as: 

 

 There is no market friction arising from, inter alia, taxes and transaction costs. 

 The underlying asset’s returns process is a logarithmic diffusion. 

 The volatility parameter is the main risk determinant. 

  

Empirical evidence (see for example Cont (2001)) has however noted that: 

 

 The log returns are not normally distributed. 

 The volatilities (or parameters of uncertainty) have a stochastic term structure 

and are clustered, that is, volatility clusters. 

  

These imperfections have motivated the extension of the Black-Scholes model into new 

models that can explain these empirical observations well. Achdou and Pironneau 

(2005) note some of the extensions that would allow for more flexibility and they 

include: 

 

 Modelling the volatility as a stochastic process. 

 Using a regime switching model to characterize the performance over the so 

called different regimes. 

 Generalising the Black-Scholes model by assuming that the spot price is a Lévy 

process. 

 

This consideration would however need a recap of some more fundamental principles in 

quantitative finance which follow in the next sections. 

 

4.2.  Change of measure and Girsanov’s theorem 
 

The theory of pricing has long been viewed from a real-world context and using real-

world probabilities. However, in a quantitative finance context and in the pricing of 

contingent claims, the pricing is no longer done using the real-world probability 

measure rather the risk-neutral probability measure. This is key if the prices obtained 

are to be arbitrage-free and separates the statistical framework from the no-arbitrage 

pricing framework. 

 

The key theorem that links these two measures is the Cameron-Martin-Girsanov 

theorem (normally referred as Girsanov’s theorem) which is stated here below: 
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Theorem 4.1 (Björk 1998) 

 

If Wt is a  -Brownian motion and    is an  -previsible process satisfying the 

boundedness condition       
 

 
   

  

 
      , then there exists a measure   such 

that: 

 

i.   is equivalent to   (i.e. if A is any event on the same sample space that   and 

  operate, then                ), 

 

ii. 
  

  
         

 

 
     

 

 
   

  

 
     

 

iii.             
 

 
    is a  -Brownian motion. 

 

Proof:  (See Bjӧrk (1998)).  

 

Remark: This result, with certain constraints, allows us to change between the two 

measures depending on the context in question. 

 

4.3.  Incomplete markets 
 

The Black-Scholes model and some variations such as the binomial tree model (see 

Cox, Ross and Rubinstein (1979)) assume that it is possible to completely replicate a 

security using other securities available in the market hence the assumption of the 

existence of a replicating portfolio. It is thus possible, in such a setting, to wipe away 

all the risk undertaken by an options/derivatives writer by holding the replicating 

portfolio and the market is referred to as a complete market. Bjӧrk (1998) defines a 

complete market as one in which every contingent claim can be replicated.  

 

The theory of completeness is heavily interconnected with the existence of a unique 

martingale measure in the martingale approach to no-arbitrage pricing. 

 

Definition 4.1 (Björk 1998) 

 

A probability measure   on    is called an equivalent martingale measure (or more 

commonly as a martingale measure) for a market model, the numeraire and the time 

interval       if it has the following properties: 

 

     on   , 

 All price processes of the market model and the numeraire are martingales 

under   on the time interval      . 
 

Bjӧrk (1998) discusses arbitrage-free pricing in the martingale pricing framework and 

notes the Second Fundamental Theorem of Mathematical Finance as: 

 

Theorem 4.2 (Björk 1998) 

 

Assume that the market is arbitrage free. Then the market is complete if and only if the 

martingale measure is unique. 

 

Proof:  (See Bjӧrk (1998)).  
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The foregoing remarks result in a very ideal financial world where non-satiation and 

not risk-preferences influence the unique pricing of derivatives. The world of 

mathematical finance has often been built using this framework given its tractability 

and the work of, inter alia, Black, Scholes and Merton (see Black and Scholes (1973), 

Merton (1973)) is in this setting.  

 

However, the very nature of the financial markets including heavy tails and volatility 

clustering disproves the existence of a unique martingale measure and issues such as 

risk-preferences and liquidity considerations do indeed influence pricing. This results in 

the concept of incomplete markets which, as Bjӧrk (1998) notes, has more random 

sources than there are traded assets. 

 

In the incomplete market and as a consequence of the above, the ability to completely 

hedge and uniquely price a derivative is not just in doubt but largely impossible. A 

choice then has to be made for a reasonable arbitrage-free incomplete market model for 

the particular derivative(s) to be priced and/or hedged. 

 

It is in this incomplete market context, and based on the justifications above, that the 

pricing and hedging of the embedded options discussed herein is considered. Where 

needs be, empirical methods are used in deciding how to calibrate the particular choice 

of model and given the proprietary nature of insurer information that would otherwise 

be used in parameter estimation, in some instances, the selection made is a logical 

assumption within a realistic range. 

 

4.4.  Regime-Switching Processes 
 

The regime-switching theory hinges on the common observation that the price and 

return performance in the financial markets is affected by events such as financial 

crises and reserve bank policies some of them dramatically so. The market prices are 

influenced by dissimilar forces over different periods but over any one period there is a 

force that is more influential on the price thereby dominating the others. The periodic 

effect of these forces (which are referred to as regimes) on prices should then be 

captured by using a model that takes into consideration the different regime that market 

is in and naturally leads to the need for an estimation of the probabilities of switching 

between regimes. 

 

Hardy (2003) notes that regime-switching models suppose that a discrete process 

changes between regimes arbitrarily with every regime being characterized by its own 

parameter/coefficient set. Markov processes are used to describe where the price 

process is at any time thereby a means to calculate the probabilities of switching 

between regimes. 

 

Definition 4.2  (Parzen 1999) 

 

A stochastic process,     , is said to be a Markov process if it satisfies the Markov 

(past forgetting) property i.e. for any set of time points              in the index 

set of the process and for any real numbers              

 

                                              
                                   

 



 

Page | 18 

 

Remark: (Parzen 1999) A real number   is said to be a possible value, or a state, of 

the stochastic process             if there exists a time   in   such that the 

probability                  is positive for every    .    

 

The research by Hamilton (1989) discussing a regime-switching model in an 

econometric setting is viewed as the base from which the application of regime-

switching models in finance sprang. In his paper, he discusses an auto-regressive (AR) 

regime-switching model in the context of the United States Gross National Product time 

series. In subsequent research on this Hamilton and Susmel (1994) consider the 

autoregressive conditional heteroskedasticity (ARCH) model under different regimes 

whereas in Hamilton (1996) the subject area is considered in a specification testing 

context.  

 

The novel discussion of the regime-switching models in a quantitative finance context 

was done by Bollen (1998) where the author discusses the valuation of European and 

American-style options in a regime-switching framework. The option values so 

obtained exemplify a volatility smile similar to what is empirically observed adding 

credence to the use of such models and following on from which the application in the 

wider finance context has developed. Ang and Bekaert (2002) discussed the theory in 

an interest rate modelling framework for the interest rates of the United States of 

America, Germany and the United Kingdom. Their results pointed to the existence of 

interest rate regimes and further added acceptance to the adoption of such models.  

 

The regime-switching log-normal model (RSLN) is one of the main regime-switching 

models that have been applied in the finance and actuarial worlds. The process in this 

case switches at random between   log-normal processes and as Hardy (2003) notes; 

this enables the introduction of stochastic volatility in the modelling. The volatility will, 

at any one time, take on the values implied by one of the   regimes and it switches 

between these values randomly.  

 

The popularity of the RSLN model has grown mainly due to its simplicity and 

tractability compared to other models in the same sphere yet with the ability to capture 

the randomness seen in the market through the switching of volatility between the 

different regimes. Hardy (2003) notes that the RSLN model when switching between 

two regimes fits the stock index data quite well more so in the context of insurance that 

has a link to equities. The author’s discussion of the framework is used here below: 

 

Assumption 4.1   
 

Let              be the regime applying in the time interval        , let    be the 

total return index value at time   and     be the log-return process. If         
    

  
  

then, 

 

               
    

    (4.4) 

 

where: 

   
 is the mean of the applying regime, 

   

  is the variance of the applying regime. 
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A two-regime model has been found to be adequate in most cases (see for example 

Hamilton and Susmel (1994), Harris (1997), Harris (1999) and Hardy (2001)) and in the 

subsequent discussion and chapters for the pricing considerations, given the ability of 

the model to balance parsimonity and accuracy, this will be the model used. 

 

The matrix  , labelled (4.5) below, is the matrix of transition probabilities and contains 

the probabilities of transition from one regime to another: 

 

    
      

      
   (4.5) 

 

It is assumed that transition from one state is at period end and therefore: 

 

Definition 4.3 
 

The probability defined as, 

 

                                              (4.6) 

 

is the probability that the process is in regime   at the next time period given that it was 

in regime   in the previous time period and                      .  

 

Remark: Parameter estimation in this framework is done using the method of 

maximum likelihood with a total of six parameters to be estimated and the interested 

reader is referred to Hardy (2001). 

 

4.4.1. Estimating the Markov Switching model 
 

The following analysis uses daily and monthly data obtained on the Johannesburg 

Securities Exchange (JSE) All Share Index (ALSI) for the period from 1
st
 July 1994 to 

30
th

 June 2013 to estimate a two-regime Markov-Switching (MS) model using the 

vector of log-returns on the ALSI. The transition probabilities so estimated are assumed 

to be constant with the possibility of extending this to estimate time-varying transition 

probabilities. 

 

The Matlab platforms by Perlin (2012) and Kritzman, Page and Turkington (2012) are 

used with their accuracy as suitable estimation platforms having being counter-checked 

and confirmed using research done elsewhere (see for example Rathgeber, Stadler and 

Stöckl (2013), Møller and Sander (2013)). The particular Matlab codes are contained in 

Appendix A.  

 

The computations in this section and throughout the rest of the report are done on a HP 

with a 1.8 GHz Intel Core i3 processor and 4 GB 1600 MHz DDR3 memory. 

 

4.4.1.1. Hamilton filter approach 

 

In this Markov model estimation, the Hamilton filter approach, an expectation 

maximisation algorithm discussed in Hamilton (1989, 1994), is used on the daily data 

and the parameter estimates obtained are:  
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Table 4.2: Hamilton filter parameter estimation on daily JSE/ALSI returns data 

 
 Mean ( ) Variance (    Sigma (   

State 1 0.0009 0.000064 0.008 

State 2 -0.0010 0.000395 0.019875 

 

The transposed transition probability matrix is shown below: 

 

 
 

Figure 4.1: Hamilton filter transposed transition probability matrix on daily JSE 

ALSI returns data 

 

The various plots are shown here below with the third plot on the smoothed 

probabilities being of particular interest. 

 

 
 

Figure 4.2: Hamilton filter RS plots for the daily JSE/ALSI returns data: July 1994-June 

2013 

 

The main advantage of the regime switching model is that though from the first time 

series plot it may be a challenge to identify when the regime does actually occur, the 

third plot clearly indicates the switching of regimes across time from July 1994 to June 

2013. The plots signal a possible balance in the time spent between the two regimes. 
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4.4.1.2.   Baum-Welch algorithm fitting 

 

The Baum-Welch algorithm is a Hidden Markov Model (HMM) estimation algorithm that 

uses the maximum likelihood approach in estimation. It is also a special case of the 

expectation maximisation approach and iteratively maximises a proxy to the log-likelihood to 

obtain the most optimal model (Bishop 2006). Its powerfulness and huge acceptance in the 

estimation of parameters in a probabilistic context made it a worthwhile consideration for the 

case at hand and for the daily data it yields the following parameters. 

 

 
 

Figure 4.3: Baum-Welch transition probability matrix: Daily JSE/ALSI returns 

data 

 

 
 

Figure 4.4: Baum-Welch RS plot for the daily JSE/ALSI returns data: July 1994-

June 2013 

 

In both the Hamilton and Baum-Welch approaches, the parameters so obtained do not 

show any material disparities and it is the parameters from the latter that are used 

forthwith given that it is a complete estimation method and has been shown (see Mitra 

and Date (2010), Mitra (2014)) to identify regimes that the Hamilton approach may fail 

to capture.  

 

Further, it is worth pointing out that though the research focuses on a two regime 

setting, an attempt to fit a three-regime model on the data results in a third-regime that 

is not any more instructive over the two-regime model and hence for the case at hand, 

with this further justification, the two-regime model is used. 
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The parameters are re-estimated using the Baum-Welch approach on monthly data as 

shown in Figure 4.5 below. The use of monthly data over daily data is because the 

former is more effective in identifying regimes when the use is to capture long-term 

changes as is the case for embedded guarantees. Mitra and Date (2010) note that 

regime-switching models concentrate on long-term trends instead of continuous time 

dynamics and thus such models switch regimes over larger units of time, such as 

monthly, instead of continuously, as would be the proxy case with daily data.  

 

 
 

Figure 4.5: Baum-Welch parameters for the monthly JSE/ALSI returns data: July 

1994-June 2012 

 

We thus have the transition probability matrix given by: 

 

    
      

      
    

            
            

   (4.7) 

 

If we apply linearity of the mean and square root adjustment for volatility, Figure 4.5 

above indicates that regime 1 is a low volatility regime (an annualized volatility of 

roughly    ) coupled with high returns (an annualized return of 19%). Regime 2 is a 

high volatility regime (an annualized volatility of roughly    ) with low (negative) 

returns (an annualized return of -4%). This intuitively makes sense since periods of high 

volatility have tended to be associated with falling markets and vice versa. 

 

The probability of moving from a high-volatility regime to a low-volatility regime is 

      which is indicative of a high persistency rate of         The smoothed 

probability plot for this period is shown below: 

 

 
 

Figure 4.6: Baum-Welch smoothed probability plot for the monthly JSE/ALSI 

returns data: July 1994-June 2013 
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The expected duration in the high-volatility regime (regime/state 2), which is 

approximated by 
 

     
 , is      months and the expected duration in the low-volatility 

regime (regime/state 1) is approximately      months. 

 

The steady-state probabilities yield: 

 

   
     

     
            
            

   (4.8) 

 

Hence 58.81% of the months will be in the low-volatility regime and 41.19% of the 

months will be in the high-volatility regime. 

 

The 1998 global crisis (around 48 months from July 1994) and the 2008 financial crisis 

(around 168 months from July 1994) present themselves as periods of high volatility 

which is a true reflection of the happenings at the time. 

 

The next important step after the identification of the two regimes is the pricing of 

financial instruments using a methodology that is consistent with the RS framework 

which exists in an incomplete markets context (as discussed above). This necessitates 

the adoption of a strategy other than the replicating portfolio strategy in the pricing of 

options and in this particular case the embedded derivatives. 

 

In an incomplete market, there is no unique equivalent martingale measure; in fact, 

there are infinitely many. The challenge becomes how to choose a reliable pricing 

measure from this infinite set. In the section that follows, the Esscher transform, which 

is used extensively by actuaries, is applied to obtain the martingale measure adopted for 

the pricing. 

 

 

4.4.2.  Esscher transform martingale measure 

 

Gerber and Shiu (1994) introduced the Esscher transform in the pricing of options 

through their 1994 seminal paper. The authors noted that the risk-neutral Esscher 

transform provides, critically, an unambiguous solution in the choice of the equivalent 

martingale measure. 

 

The model theory used below to identify an EMM for the two-regime switching 

lognormal (RSLN2) model is based on Elliott et al. (2005), Siu (2005), Xiao-nan et al. 

(2013) and Qiu (2013). 

 

4.4.2.1. Model theory  

 

Suppose        is a complete probability space,   is the time index set       and 
         a standard Brownian motion on the probability space. Further, assume that the 

states of the market are modelled by a continuous-time hidden Markov Chain process 

         on the probability space with a finite state space with          and          

being independent. 
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We assume that the interest rate of the bank account, the expected growth rate of the 

asset and the volatility all depend on the state/regime that we are in, that is, 

  

              
              
             

(4.9) 

 

Definition 4.4 
 

The financial model defined below, which consists of a bond/bank and stock (which 

could be the reference insurer’s asset portfolio, a company’s share, market index etc), 

is used: 

 

              (4.10) 

 

where: 

        is the bank account with dynamics                     
 

       is the stock price with Markov-modulated dynamics,  

                                  
 

If          
  

  
  as in Assumption 4.1, then Elliott et al. (2005) note that the dynamics 

of     can be expressed as: 

 

                   (4.11) 

 

where: 

 

         
 

 
   

         

 

 

 

 

     (4.12) 

 

Let    
      and    

      be the  -augmentation of the natural filtrations generated by 

         and          respectively and for each     , let    be the  -algebra   
    

 . 

Further, define                as the regime switching Esscher transform. In order to 

be able to change measures, Elliott et al. (2005) show that the Radon-Nikodym 

derivative of this transform is expressed as: 

 

    

  
  

  

           

 

 

      
 

 
   

   
 

 

 

      (4.13) 

 

Defining         
as the family of risk-neutral regime switching Esscher parameters, the 

authors invoke Bayes’ rule and show that     is actually related to the market price of 

risk (MPR) and can be determined uniquely as: 

 

     
      

  
     

    

  
             (4.14) 
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and for our two regime case we have: 

 

     
     

  
  

     

  
     (4.15) 

 

The stock price dynamics under     are then given by: 

 

                      (4.16) 

 

from which it is then possible to price European options with payoff       as: 

 

                      
 

          
    

    (4.17) 

 

which is evaluated as an iterated expectation. 

 

Definition 4.5 (Frittelli 2000) 

 

Let   be a probability measure on (   ). The relative entropy        of   with 

respect to   is defined by: 

 

         
   

  

  
   

  

  
             

                                       

 . (4.18) 

 

If   is a set of probability measures on (   ), set 

 

                          (4.19) 

 

Definition 4.6 (Frittelli 2000) 

 

A probability measure      is called the minimal entropy martingale measure 

(MEMM) if it satisfies: 

 

            
     

            
     

   
  

  
   

  

  
    (4.20) 

 

where   is a set of martingale measures. 

 

Remark: It is worth noting that the measure so chosen is the minimal entropy 

martingale measure (MEMM) which makes it a good choice and the interested reader is 

once again referred to Elliott et al. (2005) for the details and proofs. Benth and Karlsen 

(2005) and Benth and Meyer-Brandis (2005) discuss the fact that this measure is a 

theoretical one in some sense. Hubaleka and Sgarra (2006) show the close relationship 

between the MEMM and the Esscher transform for exponential Lévy models with 

Benth and Sgarra (2012) discussing how to use it in a more practical sense by 

considering the case of power markets. The interested reader is referred to the authors 

work. 
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The price of a call option is then calculated using the result derived by Xiao-nan et al. 

(2013) where:  

 

a) The inner expectation, in the iterated expectation, evaluates to: 

 

            
 

              
                      

 

         (4.21) 

 

where: 

 

    
    

  

 
        

  
 

 
 

 

 
   

    
  

 
  

             
 

 

 

    

 

      is the standard normal cumulative distribution function. 

 

b) To evaluate the outer expectation we use the probability density function of      , the 

occupation time of      in state   over      ,     , which for a fixed time   and 

regime   is defined (Yoon, Jang & Roh 2011) as        : 

 

                       

 
 
 
   

     

   
 

 

 
                 

 

    

                  
 

   
 
 
 

   (4.22) 

 

                       

 
 
 
   

         

 
 

 

 
                 

 

    

                  
 

   
 
 
 

   (4.23) 

 

where: 
 

              ,  
 

         
 

 
 

 
 

 
 

 
 
  

           
 
    is the modified Bessel function,  

 

         ,              ,               and          .  
 

Denote the conditional call price (CCP) evaluated using the inner expectation above as 

                 (conditional on the occupation time      ). Without loss of 

generality, if we stand at time 0, as in Xiao-nan et al. (2013), let: 
 

                  

 

 

                    (4.24) 

 

           
        

 

 

 

        
            (4.25) 
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Then  

 

                                                        (4.26) 

where: 

 

     
   

  

 
                      

 

 
    

    
           

    

    
    

           
  

  

 

 

            
    

           
    

  

The risk-neutral price of a European call option at time   (now) with initial regime 

          is then given by: 

 

                                  

 

 

                         

                           

(4.27) 

 

where: 

 

                        
                    
                    

  

 

If the put-call parity relation is applied on the CCP, we can derive the conditional put 

price (CPP) as follows: 

 

Theorem 4.3 
 

The conditional put price,                 , (conditional on the occupation time 

     ) is given by: 

 

                                                       (4.28) 

 

Proof: 
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We then have the risk-neutral price of a European put option at time 0 with initial 

regime           given by: 

 

                                  

 

 

                         

                           

(4.29) 

 

4.4.2.2. Model application to European type options 

 

Using the regime parameters obtained above and the interquartile range of the SA 10-

year government bond yields to derive a monthly estimate of the continuously 

compounded rate,    , we have: 

 

Table 4.3: RSLN2 model parameters on the JSE/ALSI returns data 

 
              

Regime 1 0.0161 0.0371 0.011 -3.70529 

Regime 2 -0.0034 0.0775 0.0067 1.68158 

 

It is worthwhile to make a comment about the risk free rate at this point. A 

simplifying assumption would be that the risk-free rate is regime independent but this 

is debatable considering that regimes represent economic cycles. Modelling the 

interest rate using a Markov model is however outside the scope of this research and 

an estimate consistent with the long-run average is used as in Fairbrother (2012). 

 

The transition intensity (generator) matrix for the case at hand is estimated using an 

approximation derived from the Kolmogorov forward equation as follows: 

 

Definition 4.7  (Stewart 2009) 

 

If we have two matrices    and   such that 

 

         (4.30) 

 

then 

 

  
        (4.31) 

 

Remark: Equation (4.30) is the matrix exponential solution to the Kolmogorov 

forward equation which is represented in matrix form in (4.31). 

 

In the foregoing we set: 

 

     
          

          
   and      

   
      (4.32) 
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Using this we derive two ordinary differential equations as follows: 

 

                               

                               

 

(4.33) 

The solution to these two differential equations is then obtained as: 

   

      
 

   
              and        

 

   
              (4.34) 

 

and 

 

    

 

 
 

            

   

 

   
            

 

   
            

           

    

 
 

  (4.35) 

 

If we invoke homogeneity, that is,   does not depend on  , we note that the    matrix 

has only two variables namely        and        thus, 

 

 

    

 

 
 

             

     

             

     

             

     

             

      

 
 

  (4.36) 

 

The estimated transition probability matrix (4.7) shown below,  

 

       
      

      
  =  

            
            

  

  

with the essential continuous time transition matrix constraint that           , 

and the estimates, 

 

                  
   

       
  and                   

   

       
  (4.37) 

 

yields the generator   matrix as: 

 

   
     

     
    

                 
                 

   (4.38) 

 

This is numerically implemented in Matlab to price the embedded options with the 

put price, which is representative of the guarantees’ costs, being calculated.  

  

We assume that the policyholder is aged  , pays a single premium,  ,  time is 

measured in months and the strike price ( ) is initially taken to be fixed at        . 

The CPP over a range of    and occupation time, with initial regime 1,       is 

plotted in Figures 4.7 and 4.8 below:  
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Figure 4.7: Conditional put option price, initial regime 1, maturity 10 years (2D). 

 

 
 

Figure 4.8: Conditional put option price, initial regime 1, maturity 10 years (3D). 
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The plot of the integrand used in the calculation of the risk-neutral price is shown in 

Figures 4.9 and 4.10 below: 
 

 
 

Figure 4.9: Put option immanent integrand, initial regime 1, maturity 10 years (2D). 
 

 
 

Figure 4.10: Put option immanent integrand, initial regime 1, maturity 10 years (3D). 
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The plots above give a pictorial idea of the behaviour of the option as we vary the 

initial stock price and occupation time. The price is a decreasing function of both the 

occupation time and the initial stock price. The former could be explained by more 

regime predictability the higher the occupation time and hence the lower the risk 

premium resulting in decreasing prices. The latter happens due to the higher 

likelihood of the option ending out-of-the-money as the initial stock price increases. 

The tables below gives a more comprehensive picture with the put option prices 

derived for a 1-year, 5-year and 10-year maturity for a fixed initial regime: 
 

Numerical integration is done using both the adaptive Simpson quadrature which is a 

numerical integration technique that recursively refines the intervals if the desired 

error tolerance has not been met (Gil, Segura & Temme 2007) and the adaptive 

Gauss-Lobatto quadrature. The Matlab inbuilt functions quad and quadl are used and 

the full codes are in Appendix A. 
 

Adaptive Simpson quadrature 
 

The European put option prices using the adaptive Simpson quadrature are: 
 

Table 4.4: Adaptive Simpson quadrature European put option prices 
 

 
 

Adaptive Gauss-Lobatto quadrature 
 

The prices from the adaptive Gauss-Lobatto quadrature are illustrated below: 
 

Table 4.5: Adaptive Gauss-Lobatto quadrature European put option prices 
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The price between the two integration methods is significantly different for the 1-year 

put option but as the tenor increases, the difference in price between the two methods 

falls. The adaptive Gauss-Lobatto quadrature is chosen henceforth on the basis that 

the integrand is a smooth function and its efficiency as noted in Mikhailov and Nögel 

(2003). 

  

The difference in the European put option prices relative to the initial regime 

decreases as the tenor increases as captured in the table and plot below. 

 

Table 4.6: European put option price differences: Regime 2 – Regime 1 

 

   Tenor      

   
Regime 2 price – Regime 1 price 

1-year 5-year 10-year 

      37.3912 16.2022 5.6497 

      33.5845 11.3877 3.1053 

       23.569 6.274 1.7045 

       7.0294 3.2594 0.9727 

       1.6714 1.7016 0.5779 

 

The higher differences for short tenors could be explained by the possibility of only 

but a few regime changes before maturity and the price reflects this. In the longer 

term, the possibility of regime changes irrespective of the initial regime signals the 

reduced significance of the initial regime and hence the price difference falls as the 

tenor increases. 

 

 
 

Figure 4.11: European put option price differential: Regime 2 – Regime 1. 
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4.4.3. Regime switching model applied to pricing the GMxBs  

 

The above results on put option valuation reflect the prices in a general option pricing 

context. The discussion that follows narrows down to GMxBs and incorporates 

mortality in the pricing. It is assumed that the premium, of         is paid up front, a 

term of     years, policyholder is aged   and an    of        . The mortality rates 

used are derived from the ASSA2008 national population model for the year 2013, the 

SA85-90 Assured Lives Mortality table and the SAIFL 98 and SAIML 98 standard 

tables (Dorrington & Tootla 2007). 

 

Table 4.7: SAIML98 and SAIFL98 standard tables mortality rates 

 

 
Males Females 

Age ( ) 1qx 1qx 

50 0.00628 0.00283 

55 0.00979 0.00442 

60 0.01536 0.00694 

65 0.0234 0.01105 

70 0.03319 0.0174 

 

 

Table 4.8: ASSA2008 10-year survival and mortality rates 

 

 
Males Females 

Age 10px 10qx = 1 - 10px 10px 10qx = 1 - 10px 

45 0.67704 0.32296 0.74243 0.25757 

50 0.58828 0.41172 0.63710 0.36290 

55 0.50778 0.49222 0.54613 0.45387 

60 0.45722 0.54278 0.54441 0.45559 

65 0.40762 0.59238 0.54970 0.45030 

70 0.30741 0.69259 0.43839 0.56161 

75 0.26982 0.73018 0.43108 0.56892 

 

4.4.3.1. Guaranteed Minimum Maturity Benefit 

 

In this benefit, we make the assumption that the guarantee is a roll-up maturity 

guarantee rate of              and that the policyholder does not surrender nor 

withdraw from the account.  

  

On the basis above and a 10-year contract, the maturity guarantee charges are as in 

Table 4.9 below: 
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Table 4.9: 10-year 5% GMMB charges under the RS economy  

 

         

 Male Female 

Age ( ) Regime 1 Regime 2 Regime 1 Regime 2 

50 22.4458 
 

26.5907 
 

24.3084 
 

28.7973 
 

55 19.3743 
 

22.9520 
 

20.8376 
 

24.6856 
 

60 17.4453 
 

20.6668 
 

20.7720 
 

24.6079 
 

65 15.5526 
 

18.4245 
 

20.9739 
 

24.8470 
 

 

 

 
 

Figure 4.12: 10-year GMMB charges under RS economy. 

 

The guarantee charges when the    is      are: 

 

Table 4.10: 10-year 10% GMMB charges under the RS economy  

 

          

 Male Female 

Age ( ) Regime 1 Regime 2 Regime 1 Regime 2 

50 93.8580 
 

104.7755 
 

101.6465 
 

113.4700 

55 81.0144 
 

90.4379 
 

87.1334 97.2687 

60 72.9484 
 

81.4337 
 

86.8591 96.9625 

65 65.0336 
 

72.5983 
 

87.7032 97.9048 
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A higher maturity guarantee rate results in a higher guarantee charge as expected with 

females needing a higher guarantee charge than their male counterparts. This is 

because of their lower mortality rates irrespective of the starting regime. 

 

It is evident that the guarantee charges, if we start from regime 2 are higher than if we 

start from regime 1. This makes intuitive sense since regime 2 is a high volatility 

regime hence a high risk regime. It thus requires a higher compensation premium for 

risk besides its high persistency rate. The charge differences are quite high, in the tune 

of approximately an extra 11 % and 18% for             and           

respectively if we start from regime 2 over regime 1 which is quite significant. The 

need to take into account regime switching in the embedded guarantees pricing 

context is thus critical. 

 

 

4.4.3.2. Guaranteed Minimum Death Benefit 

 

In this case, for a 10-year contract it is assumed that the guarantee rate    is an annual 

roll-up and that the estate receives the higher of the rolled-up value and the account value at 

the end of the year of death, from which, using an expectation algorithm in Matlab and based 

on the mortality rates we have: 

 

Table 4.11: 10-year 0% GMDB charges under the RS economy  

 

 
 

   

If the insurer guarantees the        strike to the policyholder without any roll-up, the 

maximum charges are shown above across regimes, age and gender. If the insurer 

adopts the maximum charge in its pricing, then any other outcome can be withstood by 

the insurer.  
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If the policyholder buys the product during a high volatility regime, then the charge is 

higher than if the initial regime is a low volatility regime. Once again the high 

persistence of regime 2 is a major factor in this regard. Across age, an older 

policyholder has a higher charge for the same maturity after inception and this 

intuitively makes sense given that the older the age at inception then the higher the 

probability of dying and guarantee, in an option sense, been exercised. Closely linked to 

this are the charges across gender. Since males have a higher mortality than females, for 

the same inception age, the male charges are higher. 

 

Overall, if there is no roll-up, the worst case for the insurer is if death occurs in the 

early years after policy inception and the charges should then be based on estimations 

from this early period. 

 

If there is an annual guarantee roll-up rate, the rate chosen should be done so with 

caution since a high rate results in the maximum charge been in the 10
th

 year and if this 

is not used and death occurs in the 10
th

 year then the insurer will be heavily exposed if 

they are invested in the JSE ALSI irrespective of the initial regime and age as evidenced 

in the table below. 

 

Table 4.12: 10-year 5% GMDB charges under the RS economy  

 
 

 

The optimal charge will be achieved if the chosen rate is guided by not just the 

historical JSE ALSI investment performance but the mortality rates as well and with the 

understanding that late inception ages (for instance a 60-year old in the case considered) 

mean a higher likelihood of the guarantees maturing given the high mortality rates at 

such ages. The necessity of considering the initial regime is once again evident given 

the fair guarantee charge differentials when the two regimes are compared even in the 

case where there is an annual roll-up rate. 
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4.5.  Lévy Processes 
 

The use of regime switching models becomes more complicated if we have to consider 

more than two regimes. In this case, the parameters to be estimated easily lead to a non-

parsimonious model more so when it is obvious that the market has more than two 

regimes such as adding an additional average volatility regime for the case considered 

above. The research thus far has also been silent on the issue of the risk of regime 

change and how to price this. In a market with only two regimes, the switch presents 

itself as a jump and needs to be considered. 

 

The foregoing discussion and the initial discussion on the limitations of the Black-

Scholes framework necessitates the need of a refined model to be used in the pricing 

and hedging of derivative securities and critically so, that the probability distribution of 

the underlying be flexible enough in capturing the higher order moments usually 

observed. 

 

Schoutens (2003) notes that what is needed is a flexible stochastic process that would 

generalize Brownian motion. The process should have independent and stationary 

increments based on a more generic distribution than the normal distribution. Such a 

distribution, inadvertently, has to be infinitely divisible and stochastic processes so 

defined are called Lévy processes. 

 

A distribution is said to be infinitely divisible if for any integer  , it can be represented 

as the law of a sum    
 
    of independent identically distributed random variables   . 

This idea of infinite divisibility can equally be defined using the characteristic function 

     of a distribution. If for every      ,      is the     power of a characteristic 

function, then the distribution is said to be infinitely divisible (Schoutens 2003).  

 

Definition 4.8  (Schoutens, Simons & Tistaert 2005) 

  

A Lévy process            is a stochastic process defined on a probability space 

        which satisfies the following properties: 

 

a) The paths of X are right continuous with left limits almost surely, 

b)      almost surely, 

c) X has independent increments; for       ,        is independent of 

           
d) X has stationary increments;  for       ,        is equal in distribution to 

    . 

 

Remark: The process thus starts at zero and has independent and stationary increments 

such that the distribution of the increment is an infinitely divisible distribution. A non-

negative, non-decreasing Lévy process is defined as a subordinator.  

 

The departure from normality noted above means that the distribution’s skewness, a 

measure of the degree to which a distribution is asymmetric, is non-zero and the 

kurtosis, a measure of the fatness of the tails, is different from three. This limits the 

choice of the distributions as the distribution so chosen must be able to capture 

skewness and excess kurtosis. They include, inter alia, the Variance-Gamma (VG), the 

Normal Inverse Gaussian (NIG) and the Carr, Geman, Madan and Yor (CGMY) 

distributions. 
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4.6.  Variance-Gamma Lévy Process 
 

The VG process is a Lévy process which was derived in Madan and Milne (1991) and 

discussed more generally in Madan et al. (1998). In the former case, the authors 

discussed the symmetric VG process whereas in the latter the general non-symmetric 

VG process is considered. The two processes meet the fundamental expectation of any 

market model, that it be arbitrage free, the log price is expressed as a Brownian motion 

considered at a random time, they incorporate long-tailedness and the general case 

further takes into account skewness. 

 

The VG process has been given a number of representations and two representations 

from Schoutens (2003), that will be useful for the context under consideration, are 

discussed here below: 

 

Definition 4.9 (Schoutens 2003) 

 

The VG process          
    

      is the process such that: 

i.   
    

  , 

ii. The process has independent and stationary increments, 

iii. The increment     
    

    
    

          
 

 
     i.e. the increment follows a 

VG distribution.   

 

Definition 4.10 (Schoutens 2003) 

 

Let             be a Gamma process with parameters   
 

 
     and 

  
 

 
     and let             be a standard Brownian motion. Further, let 

     and      , then the VG process is defined as: 

 

  
    

           
  (4.39) 

 

In this case, the parameters   and   are useful in controlling for skewness and kurtosis 

respectively with   accounting for skewness in the distribution and   accounting for the 

excess kurtosis relative to the normal distribution. 

 

It is worth noting that with a different parametrisation, Madan et al. (1998) show the 

VG process as a difference of two independent Gamma processes. This parametrisation 

is quite useful more so in simulation contexts.  

 

4.6.1. Simulating Variance-Gamma process 
 

Monte-Carlo simulation is used in the simulation of the embedded guarantees in the 

GMxB products considered and hence a need to discuss a technique for simulating a 

VG process. 

 

In Definition 4.10, it was noted that a VG process can be obtained by time-changing a 

standard Brownian motion with drift by a Gamma process. If one can sample these two 

processes then a sample path for a VG process can then be obtained. 
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4.6.1.1. Simulating a Gamma process 

 

Schoutens (2003) discusses the simulation of a Gamma process noting that if a random 

variable             , then, for     
 

 
            . All that is needed is 

thus a good generator of a            for which the Berman’s gamma generator is 

used as follows: 

 

i. Generate two independent uniform random numbers    and   , 

ii. Set      

 

   and     

 

        

iii. If        then go to (iv) else go to (i), 

iv. Return the number              as the             random number. 

 

In simulating a sample path of a Gamma process            where  

              , we simulate the value of this process at time points         
       by: 

 

a. Generate independent               random numbers           using 

Berman’s generator. (For small   ,     will be smaller than 1 hence we can use 

Berman’s generator), 

 

b. Then 

  

                                  (4.40) 

 

4.6.1.2. Simulating a standard Brownian motion 

 

The simulation of a standard Brownian motion,            is simplified by the 

observation that the process has normally distributed independent increments. 

 

a. Generate a series of standard normal random numbers               using 

the Box-Muller or inverse transformation method and for very small   , 

 

b. Then for time points               we have: 

 

                                 (4.41) 

 

With the above two simulated processes, sample paths of a VG process can then be 

easily obtained.  
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4.6.2. Model theory  

 

Madan et al. (1998) derive the risk-neutral stock/underlying price dynamics under a VG 

economy as: 

 

  
    

               
   

                     
    

  
(4.42) 

 

 where:   

      
 

 
          

   
  

 
   

         is the drift of the diffusion part, 

         is the volatility of the diffusion part,         

           is the variance rate of the gamma part. 

 

It is worthwhile to make some comments about the change-of-measure from   to   

applied in deriving the risk-neutral price. The Mean Martingale Correcting Term 

(MMCT) is the approach used in the change of measure.  The MMCT has been shown 

to be a special case of the Esscher transform approach (see Miyahara (2004)). Using the 

characteristic function approach, the author shows that to obtain the MMCT change of 

measure, we shift the VG process    to         and in terms of the characteristic 

function, we have: 

 

   

         
        (4.43) 

 

If we assume that the dividend yield   is incorporated in the stock price, which is a 

reasonable assumption in an option pricing context, we have:  

 

                   
    

  (4.44) 

 

Denoting the risk neutral measure with  , the value of a European call option is then 

given by: 

 

                           (4.45) 

 

After taking the expectation, Madan et al. (1998) arrive at the expression for the time 0 

price of the option as: 

 

                    
    

 
       

 

    
 
 

 
            

    

 
    

 

    
 
 

 
    (4.46) 

 

where: 

   
 

 
    

    

 
     

 

 
   

    

    
    

 

       
 

   ,    
 

    
 

 
 
 
 
 

 

,        , 
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 ,    

   

 
 , 

 

  involves the modified Bessel function of the second kind and    

    a degenerate hypergeometric function. 

 

The put-call parity relation is applied to the call option price in Hirsa and Madan (2001) 

and the resultant price of a European put option is: 
 

                       
    

 
    

 

    
 
 

 
           

    

 
       

 

    
 
 

 
    (4.47) 

 

The application of the VG process in the pricing of options has been done by many 

authors both in the context of American and European options such as Madan et al. 

(1998), Cont and Voltchkova (2005), Moosbrucker (2006) and Wang (2009). 

 

The goal of this and subsequent sections is to consider the VG and related processes in 

the pricing of embedded derivatives in life insurance products, in particular the GMxB 

products, and equally important and intimately connected to pricing the hedging of the 

main risks inherent in them using these frameworks. 

 

4.6.3.  Fitting the Variance-Gamma model 

   
The calibration of the model can be done using log-returns data (see Seneta (2004) and 

Cepni et al. (2013)) or implicitly using option prices where the option pricing formula is 

based on the characteristic function of the log price process of the stock. The latter is 

considered a more robust approach since it identifies parameters implied in the option 

prices which are more representative of future expectations.  

 

However, the use of implied parameters should not come at the total disregard of the 

hugely valuable information that lies veiled in historical data. Implied parameters must 

be compared with historical parameters and best estimates of what the parameters are 

arrived at based on these two trays of information. 

 

In the absence of long tenor options to estimate implied parameters in South Africa, as 

would be needed for embedded options in a life insurance context, two possibilities 

exist: first is to calibrate the VG model based on United States of America (US) index 

options such as the S&P500 options which would be useful for the long tenors due to 

the presence of a deeper market. However, this approach is heavily dependent on the 

assumption that there is a link in behaviour between the US and SA markets. The US is 

a developed market whereas SA is an emerging market hence there is no reason to 

believe that a relationship between the parameters exists.  The second possibility is the 

use of historical data to calibrate the VG model and whereas this may not always be 

seen as ideal from the understanding that the future may not reflect the past, making any 

other assumption is probably faultier.  
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Hardy (2001) discusses the danger of ignoring historical data more so in the absence of 

any other information. The author notes that United Kingdom (UK) insurers in the 

1980s and 1990s decided to make assumptions that ignored historical information and 

this led to the collapse of some of them. If the historical information had been used in 

the parametrisation, the parameters so obtained would have captured the extremities 

that led to the difficulties that the insurers found themselves in and thereby avoided the 

corporate survival challenges that ensued. 

 

In the context of variable annuity contracts, which in most cases rely heavily on the 

stock market returns, Hardy (2001) concludes that we cannot let, “... modelling fall into 

disrepute because we ‘cannot know’ whether the past is an adequate representation of 

the future.” Objective historical data should thus not be ignored in modelling on the 

basis that the long-term contracts may not follow a related process as preceding years 

and it is from this basis that the VG model is calibrated for the case at hand.  

 

The use of such an approach is affirmed if there is reason to believe that what has been 

observed in the historical period considered is likely to manifest in the subsequent 

pricing period for which the results are used. This is the case in the research at hand 

given the complete cycles observed in the historical period used. Ulmer (2010) notes 

that this is comparable to making a choice on the risk-neutral distribution and does in 

some sense reflect the market’s choice of measure. The actuarial guidance on the matter 

in South Africa is given by the Advisory Practice Note (APN) 110 which notes that in 

the absence of suitable instruments to fully calibrate the model, probable market values 

can be used provided the results don’t deviate from market consistent values. 

 

The hypothesis is that the VG framework can be used in the pricing and hedging of the 

options and the report will assess on acceptance or non-acceptance of this hypothesis 

for the SA context. A comparison is made with the RS model and a sensitivity analyses 

carried out to assess how sensitive the prices are to modest changes in the parameters so 

estimated. 

 

Cepni et al. (2013) fitted the VG model to a number of developed and emerging 

markets in assessing its adequacy vis-à-vis the normal distribution, the Normal Inverse 

Gaussian (NIG) and the Heston model. In their research, which includes South Africa, 

they conclude that the VG model performs better than all the other models they 

researched on when daily and weekly returns are considered for the twenty countries in 

the study. The authors however do not discuss the estimation of parameters nor show 

the parameters derived from the log-returns for their models. 

 

4.6.3.1. Maximum-likelihood estimation of VG model from log-returns data 

 

The data used is once again based on the end-of-month JSE ALSI closing values.  The 

log-returns are derived and the plot for the period from July 1994 to June 2013 is shown 

in Figure 4.13 below. 

 

The parameters can be estimated using the method of maximum-likelihood where if we 

have a series of independent log-returns with           being the VG probability 

density function parameters, then we find the set of parameters   that will maximise the 

logarithm of the likelihood function                
    where the    represents the 

series of the independent log-returns as in Brigo et al. (2007). 
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Figure 4.13: JSE ALSI monthly returns time series: July 1994 – June 2013  

 

 

The authors discuss the central moments in a VG context and note that if we have 

sample estimates of the mean, variance, skewness and kurtosis of the log-returns 

denoted by M, V, S and K respectively then the parameters can be initially estimated, 

using the method of moments, as: 

 

     
 

  
   

    
 

 
     , 

    
      

  
  

    
  

  
      

(4.48) 

 

 

A comment regarding the all crucial independence of returns assumption noted above is 

necessary and is checked using the ARIMA procedure in the Statistical Analysis 

Software (SAS) where this is satisfied if there is no autocorrelation in the historical 

returns.  The ARIMA procedure shows no significant lags in the autocorrelations and 

partial autocorrelations as shown in Figures 4.14 and 4.15 hence the independence 

assumption required in an MLE is satisfied. 
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Figure 4.14: JSE ALSI monthly returns autocorrelation plot  

 

 

 
 

Figure 4.15: JSE ALSI monthly returns partial autocorrelation plot  

 

 

The above also points to the logarithmic return for the index being a suitable choice for 

a market invariant and can thus be seen as an uncertainty source at the JSE. 

 

This estimation procedure is applied to the data with an easily scalable    of   from 

which we obtain the initial estimates as follows: 

 

Table 4.13: Initial MME VG parameter estimates  

 
Parameter Mean (M) Variance (V) Skewness (S) Kurtosis (K) 

Estimate 0.0085738 0.0032755 -1.3049 9.544 

Parameter             

Estimate 0.057232 2.1813 -0.011413 0.019987 
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These estimates are then used as the initial estimates in the MLE to fit the JSE ALSI 

monthly log-returns and we obtain the final parameter estimates based on the monthly 

returns as: 

 

Table 4.14: Final MLE VG parameter estimates  

 

Parameter         

Estimate -0.0148 0.4461 0.0544 0.0234 

 

The parameters   and  , that are useful in controlling the skewness and kurtosis 

respectively, are non-zero which is indicative of the need for the use of a framework 

other than the normal distribution and the VG presents itself as a credible alternative. 

The   parameter is negative which is indicative of negative skewness for the JSE ALSI 

returns distribution. 

 

The histogram plot below shows the extent of skewness and kurtosis with the super-

imposed red curve being the normal distribution curve. In the South African context, the 

assumption of normality in returns for the index does not hold. 

 

 

 
 

Figure 4.16: JSE ALSI monthly returns histogram fit 

 

The QQ-plot in Figure 4.17 indicates the presence of tails that are thicker than in the 

normal distribution case hence the log-returns are heavily kurtotic. 
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Figure 4.17: QQ plot of the JSE ALSI monthly returns  

 

The goodness-of-fit tests for normality shown below all lead to a rejection of the 

normality assumption for the returns at a     level of significance with the p-values for 

all the three tests being       .  

 

 
 

Figure 4.18: Goodness-of-fit tests for the JSE ALSI monthly returns  

 

This further adds credence to the use of a VG economy in the pricing of options for the 

SA context for which Wang (2009) notes that for such a pricing (and hedging), the use 

of a probability distribution that correctly and accurately reflects the underlying asset’s 

behavior is critical. The adoption of the VG framework in the particular context at hand, 

the embedded options, flows naturally from this given the investment of most of the life 

insurers funds in the stock markets. 

 

The moments obtained are estimated from monthly log-returns data and for ease of 

interpretation are changed to annualized form in Table 4.15 below. Backus, Foresi and 

Wu (2004) note that if the one-period skewness and excess kurtosis is denoted  by   and 

  respectively, then the T-period skewness and excess kurtosis are given by     
 

  
 

and     
 

 
, respectively. The standard deviation is adjusted using the square root of 

time adjustment whereas the mean is additive.  
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Table 4.15: Estimated statistical moments on the JSE ALSI returns  

 
 Mean Std dev. Skewness Excess kurtosis 

Monthly rate 0.008574 0.057232 
 

-1.3049 6.544 

Annualized rate 0.102886 0.198257 -0.3767 0.5453 

 

The pricing calculations are however done using a month as the time unit. 
 

4.6.4. Arbitrage-freeness, parameter risk-neutrality, stability and robustness 
 

The VG model belongs to the so-called exponential Lévy models. Cont and Tankov 

(2004) show that the VG model is arbitrage free since its trajectories, being an 

exponential Lévy model, are neither increasing nor decreasing with probability  . It 

thus satisfies a key expectation in quantitative finance, that a pricing model should be 

arbitrage-free. 

 

The pricing of options is done in the risk-neutral world and it is critical that the 

parameters used in the pricing be the risk-neutral parameters. Madan et al. (1998) note 

that unlike diffusion based price processes, for a VG model, the statistical parameter 

estimates need not be equal to the risk-neutral parameters. The danger with using 

statistical parameters in this setting is that the risk premium that is incorporated in the 

risk-neutral parameters partly due to market incompleteness may not be incorporated in 

the statistical parameter estimation approach. A parameter sensitivity analysis can 

however help in gauging the possible impact of this on the prices so obtained. 

 

The authors do however note that if one takes the risk-neutral parameters as constant 

across time then pooled time series data can be used to jointly estimate the statistical 

and risk-neutral processes. This approach is necessary more so when sufficient data is 

not available but the possibility of price discrepancies between the real option prices 

and those calculated using the parameters so obtained still remains. 

 

In the analyses done, further to the comments made above, the use of Monte Carlo 

simulation instead of analytical pricing formulas avoids the possibility of excessive 

price estimation error due to the parameter estimation methodology. The VG process is 

calibrated using the MLE approach and future JSE ALSI scenarios built. The options 

under consideration are vanilla hence the payoff is calculated at maturity and this 

discounted using the continuously compounded risk-free interest rate. The risk-free 

interest rate is readily available and thus does not introduce major discrepancies if any. 

The credibility of the approach is discussed in the enlightening paper by Embrechts 

(2000) who notes that in the context of insurance pricing, the method gives a more 

objective description of the underlying randomness. 

 

In the process of calibration, great care has to be taken to ensure that the model 

parameters so obtained not only closely match the observed markets prices but that they 

are also stable. 

 

The       confidence intervals for the parameters are contained in Table 4.16 below 

together with the standard errors. The standard errors are all reasonably low with the 

highest standard error being on the estimated   parameter hence     of the time, if we 

assume a VG economy for the JSE ALSI and fit using the log-returns, the parameters 

obtained will be within the confidence intervals shown in the table above.  
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Table 4.16: Statistical significance of the VG estimated parameters  
 

Parameter          

LCI -0.0406 0.0210 0.0474 -0.0015 

UCI 0.0111 0.8711 0.0613 0.0482 

Standard error 0.013197 0.216873 0.003565 0.012677 

 

4.6.5. Model application to European type options 

 

Kling, Ruez and Rub (2010) discuss product valuation under the assumption of 

independence between the financial markets and demographic mortality which is a 

reasonable assumption that can be tested through a correlation test. Further, if the 

insurer is risk-neutral with respect to mortality risk then we are able to use the financial 

market risk neutral measure and the mortality measure in the GMxB valuation. Finally, 

the reasonable assumption that the underlying account is linked directly to a market 

index as discussed in Coleman et al. (2005) is made, in this case the JSE ALSI, and 

used to price the costs in an SA context. 

 

The assumption of risk-neutrality to mortality results in a European type option which 

can be priced with the VG option price formula. This is based on the extra cost to the 

insurer above the investment value (                 where        is the guaranteed 

amount which, if we ignore mortality, is a function of the guarantee rate and the initial 

premium) which should be used to calculate the charge for the embedded option. 

 

4.6.5.1. Monte Carlo pricing under the Variance-Gamma model  
  

The following procedure as discussed in Schoutens (2003) is followed where, as would 

be expected, the accuracy of the final estimate is a function of the sample paths chosen: 

 

1. Fit/calibrate the model on the available market data based on some measure of 

fit. 

 

2. Using (1),  

a. Simulate a significant number, m, of paths of the stock-price process 

             by simulating the log price process via a 

simulation of the time-changing process: 

i. Simulate the rate of time change process             , 

ii. Calculate from (i) the time change            
 

 
     

  , 
iii. Simulate the VG process                sampling over 

the period       , 
iv. Calculate the time-changed VG process    

,        , 

v. Calculate the stock-price process             . 
 

b. For each path i, calculate the payoff function                 .  

 

3. Calculate the mean of the sample payoffs to get an estimate of the expected 

payoff: 

    
 

 
   

 

   

  (4.49) 
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4. Discount the estimated payoff at the risk-free rate to get an estimate of the value 

of the embedded option: 

 

                             (4.50) 

 

4.6.5.2. Applying the model to pricing 

 

The application of the VG model to the European type options follows. The formula for 

the price is based on the nature of the payoff and the assumption that under the risk-

neutral measure, the one-period account value log-returns are independent random 

variables that follow a VG distribution: 

 

    
  

    
                  (4.51) 

 

This is applied for a European put option with a strike amount of          using three 

different methods: analytical, integration and Monte Carlo simulation approach in Table 

4.17 below. 

 

Table 4.17: European put option prices under a VG economy  

 

 
 

The analytical pricing approach is as discussed in Madan, Carr and Chang (1998) 

whereas the integration method involves brute force integration as discussed in 

Rebonato (2004). These two approaches require a numerical integration method and are 

quite sensitive to the method used. In the case at hand, though the integral is an infinite 

integral, a bound large enough is chosen to capture the ‘infiniteness’ of the upper bound 

but controlled in order to evaluate the integral to a finite value. The numerical 

evaluation is done using, quadgk, the Gauss-Kronrod quadrature in Matlab which is 

noted as an efficient and accurate approach more so for infinite intervals and cases of 

singularities at endpoints.  
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Binkowski (2008) discusses the errors introduced by such an integration cut-off and the 

choice of the method used in which it is noted that the errors are very minimal with the 

prices obtained being accurate to at least 3 decimal places. This is considered a 

sufficient level of accuracy for this research. The Monte Carlo simulation follows the 

discussion at the beginning of this sub-section. 

 

It is observed that the analytical and brute force integration method prices are 

comparatively close to each other with the Monte Carlo (MC) method prices differing 

slightly from the two as shown in Table 4.17 above. The MC method requires a lot of 

simulations and computer time for the same answer for short tenor options under the 

VG framework and hence would not be the preferred method in such cases. However, 

for large tenors and due to the failure of numerical integration methods to converge, the 

first two methods fail. Since the embedded options tend to have long-maturities, it is for 

this reason that the Monte Carlo approach is used forthwith for their pricing. This does 

come at the cost of speed since for accurate MC pricing, a lot of simulations are needed 

but the further merit of the need for only the risk-free rate parameter estimation to 

obtain the price at time   noted in Section 4.6.4 makes the choice sensible. 

 

In Table 4.17 above, a simulation of 10,000 stock price possibilities at maturity was 

done for 100 runs and the average taken. A Monte Carlo simulation of 10,000 possible 

stock index values after 10 years starting from        is shown in the plot and 

snapshot of the simulated stock price/index values below: 

 

 
 

Figure 4.19: Simulated 10-year stock index values in a VG economy 
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Figure 4.20: Snapshot of simulated 10-year VG stock index values 

 

The simulation shows the ability of the MC approach to simulate stock price ranges 

across a wide spectrum in a VG economy. Though most of the simulated values lie 

within reasonable ranges expected in normal market times, the ability to simulate 

extremes and thereby capture the possibility of the markets performing exceptionally 

well or very poorly during periods of turbulence accommodates a desired quality of any 

market model (heavy tailedness) in current times. 

 

4.6.5.3. VG parameter sensitivity analysis 

 

The lack of long-tenor options from which the VG model would be calibrated in SA 

means that the parameters so used must be tested to assess the impact on the price if 

they change from the base case. This crucial sensitivity analyses on the 10-year 

European put option (with both     and strike price        ) to changes in the three VG 

parameters is shown in Table 4.18 below where one of the parameters is adjusted with 

the others being held constant. 

 

Table 4.18: VG option price sensitivity as the parameters vary  

 
 10-year European put option 

      

                  7.7436 5.8851 59.0012 

                  5.2948 5.8166 12.4292 

              5.7913 5.7913 5.7913 

                  6.7502 5.7722 1.8476 

               5% 16.3129 5.7148 0 

 

 

The European put options at long maturities under the VG economy appear to be quite 

sensitive to changes in the volatility parameter, modestly sensitive to the skewness 

parameter and least insensitive to the kurtosis parameter. 

 

As volatility increases, the price increases, significantly so. This intuitively makes sense 

since in a more volatile economy (high volatility) the prices are expected to be higher as 

was noted in Section 4.4. The put option price appears to be an increasing function of 

the kurtosis parameter. As the parameter increases, the price increases.  
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If we consider the theta parameter, as it becomes more negative, which is indicative of 

greater negative skewness, the prices increase signalling a skewness premium in the 

prices. From the base scenario to a     increase, the price decreases and when the 

tweak is by     the price has increased over the base scenario. This makes intuitive 

sense since theta is a measure of skewness. As we move from the base scenario and add 

a positive tweak, the skewness is decreasing and this reflects itself in the price through a 

price decrease. A theta parameter of   (a tweak of about      ) yields a price of 

       in which case we are working with the symmetric VG case discussed in Madan 

and Seneta (1990) which yields the lowest price. After this, positive skewness sets in 

and the price starts to increase to adjust for the skewness premium. 

 

It is also worthwhile to note that the analysis above, with an adjustment of       on the 

parameters, will lie outside the      confidence intervals in Table 4.17 other than for 

the   parameter. However, the prices don’t show alot of sensitivity to the    parameter 

hence the overall statistical confidence from the above results is above the commonly 

accepted     . The only concern will then be the correlation risk since in practice the 

parameters don’t change independently and a change in one parameter could have a 

ripple effect on the rest. The issue of correlation is however outside the scope of this 

research. 

 

4.6.6. Variance-Gamma model applied to pricing the GMxBs 

 

The mortality rates from ASSA in Tables 4.7 and 4.8 are applied in this section to 

evaluate the GMxBs prices. 

 

4.6.6.1. Guaranteed Minimum Maturity Benefit 

 

As in the RS setting, we assume that the guarantee is a roll-up maturity guarantee with a 

rate of              and that the policyholder neither surrenders nor withdraws from 

the account.  

 

Table 4.19: 10-year 5% GMMB charges under the VG economy  

 
          

Age ( ) Male  Female 

50 24.3212 
 

26.3395 

55 20.9931 
 

22.5787 

60 18.9030 
 

22.5076 

65 16.8520 
 

22.7264 

 

Table 4.20: 10-year 10% GMMB charges under the VG economy  

 
           

Age ( ) Male Female 

50 105.6165 
 

114.3808 

55 91.1639 
 

98.0494 

60 82.0873 
 

97.7408 

65 73.1810 
 

98.6907 

 

The figures below show price behaviour on a stand-alone and a comparative setting. 
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Figure 4.21: 10-year GMMB charges under the VG economy 

 

 
 

Figure 4.22: 10-year 5% GMMB charges: VG versus RS economy 
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In Figure 4.21, it is apparent that a higher guarantee rate results in a higher guarantee 

charge and owing to higher mortality rates for males over females, the charges for the 

latter are higher given the same starting age   across all the policy inception ages 

considered. 

 

A comparative plot is shown in Figure 4.22 from which it is noteworthy that when the 

guarantee is     the charges lie between the regime 1 and regime 2 charges obtained in 

the RS model.  

 

If the guarantee rate is      however, the charges obtained under the VG economy are 

slightly greater than the charges obtained in the RS setting as shown in the plots below. 

 

 

 
 

Figure 4.23: 10-year 10% GMMB charges: VG versus RS economy 

 

This is explained by the fact that a higher guarantee rate increases the probability of the 

index value at maturity being less than the guaranteed amount. The chances of the 

option ‘exercise’ are thus higher and this should result in a higher charge. In the RS 

model, approximately     of the time, the economy is in regime 1 (low volatility, high 

return regime) and this could also have filtered through the index dynamics resulting in 

the RS model having higher values for    than the VG model. The VG model assumes 

the existence of one economy but captures extremes at the tails. 
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4.6.6.2. Guaranteed Minimum Death Benefit 

 

The GMDB charges calculated using the ASSA basis are as shown in Table 4.21: 

 

Table 4.21: 10-year 0% GMDB charges under the VG economy  

 

 

         

Death 

(maturity) in: 

Female Male 

Age ( ) = 50 Age ( ) = 60 Age ( ) = 50 Age ( ) = 60 

1
st
 year 0.093730 0.229853 0.207994 0.508723 

2
nd

 year 0.093597 0.22956 0.207073 0.503681 

3
rd

 year 0.086108 0.210885 0.189687 0.456727 

4
th
 year 0.077493 0.189448 0.169795 0.402162 

5
th
 year 0.06854 0.167597 0.149609 0.346999 

6
th
 year 0.060654 0.147854 0.131569 0.297575 

7
th
 year 0.052923 0.128733 0.1142 0.250806 

8
th
 year 0.046384 0.112336 0.099525 0.21152 

9
th
 year 0.040585 0.097637 0.086467 0.177293 

10
th
 year 0.035261 0.083933 0.074551 0.147081 

Maximum 

charge 
0.09373 0.229853 0.207994 0.508723 

 

In the case where the guarantee rate is    , the charge is highest if death occurs in the 

first year with the charge falling across the years and being the least if death occurs in 

the 10
th

 year. This is true for both males and females with the charges for the former 

being higher compared to their female counterparts for the same age at inception of a 

policy. This is attributable to the higher mortality rates of the males over the females 

and hence a higher likelihood of the guarantee maturing. 

 

Table 4.22: 10-year 5% GMDB charges under the VG economy  

 

 

         

Death 

(maturity) in: 

Female Male 

Age ( ) = 50 Age ( ) = 60 Age ( ) = 50 Age ( ) = 60 

1
st
 year 0.093521 0.229341 0.20753 0.50759 

2
nd

 year 0.129407 0.317387 0.286297 0.696383 

3
rd

 year 0.15095 0.369688 0.332527 0.800657 

4
th
 year 0.166954 0.408155 0.365813 0.866434 

5
th
 year 0.178552 0.436601 0.389741 0.903957 

6
th
 year 0.188185 0.45873 0.408205 0.923253 

7
th
 year 0.195456 0.475438 0.421765 0.926278 

8
th
 year 0.201666 0.488409 0.432712 0.919635 

9
th
 year 0.207301 0.49871 0.441658 0.905578 

10
th
 year 0.21182 0.504207 0.447845 0.88355 

Maximum 

charge 
0.21182 0.504207 0.447845 0.926278 
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If the insurer is in a VG economy with an annual guarantee rate of    , the guarantee 

charge is highest if death occurs in the 10
th

 year showing the impact of a guarantee rate. 

Death in any period before this will be less expensive to the company. 

 

A comparison of the VG GMDB maximum charges with those obtained in the regime 

switching economy shows the VG charges sandwiched between regime 1 and regime 2 

charges as per the bubble plot in Figure 4.24 below. 

 

 
 

Figure 4.24: 10-year 5% GMDB charges: VG versus RS economy 

 

 

4.7.  Variance-Gamma Scaled Self-Decomposable process 
 

The VG process presents itself as a credible tool in view of the kurtosis and skewness 

observed on analysing the returns from most markets (see for example Cepni et al. 

(2013)).  

 

The results above show that the VG model, applied to embedded options, is consistent 

when compared with the regime switching model. The latter has been extensively 

applied in the actuarial world but given that the former explicitly accounts for skewness 

and kurtosis, it presents itself as a possible choice in the search for a more refined 

framework to be applied in the uncertain world of embedded option pricing. 
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However, the major problem with the VG model (and other Lévy processes) is the 

assumption of independent increments. This results in the VG density approaching the 

normal density as the time horizon increases. For example if the parameters are taken as 

constant and the time horizon increased on the VG density function, it approaches the 

normal density function over time which is captured in Brigo et al. (2007) and shown in 

the plot below.  

 

 

 
 

Figure 4.25: VG density behaviour as the time horizon increases 

 

The accurate pricing of actuarial products which have long tenors thus needs a model 

that will not only capture the skewness and kurtosis, as VG does, but also preserve 

them given that these moments are independent of the time horizon. 

 

Carr et al. (2007) discuss Self-Decomposable (SD) processes in option pricing of which 

the Variance-Gamma Scaled Self-Decomposable (VGSSD) process is one of them.   

 

Definition 4.11  (Carr et al. 2007) 

 

The distribution of a random variable   is said to be self-decomposable if for any 

constant        , there exists an independent random variable      such that 

 

            (4.52) 

 

i.e. the random variable has the same distribution as the sum of   , a scaled down 

version of itself, and an independent residual random variable     . 
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The authors show that the VGSSD model is better able to capture the variation over 

time of option prices than does the VG model. O’Sullivan and Moloney (2010) 

consider the VGSSD model in an actuarial modelling context. In their paper, they note 

that the VGSSD model is able to preserve both the skewness and kurtosis which are 

independent of the time horizon.  

 

The VGSSD process can be constructed from a VG process by defining the scaled 

stochastic process      such that it is equal in law          where        is a VG 

random variable at unit time as discussed in O’Sullivan and Moloney (2010). 

 

In this context, the characteristic function of      is important and is given by: 

 

                                   
 

 
          

 

   (4.53) 

 

The moments of       are then derived as: 

 

               
 

                        
 

            
             

         
 

 

  

 

                   
  

          
   

(4.54) 

 

and the stock index dynamics as: 

 

                   
       

                             (4.55) 

 

However, even if the VGSSD model is applied in the pricing of the GMxBs, it does not 

capture stochastic volatility just like the VG model. The lack of stochastic volatility in a 

VGSSD model poses a need for a model that will deal successfully with the pricing of 

these options while incorporating stochastic volatility. 

 

 

4.8. Stochastic Volatility Variance-Gamma process 

 

The simultaneous pricing of long-term and short-term contracts, of which the GMxBs 

are a particular case, needs a model that has stochastic volatility and a jump component 

with the latter being modelled using the VG process. Indeed, Carr et al. (2003) have 

pointed out the need for stochastic volatility and jump models if option pricing is to 

consider variation in both the shorter and longer terms. 

 

In the foregoing, the ideas discussed in Fiorani (2004) are used to describe the 

Variance-Gamma Stochastic Volatility (VGSV) framework in the endeavour to 

incorporate both jumps and stochastic volatility in the pricing. 
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4.8.1. Variance-Gamma Stochastic Volatility (VGSV) framework 

 

Carr et al. (2003) introduced stochastic volatility into the VG framework using, inter 

alia, the well-known mean-reverting Cox-Ingersoll-Ross (CIR) framework. The 

introduction of stochastic volatility is done by randomly changing the business time of 

the VG process which is synchronous to changing the volatility randomly. As such, the 

CIR model so introduced is seen as a stochastic clock modelling the random business 

time and assumes that the flow is continuous but with a mean-reverting trend. 

 

The process generated, VGCIR, is achieved by subordinating the VG to the time 

integral of a CIR process as discussed in Carr et al. (2003), Fiorani (2004) and Rachev 

et al. (2011). The authors’ model theory follows here below. 

 

We start with the VG model discussed in Section 4.6.2 where we have the VG process 

  
    

               
  In this setting, we use an equivalent parameterisation of the 

VG model where we let: 

   
 

 
   

 

     
    

 
  

   

 
 

  

 
 

  

  

 

     
    

 
  

   

 
 

  

 
 

  

  

(4.56) 

 

The log of the characteristic function of    in this parameterisation is then given by: 

 

                   
  

              
   (4.57) 

 

The intrinsic time process is subordinated in the VG process. We thus take the VG 

process    
    

     and then change the physical time   to the subordinator process 

          .  

 

Let      be the instantaneous rate of time change and solution to the stochastic 

differential equation (SDE): 

 

                      (4.58) 

 

where: 

 

     is a standard Brownian motion, 

  is the rate of mean reversion, 

  is the long run rate of time change, 

  the volatility of the time change. 
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The process is stochastic and this captures stochastic volatility whereas the mean-

reverting property reproduces the volatility clustering that has been empirically 

observed in most markets. 

 

Rachev et al. (2011) note that there is no closed-form solution for the SDE but the 

characteristic function of the new clock,       is known and thus we have, 

 

              

 

 

   (4.59) 

whose characteristic function is given by 

 

                 
 

                        
  

     

      
  

 
   

 

 
     

  

 
  

      
  (4.60) 

where: 

 

                
 

The stock index price process         of the stochastic volatility VG process model 

described is then: 

 

       
                        (4.61) 

 

where: 

 

        is a VG process      time-changed with       
 

This is then used to price options which can be done capably using the Fast Fourier 

transform technique or a Monte Carlo simulation approach.  

 

The base parameters used in the initial fitting of this model are the unit parameters 

which are then tweaked to assess the sensitivity of the price to changes in these 

parameters: 
 

Table 4.23: VGSV model estimation base parameters  

 

Parameter       

Base parameter 1 1 1 

 

The Monte Carlo simulation approach discussed in Kienitz and Wetterau (2012) is used 

where we first generate asset paths through a discretisation of the VGCIR process. The 

paths are then used as inputs to price a put option with the additional parameters in 

Table 4.24. The authors show that the relative errors between this approach and the 

FFT technique are minimal. 

 

 Table 4.24: VGSV model option modelling parameters  

 

Parameter                

Value -0.0148 0.4461 0.0544 0.0088 R 1000 R 1000 10 years 
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In the VGCIR framework we then obtain: 

 

Table 4.25: European put option prices under the VGCIR model for varying    

 
 European put option price 

        27.4485 

    7.1820 

       6.6876 

 

If we hold the   and   fixed, for varying   we obtain:  

 

Table 4.26: European put option prices under the VGCIR model for varying    

 
 European put option price 

      1.5012 

    7.1820 

    27.5972 

 

Finally, if we fix   and    and vary the   parameter we obtain: 

 

Table 4.27: European put option prices under the VGCIR model for varying    

 
 European put option price 

      6.1506 

     7.1820 

      18.9073 

 

The results above are then used to guide the final choice of the three parameter 

estimates with hindsight from RS and VG frameworks that the price so obtained should 

be in the vicinity of R 7 (ideally   (R 6, R 8)). This is reflective of the balance that has 

to be struck in real life between the results that are obtained from simulations and the 

more intuitive sense that is drawn from experience. 

 

Table 4.28: VGCIR model final parameter estimates  

 

Parameter       

Parameter estimate 1.25 1 1 

 

The price of a 10-year European call and put option is then obtained as: 

 

 
 

Figure 4.26: 10-year VGCIR European style option prices 

 

A Monte Carlo (MC) simulation is then done using these parameters to estimate the 

price of a 10-year European put option as a penultimate step in calculating the charge 

for the embedded guarantees. 
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Each MC run is done using 100 batches with each batch having 3000 stock price path 

simulations essentially 3000 option prices per batch and the put option prices so 

obtained are: 

 

Table 4.29: Monte Carlo simulation of European put options under VGCIR model 

 

Run 
10-year European put 

option price 

1
st
 run 6.4005 

2
nd

 run 6.4024 

3
rd

 run 6.4688 

4
th
 run 6.4090 

5
th
 run 6.3702 

6
th
 run 6.3908 

 

4.8.2. Variance-Gamma Cox-Ingersoll-Ross model applied to pricing the GMxBs 
 

The pricing and analyses of the GMxB charges in the VGCIR economy follows with 

the mortality rates in Tables 4.7 and 4.8 once again being used. 

 

4.8.2.1. Guaranteed Minimum Maturity Benefit 

 

As in the other settings above, for the GMMB, we assume that the guarantee is a roll-up 

maturity guarantee with a rate of              and that the policyholder neither 

surrenders nor withdraws from the account.  

 

Table 4.30: 10-year GMMB charges under the VGCIR economy 

 
                    

Age ( ) Male Female  Male Female 

50 25.0355 
 

27.1130 105.5694 
 

114.3297 

55 21.6096 
 

23.2418 91.1232 
 

98.0057 

60 19.4581 
 

23.1686 82.0507 
 

97.6972 

65 17.3469 
 

23.3938 73.1484 
 

98.6466 

 

The charges generally decrease with increasing age and are once again higher for 

females over males given the same age at inception. As would naturally be expected, 

the higher guarantee rate of     results in higher guarantee charges. 

 

A comparison of the charges so obtained vis-à-vis those of the regime switching 

economy show the VGCIR GMMB charges for the          contained between the 

high charges if the initial regime is regime 2 and the lower charges if the economy starts 

in regime 1. 
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Figure 4.27: 10-year 5% GMMB charges: VGCIR versus RS economy 
 

If we consider the           scenario, the charges are slightly higher in the VGCIR 

economy over the charges obtained in the regime switching economy. 
 

 
 

Figure 4.28: 10-year 10% GMMB charges: VGCIR versus RS economy 
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4.8.2.2. Guaranteed Minimum Death Benefit 

 

The 10-year European put option prices obtained under the VGCIR setting are 

contained in the table below and show a downward trend across the years for the     

guarantee case and a humped trend for the     guarantee case. 

 

Table 4.31: Estimated GMDB charges under the VGCIR economy excluding mortality 

 

Death 

(maturity) in: 

Estimated put 

option price 

     

Estimated put 

option price 

     

1
st
 year 29.6673 29.6155 

2
nd

 year 29.1460 40.1556 

3
rd

 year 25.4129 43.9194 

4
th
 year 21.3648 44.9162 

5
th
 year 17.6165 44.6743 

6
th
 year 14.6590 43.6037 

7
th
 year 11.7354 41.8569 

8
th
 year 9.6068 40.2069 

9
th
 year 7.8897 37.7359 

10
th
 year 6.3561 35.6068 

 

 

 
 

Figure 4.29: Estimated VGCIR economy embedded put option prices 
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The GMDB charges under the same framework calculated using the ASSA basis above 

are shown in the tables below: 

 

Table 4.32: 10-year 0% GMDB charges under the VGCIR economy 

 

 

         

Death 

(maturity) 

in: 

Female Male 

Age ( ) = 50 Age ( ) = 60 Age ( ) = 50 Age ( ) = 60 

1
st
 year 0.083958 0.205891 0.186311 0.45569 

2
nd

 year 0.089806 0.220262 0.198686 0.48328 

3
rd

 year 0.085388 0.209121 0.188101 0.452908 

4
th
 year 0.078317 0.191463 0.1716 0.406438 

5
th
 year 0.07025 0.171777 0.15334 0.355654 

6
th
 year 0.063696 0.15527 0.138168 0.3125 

7
th
 year 0.055476 0.134944 0.11971 0.262906 

8
th
 year 0.049405 0.119653 0.106008 0.225298 

9
th
 year 0.044182 0.106291 0.094131 0.193008 

10
th
 year 0.038756 0.092253 0.08194 0.16166 

Maximum 

charge 
0.089806 0.220262 0.198686 0.48328 

 

In the case where the guarantee rate is    , the charge is highest if death occurs in the 

second year with the charge falling across the years and being the least if death occurs 

in the 10
th

 year. This is true for both males and females with the charges for the former 

being higher compared to their female counterparts for the same age at inception of a 

policy. As noted above, this is attributable to the higher mortality rates of the males 

over the females and hence a higher likelihood of the guarantee maturing. 

 

If we assume that the guaranteed rate is     p.a. then the charges obtained using the 

ASSA basis are: 
 

Table 4.33: 10-year 5% GMDB charges under the VGCIR economy 
 

 

         

Death 

(maturity) 

in: 

Female Male 

Age ( ) = 50 Age ( ) = 60 Age ( ) = 50 Age ( ) = 60 

1
st
 year 0.083812 0.205532 0.185985 0.454894 

2
nd

 year 0.12373 0.303463 0.273737 0.665834 

3
rd

 year 0.14757 0.36141 0.325081 0.78273 

4
th
 year 0.164649 0.402521 0.360763 0.854474 

5
th
 year 0.178149 0.435615 0.388861 0.901916 

6
th
 year 0.189466 0.461855 0.410985 0.929542 

7
th
 year 0.197869 0.481307 0.426971 0.937712 

8
th
 year 0.206773 0.500779 0.443672 0.942928 

9
th
 year 0.211321 0.508383 0.450224 0.923143 

10
th
 year 0.21711 0.516799 0.45903 0.905617 

Maximum 

charge 
0.21711 0.516799 0.45903 0.942928 
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If the guaranteed rate is     p.a. the maximum charge occurs in year 10 and the charges 

are increasing across the years. This is attributable to the increasing guarantee amount 

as the per annum roll-up sets in. 

 

If we consider how the GMDB charges in the VGCIR economy compare to those in the 

regime switching context at the     level, we note the same trend as in the GMMB 

scenario where the maximum charges lie in between those of the regime-switching 

framework. 

 

 
 

Figure 4.30: 10-year 5% GMDB charges: VGCIR versus RS economy 

 

There has been a lot of research on the use of stochastic volatility models in the pricing 

of options and such have been shown to provide better and more realistic price 

processes for the underlying (see for example Hull and White (1987), Heston (1993), 

Ball and Roma (1994), Carr et al. (2001) and Ulmer (2010)). To the extent that such a 

framework does not deviate from regulatory, accounting and taxation guidelines, it is a 

plausible route to adopt in the pricing of the options. This will be another stride in 

walking across what Embrechts (2000) refers to as the financial bridge to actuarial 

pricing. The author notes that the correct pricing will be one that incorporates both 

financial theory and actuarial practices, a theme that this chapter has sought to present. 
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CHAPTER 5 

Risk Management of Life Contingent Embedded Options 
 

Risk management is a complex issue in the financial world and much more so in a life 

insurance context. This chapter considers the hedging and risk measurement of the 

embedded options, which are key issues in risk management. The delta-hedging approach 

is used for the hedging and the Value-at-Risk and Expected Shortfall techniques 

implemented in Section 5.5 for the risk measurement. 

 

 

5.1.  Identifying GMxB risks 
  

The GMxB products have risks embedded in them even if the approach used in the 

pricing is an almost perfect model. These include: 

 

 Equity price risk 

 Interest rate risk 

 Credit risk 

 Mortality/longevity risk 

 Operational risk 

 Basis risk 

 Correlation risk 

 

Equity price risk 

 

This is the part of market risk that is caused by the equity price as a market risk factor. It 

arises from volatility in the equity prices and, “... refers to all assets and liabilities whose 

values are sensitive to changes in equity prices.” (De Weert 2011). 

 

Interest rate risk 

 

The interest rate is a market risk factor whose risk is underpinned in, “... the concerns of 

the sensitivity of assets and liabilities to changes in the level of interest rate, the term 

structure of interest rates and interest rate volatility.” (De Weert 2011). 

 

Credit risk 

 

This relates to those assets and activities that an insurance employs that have credit risk 

associated with them and do not form part of the trading activities of the insurance. If it 

does form part of the trading activities of the insurance, it is deemed market risk. 

 

Mortality/longevity risk 

 

Mortality risk is the risk that the policyholders die sooner than expected whereas 

longevity risk is the risk that they will live longer than expected. The Law of Large 

Numbers summarises to the conclusion that if an insurer sells a large enough number of 

policies then losses due to mortality will equal the expected loss. This is the assumption 

made in the subsequent analysis in this section; in particular that the insurer will diversify 

away this risk by selling a large enough number of policies.  
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Operational risk 

 

This is the risk that arises from inadequate or failed internal controls and processes.  

 

Basis risk 

 

A hedge can contain risk only to the extent the available instruments allow but it is almost 

an impossibility to get a perfect hedge much more so in an incomplete market. The risk 

that remains after a hedge has been implemented is referred to as basis risk and is 

attributable to aspects such as the inability to do continuous time hedging due to infinite 

costs and differences between the chosen model and the exact model followed by the 

underlying’s risk factors. 

 

The above risks are interrelated in one way or another resulting in correlation risk. 

 

5.2.  Hedging the risks 
 

The perfect pricing of an instrument in the financial world is, debatably, an exercise in 

futility if such a product cannot be hedged. The above analyses has considered the pricing 

of the GMxB products and the sensitivity of the benefits to tails of the account value 

distribution by using a jump model that accounts for skewness and kurtosis thereby being 

a realistic description of the real-world price dynamics. 

 

The guarantees embedded in the products necessitate that the insurance company institute 

a risk management framework to manage the inherent risks. A hedging strategy is an 

imperative. 

 

In this context, the hedging of instruments in a complete market is an easy task where the 

writer of the option, in this case the insurer, needs to purchase the replicating portfolio 

and they will be hedged. In an incomplete market setting such as the case at hand, 

additional considerations are necessary which results in fundamental hedge design 

considerations. 

 

5.2.1.  Hedge design considerations 

 

The choice of any hedging approach should result in a hedge that, inter alia: 

 

 Takes into account appropriate charges. 

 Reduces the profit and loss (P&L) volatility. 

 Reduces the Capital-at-Risk in line with the Solvency Assessment and 

Management (SAM) and Solvency II guidelines. 

 

Finkelstein and Holler (2009) discuss a methodology that can be used to derive a cash 

flow profile that will yield the hedge portfolio. This is shown pictorially in Figure 5.1 

below: 
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Figure 5.1: Methodology to setup a GMxB hedge portfolio 

 

The research paper by Coleman et al. (2005) provides a basis from which the hedging, in 

a VGCIR economy, is considered in order to control the market risk embedded in the 

GMxBs.  

 

5.2.2. Delta hedging 

 

This is the hedging strategy that has been adopted by most in the financial world. It is a 

dynamic strategy that involves re-calculating the delta measure which is defined as the 

rate of change of the option price with respect to the underlying asset and is denoted by: 

 

   
  

  
  (5.1) 

 

This immunises the portfolio against small changes in the underlying asset but requires 

continuous rebalancing with the resultant implication of high transaction costs, a potential 

inadequacy of this approach. This is applied in Section 5.3. 

 

5.2.3. Risk minimisation hedging 

 

The delta hedging approach is usually computed in a complete market setting. However, 

as noted above, markets are incomplete and in this setting the hedging strategy adopted 

should be as close as possible to the real-world price dynamics taking cognisance of the 

impossibility of continuous rebalancing, jump risk and volatility risk. 

 

The consequence of the above remarks is that the choice of the hedging strategy is made 

in such a way as to reduce any commonly accepted measure of risk or any such measure 

of risk that is of most importance to the case at hand. Coleman et al. (2005) note that the 

goal of a risk minimisation hedging strategy is to compute an optimal hedging strategy 

that minimises the chosen measure of risk under a real-world price model. 

 

GMxB product model 

Asset scenario 
generator 

Liability scenario 
generator 

Liability option value and 
sensitivities 

Setting up of hedging portfolio 
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The approach is a discrete hedging strategy and the authors note the challenges of using 

this method in a variable annuity setting, inter alia: 

 

 The long maturity of insurance contracts with a possibility of model 

miscalibration and a danger of model risk, 

 The modelling of stochastic implied volatilities, 

 Sensitivity of the benefits to the tails of the account value distribution. 

  

The model used should be able to accurately model the tails of the account value 

distribution hence the choice of the VGCIR model in this report.  

 

5.3.  Hedging using the Greeks 
 

The Greeks are the conventional names given to the sensitivities of option prices to the 

various parameters that influence the price process including the underlying. These have 

formed the basis of any hedging carried out by many financial institutions in the past and 

present.  

 

The Greeks hedging approach is the commonly used method in the SA insurance industry 

this consisting of the underlying and bonds in the hedging portfolio. Its main demerit is 

that it is a discrete time hedging framework therefore a need for rebalancing. Though in 

an ideal world a continuous time hedging strategy is desirable, this is not normally the 

carried out practice given that it is prohibitively costly thus the discrete approach still has 

industry relevance and is worth a consideration. 

 

This approach however results in a discretisation bias since the hedge is considered at 

discrete time points. The use of finer discrete time points means a need for more frequent 

rebalancing and hence higher transaction costs for the hedging team. If the rebalancing 

time points are too distant from each other, the option writer is exposed to higher market 

risk due to changes in the underlying risk factors. A compromise has to be found between 

the need for a more economical approach and one that is frequent enough in rebalancing 

so as not to make the exercise redundant. The impact of this is assessed using varied 

rebalancing periods in Coleman et al. (2005) and has guided the choice of the 6-month 

rebalancing period adopted in the foregoing in the endeavour to achieve a compromise 

between rebalancing and transaction costs. 

 

South Africa has the challenge that the markets are not liquid enough and the question of 

whether such a rebalancing is practical in this context persists. The SA markets contain 

just as many instruments as the rest of the world, more so the important ones, with the 

exception that it is in a less liquid setting. However, even in the more developed markets 

the long tenor options market is illiquid. The players adopt the discrete rebalancing 

approach using the short tenor options thus this approach still does have credence. 

Further, the existence of only a limited number of derivatives that would be used to hedge 

in the SA market does not materially affect the foregoing since the usual vanilla options 

suffice. 

 

In the analysis that follows, the method used to estimate the Greeks is the perturbation 

approach discussed in McLeish (2005) where the parameter is perturbed by   upwards 

and downwards under a Monte Carlo simulation and the relevant Greek calculated.  
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In the delta calculation we have: 

 

 

   
  

  
     

          

  
  (5.2) 

 

 

and in the gamma calculation we have: 

 

   
   

   
     

               

   
  (5.3) 

  

McLeish (2005) notes the potential demerits of using the perturbation approach in the 

analysis these being the use of more computer time given that there are three times the 

number of simulations and the potential bias introduced in the choice of  . However, 

given that there is no derivable closed form solution in the VGCIR setting, any approach 

is likely to use just as much computer time as the perturbation approach and, if needs be, 

one can use common random numbers in the simulation of      and       to reduce the 

computer time. The longer-term nature of the embedded guarantees also means that any 

potential biases in the choice of    can be ameliorated. 

 

Using the VGCIR model considered in Chapter 4 for a 10-year European put option with 

a strike of R 1000 and with all the other parameters unchanged other than for a R 100 

perturbation on the spot price,   , a Monte Carlo sample of this yields: 

 

 
 

Figure 5.2: Monte Carlo estimation of the Greeks in a VGCIR economy 
 

This is then repeated over an increased number of simulations and the average taken to 

obtain a credible estimate of both the delta and the gamma from which we obtain: 
 

Table 5.1: Estimated Greeks in a VGCIR economy 
 

Greek Delta ( ) Gamma ( ) 

Estimate -0.0215 0.00009118 
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If this is considered over a range of different spot prices for a fixed strike of R 1000, the 

behaviour of the delta and gamma is as shown in the plots below: 

 

 
 

Figure 5.3: GMMB delta behaviour as the spot price varies in a VGCIR economy 

 

 
 

Figure 5.4: GMMB gamma behaviour as the spot price varies in a VGCIR economy 
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5.4.  Constructing the hedge portfolio 
 

The generic approach discussed in Coleman et al. (2005) is used in constructing the value 

of the hedging portfolio where at any time   , the value is denoted by        : 

 

                              (5.4) 

 

where:   

        is the value of the risky assets, 
               is the optimal holding in risky assets         

  and riskless bonds respectively. 

  

The optimal hedging strategy at time   ,                is liquidated at time      and a 

new strategy                    formed. The cumulative gain of the trading strategy at 

time   ,        is given by: 

  

                                 

   

   

  (5.5) 

 

The cumulative cost of the trading strategy at time   ,      , is then given by: 

 

                    (5.6) 

 

and this strategy will be self-financing if: 

  

                                (5.7) 

 

In an incomplete market setting however, the strategies so adopted will not normally be 

self-financing and a criterion must be chosen in making the choice of the hedging strategy 

to be adopted. In the analyses that follows, if the strategy adopted with the rebalancing 

will meet the obligations of the insurer, this is considered adequate. This can be relaxed to 

show the impact of considerations such as taxes, transaction costs and restricted 

borrowing and lending at a variable interest rate but is beyond the scope of the current 

research. 

 

 

5.4.1. Delta ( ) – hedging portfolio 

 

Using the results above, it is then possible to construct a hedge portfolio in a   - hedging 

context that consists of the underlying and bonds, be it the SA government bonds or the 

corporate bonds. This is arrived at using the relation: 

 

                         (5.8) 

where: 

      is the number of units of the bonds, 

            is the units of the underlying asset. 

 

 



 

Page | 75 

 

The bonds are arrived at using the relation: 

 

                          (5.9) 

 

The hedging portfolio so created needs to be rebalanced at discrete times and in the 

foregoing it is assumed that the rebalancing is done semi-annually. 

 

Coleman et al. (2005) and Kienitz and Wetterau (2012) discuss such a rebalancing where 

they note that at the rebalancing time point              , the gain is given by: 

 

 

                                                    (5.10) 

 

and the loss of the hedging strategy at time    is given by: 

 

             

 

   

                               (5.11) 

 

with the usual convention where the losses are denoted as negative. 

 

Maré (2009) discusses the use of the delta-hedging approach in the SA equity market and 

concludes that it has an ongoing relevance. In establishing, rebalancing and maintaining 

the hedge, the author notes that tracking the hedge borrowing cost (HBC) is critical and 

this cost is given by: 

 

     
         

                             (5.12) 

 

Given a particular stock price path process, it is possible to consider such a rebalancing 

and we consider a GMMB setting with         . In this case we first need to have a 

stock price path to be used. We have the tabular representation shown below where the 

choice of the stock price path is the average of the 10 stock price paths generated at 

random using the MC technique in a VGCIR economy.  

 

Table 5.2: Simulated stock price paths in a VGCIR economy 
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This gives the averaged stock price path shown in the table below which is used in the 

rebalancing. In the delta calculation however, the stock price path is refined more for 

accuracy purposes. It is assumed that such a refinement would not significantly change 

the stock prices at the discrete rebalancing points chosen but is crucial in the delta 

calculation given its round-off sensitivities. 

 

Table 5.3: Semi-annually rebalanced delta ( ) – hedged GMMB portfolio  

 
Time to 

maturity 

(Months) 
                        

           
            

120 1,000.00 35.8264 -0.0916 127.4264  

114 1,074.03 33.2065 -0.0868 126.4323 -6.78115 

108 1,178.13 29.2269 -0.0727 114.877 -9.03588 

102 1,285.29 24.8812 -0.0607 102.8983 -7.79053 

96 1,255.27 30.2118 -0.0758 125.3613 1.82221 

90 1,315.23 29.1564 -0.0743 126.878 -4.54497 

84 1,525.30 19.5563 -0.0461 89.87263 -15.60820 

78 1,518.19 22.0768 -0.0558 106.7918 0.32777 

72 1,602.12 20.108 -0.0477 96.52912 -4.68329 

66 1,742.08 15.5095 -0.0389 83.27641 -6.67609 

60 1,855.96 12.4531 -0.0335 74.62776 -4.42993 

54 2,072.99 7.5301 -0.0197 48.368 -7.27050 

48 2,245.48 5.0249 -0.013 34.21614 -3.39805 

42 2,351.64 3.6567 -0.0108 29.05441 -1.38008 

36 2,389.39 3.0202 -0.0091 24.76365 -0.40770 

30 2,593.86 1.443 -0.0045 13.11537 -1.86068 

24 2,580.78 1.0623 -0.0041 11.6435 0.05886 

18 2,996.08 0.12595 -0.00042265 1.392243 -1.70273 

12 3,251.73 0.010874 -0.00002691 0.098362 -0.10805 

6 3,161.96 0.000008170 0.00000248 -0.00784 0.00242 

0 3,495.64    0.00083 
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Figure 5.5: 5% GMMB delta behaviour as the time to maturity varies 

 

The path chosen shows the behaviour of the hedging portfolio across the time to maturity 

if we assume a roll-up guarantee on the GMMB of      per annum. The number of units 

in the underlying increases to zero as we approach maturity. This is explained by the 

performance of the index which outperforms the guarantee in this economy. The     roll-

up guarantee yields a maturity benefit after ten years of approximately        whereas 

the index would outperform this ending at        hence in financial parlance, the 

guarantee ends out-of-the money. 

 

This means that the holding in the hedging portfolio should tend towards zero and is 

noticeable both from the table where       and       are tending towards zero. 

 

In the ten stock price paths used in getting the final price path, three of them (path 3, path 

5 and path 6) would all result in the guarantee ending in-the-money and hence the holding 

in the hedging portfolio as we approach maturity would not tend to zero. 

 

A higher roll-up guarantee rate would also result in more instances of the guarantee 

ending in-the-money but on the average, the guarantees are likely to end out-of-the 

money if we price and have the hedging portfolio’s underlying as the ALSI index. 

 

If we consider an averaged MC simulation of 20,000 paths, the stock price paths show a 

lot of stability in a MC sense as shown in Table 5.4 below and this would subsequently 

result in a smother hedging portfolio plot across the time to maturity. 
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Table 5.4: Averaged MC simulation stock price paths in a VGCIR economy  
 

Time to 

maturity 

(Months) 

Run 1 Run 2 

            

120    1,000.00     1,000.00  

114    1,054.90     1,054.20  

108    1,112.40     1,111.20  

102    1,170.90     1,169.90  

96    1,234.80     1,234.00  

90    1,300.50     1,302.10  

84    1,371.60     1,369.90  

78    1,444.90     1,442.20  

72    1,523.40     1,519.50  

66    1,608.10     1,600.50  

60    1,694.80     1,686.10  

54    1,784.80     1,777.40  

48    1,880.80     1,873.50  

42    1,984.80     1,975.10  

36    2,091.30     2,082.30  

30    2,206.60     2,199.10  

24    2,327.40     2,315.00  

18    2,455.10     2,437.00  

12    2,587.80     2,569.90  

6    2,726.50     2,706.90  

0    2,874.00     2,857.50  

 

 
 

 

Figure 5.6: 10% GMMB delta behaviour as the time to maturity varies 
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A plot of the number of units of the underlying in the hedging portfolio ( ) for an annual 

guarantee roll-up of      shown in Figure 5.5 above depicts a smooth plot across time. It 

is clear from the plot that as we approach maturity, the   tends towards zero supported by 

the fact that the guarantee will end out-of-the money and the insurer will be able to meet 

its obligations with the investment in the ALSI even when the roll-up guarantee is     .  

 

The guaranteed amount across the roll-up guarantee rates is shown below where even 

with an unusually high guarantee rate of    , as noted above, the insurer is protected 

with the investment in the index yielding approximately        compared to the 

guarantee value of       . 

 

Table 5.5: VGCIR GMMB guaranteed amount trend as the guarantee rate varies 

 

   5% 6% 7% 8% 9% 10% 15% 20% 

          
         

1551.33 1689.48 1838.46 1999.01 2171.89 2357.95 3517.88 5159.78 

 

 
 

Figure 5.7: VGCIR GMMB guaranteed amount trend as the guarantee rate varies 

 

If we consider the impact of the guaranteed rates from a Greeks perspective at time 

     , we have: 

 

Table 5.6: VGCIR GMMB           and g         as the guarantee rate varies 

 
                                        

          -0.0215 -0.0916 -0.1677 -0.2580 

          0.00009118 0.00017441 0.0005157 0.00039617 
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As expected, the delta is a decreasing function of the guarantee rates whereas the gamma 

is first an increasing function then starts to decrease in the VGCIR economy. Intuitively, 

this makes sense because a higher guarantee signals a higher likelihood of the guarantee 

been in-the-money. Put another way, an increasing guarantee rate signals an increasing 

strike price at maturity and given that the guarantees can be likened to put options, this 

explains the trend. It is however worth noting that in the simulation runs that were 

conducted, the gamma is not very stable across the guarantee rates even with a Monte 

Carlo run of 100 batches each containing 2000 simulations and a different run may 

produce slightly different results. 

 

The construction of a hedge portfolio in the GMDB context would follow the same 

structure with the noted trends expected if we assume that the insurer is risk-neutral 

towards mortality and is protected in the mortality sense by the natural hedging across 

ages and product sold. 

 

5.4.2. Delta/Gamma (   ) – hedging portfolio 

 

The  -hedging approach considers only first order changes in the underlying asset. 

However, it is important to take into account higher order effects and this can be achieved 

using a     - hedging approach. 

 

This approach necessitates the inclusion of other assets as hedging assets. Once again the 

construction discussed in Kienitz and Wetterau (2012) is used where if we wish to hedge 

an option with value       and bank account       using a     hedge, we use another 

option with value       to construct the hedging portfolio and solve the following system 

of equations: 

                                           

                              
                      

 

(5.13) 

where:  

       represents the number of units of the underlying, 

       represents the number of units of the extra option used  

in the hedging portfolio. 

 

Given the illiquidity observed in the SA option markets, the extra option so chosen in the 

hedging portfolio should have a short tenor of between 6 months to 1 year and will be 

changed with ease in the course of the periodic rebalancing. 

 

 

5.4.3.   Hedge efficiency, hedge effectiveness and basis risk  

 

Kawaller (2009) notes the requirements of the International Accounting Standards Board 

(IASB) on how to assess the effectiveness of a hedge portfolio that has been 

implemented. The author notes that, “...effectiveness measures must relate the gains or 

losses of the derivative to those changes in the fair value of the hedged item that are due 

to the risk being hedged.”  This applies both when the hedge is implemented and at the 

appropriately chosen rebalancing time points. Further, there is a need to ensure that the 

measure of effectiveness so chosen is applied consistently. 
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The life insurer can adopt a number of measures in this regard which include: 

 

 Immediate balance sheet shocks and stress tests, 

 Multiple stress scenario analysis, 

 Historic back testing, 

 Mock and ongoing live testing. 

 

Finkelstein and Holler (2009) note that the hedge asset portfolio should cover the GMxB 

liability value completely in the base scenario. The different parameters should then be 

tweaked both on a standalone and multiple parameter change basis. The capital losses 

from the hedged and unhedged scenarios are then analysed. 

 

5.5.  GMxB risk measures  
 

Risk metrics have become an important tool in the risk assessment of financial 

institutions. This section considers risk measures in the embedded derivatives context. 

 

5.5.1.  Risk measures overview 

 

Feng and Volkmer (2012) discuss the procedure adopted in the use of these risk measures 

and they note Monte Carlo simulation as an important tool in this regard.  

 

The procedure is as follows: 

 

i. Monte Carlo simulation is used to generate a set of future scenarios as desired by 

the insurer to reflect the time frame and other economic factors that may prevail. 

 

ii. Each scenario so generated is then used to calculate the variable of interest which 

is normally the profit or loss suffered by the insurer under that particular 

scenario.  

 

iii. The scenarios are then used to give an empirical distribution of the variable and 

inferences can then be made on the basis of the risk metric chosen. 

 

The two commonly used and complementary risk metrics in the context at hand are the 

Value-at-Risk (VaR) and Expected Shortfall (ES) which both require that the loss 

measure be defined. 

 

In the GMMB context, if we ignore the fees received by the insurer, the liability at 

maturity is given by: 

 

                  (5.14) 

 

and at time   this is expressed as: 
 

                       
  

   (5.15) 

where: 

                is the value of the guaranteed amount at  

               maturity, 

    is the probability of a life aged   dying within the next   years. 
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The expression for a GMDB benefit is the same with the only exception that the time   is 

now random and is the time of death. The liability in this case is given by: 

 

                 
    

   
  (5.16) 

 

Feng and Volkmer (2012) note that    will normally be negative indicating that the 

guarantee will, in most instances, be out-of-the-money since the contracts sold should 

ideally be profitable. Even so, an analysis of the loss empirical distribution is worthwhile. 

 

Definition 5.1 (Lambadiaris et al. 2003), (Feng 2014)  

 

Value-at-Risk (VaR) is a quantile risk measure defined as the liability loss which is not 

expected to be exceeded with probability  . It is defined as the minimum capital required 

to ensure that there are sufficient funds to cover the future liability with probability of at 

least  , that is: 

 

                          (5.17) 

 

Definition 5.2, (Dowd 2005), (Feng 2014)  

 

Expected Shortfall (ES) is on the other hand defined as the average of the worst       
     of the losses, that is:  

 

                        (5.18) 

 

 

5.5.2. GMMB risk measures 

 

In this section, we consider the GMMB VaR and ES risk measure under the VGCIR 

economy using the order statistics approach and the mortality rates from Table 4.8 in 

Chapter 4. Feng (2014) notes that if we have ordered simulations then the      can be 

estimated using the        order statistic              worst case) where   is 

the sample size of the simulations. This can then be used to calculate the    . 

 

The other parameters used are an          , the initial guaranteed amount is        

with a roll-up guarantee rate of         and the tenor,  ,  is 10 years. 

 

If we use the order statistics approach on a 3000 simulations MC run with a p.a. roll-up 
   of     we have: 

 

Table 5.7: 5% GMMB Value-at-Risk risk measure 

 

         

Age ( ) 
Male  Female 

                                

50 143.7429 204.0343 158.3089 217.9468 

55 124.2473 189.0002 131.815 193.2397 

60 106.4980 158.2442 122.4994 182.6054 

65 96.4723 141.1859 126.931 185.839 
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Table 5.8: 5% GMMB Expected Shortfall risk measure 

 

         

Age ( ) 
Male  Female 

                            

50 180.4982 228.7781 195.9967 237.1368 

55 160.1589 208.4737 168.0458 209.7466 

60 138.2776 175.4027 158.8591 205.4385 

65 124.0301 156.3715 164.4567 206.3211 

 

The VaR and ES are decreasing functions of age due to increasing mortality rates the 

higher the age at inception. A higher confidence level gives a higher VaR and ES figure 

at a given age which intuitively also makes sense. 

 

The empirical loss distribution is skewed to the left which, as was noted, is a result of the 

need for product profitability during product design phase hence    is normally negative. 

 

 
 

Figure 5.8: Empirical loss distribution: 5% 50-year old male GMMB  
 

If the    is now     , the numerics obtained are as follows: 

 

Table 5.9: 10% GMMB Value-at-Risk risk measure 

 

          

Age ( ) 
Male  Female 

                                

50 304.9761 366.6765 341.0646 402.3733 

55 267.7855 316.9249 287.0026 338.7351 

60 238.5732 291.8451 122.4994 182.6056 

65 214.2653 256.1725 283.1687 340.6562 
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Table 5.10: 10% GMMB Expected Shortfall risk measure 

 

          

Age ( ) 
Male  Female 

                            

50 343.4059 386.0683 379.6575 434.7905 

55 299.3913 339.2701 320.3012 357.3411 

60 269.391 304.6397 158.8591 205.4385 

65 239.9221 269.2103 317.7235 359.6106 

 

 

The VaR and ES figures are once again decreasing functions of the inception age   due to 

the increasing mortality rates. A higher guarantee rate gives higher risk measure figures 

signalling the need to hold higher capital as the guarantee increases as would be expected 

in any pricing framework. 

 

 
 

Figure 5.9: Empirical loss distribution: 10% 60-year old female GMMB  

 

 

In the foregoing, Feng and Volkmer (2012) show that, irrespective of contract 

independence, the figures above are linearly proportional to the contract size and can thus 

be used to calculate the risk measures for different contract sizes.  
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The figures above can thus be viewed as a percentage of the initial account value,        

as shown in the table below: 

 

Table 5.11: 10% GMMB Value-at-Risk as a percentage risk measure 

 

 

          

Age ( ) 
Male  Female 

                                

50 30.4976   36.6677   34.1065   40.2373   

55 26.7786   31.6925   28.7003   33.8735   

 

and where needs be these proportions can be applied for different initial account values. 

 

The insurer can be      confident that the losses will not exceed      of the initial 

account value and only in     of the cases can the insurer expect the losses to exceed 

     of the initial account value. It is worth mentioning that in practice, owing to the 

aggregation of risk measure calculations by most insurers across products and units, the 

proportions may be slightly less. 
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CHAPTER 6 

Embedded options and capital management  
 

The regulatory framework in which banks and insurers operate has been one of the areas 

in finance that has undergone enormous transformation in the past years. This chapter 

considers the embedded options in this light; in particular, what are the regulatory 

guidelines in light of the results presented and what is the industry practice. 

 

6.1. Insurance capital management 
 

De Weert (2011) discusses the need for ongoing capital management in an insurance 

context whose key goals are: 

 

 The optimization of the capital structure with an endeavour to achieve an optimal 

cost of capital, 

 Performance optimization whose goal is to attain an optimal return on capital. 

 

This is pictorially captured by the author below: 

 

 

 
 

Figure 6.1: Insurance capital management framework (De Weert 2011) 
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In the bigger picture, it is important to consider how the embedded guarantees 

methodologies considered fit in from a capital management perspective to, in particular, 

the two key angles noted by De Weert (2011): 

 

 Accounting perspective including the IFRS guidelines, 

 Regulatory perspective including the Solvency Assessment and Management 

(SAM), Solvency II and the Actuarial Society of South Africa (ASSA) Advisory 

Practice Note (APN) 110 and Standard of Actuarial Practice (SAP) 104. 

 

6.2. Accounting perspective 
 

The balance sheet of a life insurer has more activity on the liability side since the insurer 

is contingently indebted to the policyholders. The liabilities are relatively illiquid and 

hence the liquidity mismatch risk is reduced. 

 

The role of capital management, though heavily influenced and guided by the desire to 

ensure that the insurer holds the required capital in line with the risks taken, has this 

desire bent by the need to conform to the financial reporting standards. In particular, the 

guiding International Financial Reporting Standards (IFRSs) are IFRS 4 on Insurance 

Contracts and IFRS 9 on Financial Instruments. 

 

In both these standards, there has been a move towards fair value accounting signaling the 

need for a valuation approach that comprehensively uses asset and liability values that are 

as close as possible to the market values. IFRS 4 in particular allows the insurer to use a 

different valuation methodology if such a move results in a move towards market-

consistent valuation. This is allowed at a group level, business unit level and even at a 

portfolio level. Given the goal of increasing the reliability and prudence of the financial 

statements, the move towards the use of valuation methodologies that capture the market 

behavior would appear worthwhile provided the requisite comprehensive disclosures as 

required by the International Accounting Standards Board (IASB) are met. 

 

6.3. Regulatory perspective 
 

The life insurance embedded derivatives are governed, from a regulatory perspective, by 

the Financial Services Board (FSB) SAM guidelines which are comparable to the 

European Union equivalent of Solvency II and the ASSA requirements. 

 

Actuarial Society of South Africa guidelines 

 

Standard of Actuarial Practice (SAP) 104 

 

This standard, issued by ASSA, deals with the calculation of the value of assets, liabilities 

and capital adequacy requirement of long-term insurers (Actuarial Society of South 

Africa 2012). It is an obligatory standard which long-term insurance statutory actuaries 

must comply with.  
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The Standard distinguishes between three forms of reporting which may dictate different 

valuation methodologies: valuation for financial reporting, statutory reporting and tax 

reporting purposes. Though no particular method is imposed, the financial soundness 

valuation principles are deemed as a key guide to this end with further guidance being the 

need to refer to the complementary APN 110: 

. 

Advisory Practice Note (APN) 110 

 

This note as issued by ASSA deals with the allowance for embedded investment 

derivatives. It notes that a deterministic approach in valuing the embedded derivatives 

falls short of the real-world random behavior and that there is a need to adopt a stochastic 

method in the valuation. 

 

APN 110 does not prescribe any particular stochastic model to aid in the valuation of the 

embedded derivatives. The overriding theme however is that the model so adopted by the 

actuary must be market-consistent and solid enough to assist in the quantification of 

reserves that will meet the costs of the guarantees at such a time that they mature.  

 

The guidance notes that the long-term nature of life insurance makes calibration using 

tradable instruments a challenge. It however points that the actuary should use a historical 

analysis complemented with implied parameters for tenors where tradable derivatives 

exist. The guidance recommends a back-testing on the model adopted to ensure that it can 

reproduce the observed traded derivatives. Naturally, this adds to the robustness and 

credibility of the model so created. If the Monte Carlo approach is used, then a minimum 

of 2000 simulations is recommended unless the convergence is fast enough to justify a 

fewer number of simulations. 

 

The need for precision, though a necessary consideration, must not be achieved at the 

expense of practicality. The note points that recognizing the nature and extent of risk in 

an embedded derivative is more vital than mathematical precision if the two are in 

conflict. 

 

ASSA (2012) APN 110: 5.2 

 

Some guarantees offered by life offices could be very complex instruments. As such, 

they may be very difficult to model precisely. Parameter estimation may often also be 

problematic. The actuary needs to bear in mind that the appropriate recognition of 

the nature and extent of risk involved in those guarantees is more important than 

surgical precision in the valuation models. For this reason, the actuary must use 

his/her judgement to strike an appropriate balance between complexity and 

practicality. 

 

(Actuarial Society of South Africa 2012)  

 

Finally, the APN notes that it is important to test the approach used to shock scenarios 

that can adversely affect the insurer. 
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Financial Services Board (FSB) and Solvency II guidelines 

 

The Financial Services Board (FSB) in South Africa is tasked with the role of instituting 

regulatory capital requirements for, inter alia, life insurers. The embedded derivatives fall 

within this scope and currently the Solvency Assessment and Management (SAM) 

directive, which is in the last stages before full implementation, provides a guide. The 

European Union equivalent, Solvency II directive provides a good comparative base. 

 

The directives are based on three pillars with Pillar 1 dealing with the quantitative 

requirements, Pillar 2 the governance and risk management frameworks and Pillar 3 on 

the disclosure and transparency, essentially market discipline. The valuation of embedded 

derivatives falls under Pillar 1 given that it is mainly a quantitative exercise. 

 

Solvency II under Article 79 requires that the value of any embedded guarantees be taken 

into account in the valuation and that, “… the assumptions used shall take account, either 

explicitly or implicitly, of the impact that future changes in financial and non-financial 

conditions may have on the exercise of those options.” (CEIOPS, 2009). The SAM 

directives have the same spirit. 

 

SAM has a bias towards the use, in valuation, of risk-neutral frameworks though the 

directive does note that this may not be adequate for investment guarantees. Deviations 

from the risk-neutral setting are allowed provided such a move does not result in market-

inconsistent values. Finally, the directive requires that all decrements and risk-drivers that 

materially affect the guarantees be considered in the valuation. The research has focused 

primarily on pricing and a consideration of the implications of decrements such as lapses 

and surrender was outside the scope of this research. 

 

The consideration of correlation from a risk management perspective is discussed in 

Joubert and Langdell (2013) who note that the correlation matrix can provide a useful 

starting point in an endeavour to assess, pairwise, decrements and risk drivers. The 

authors provide a useful discussion on how to fix constructed matrices that 

mathematically fall short of the requirements for a correlation matrix. The use of such in 

the holistic assessment of life insurance capital management issues is likely to address 

any demerits of a stand-alone consideration of risk drivers in any setting. 

 

It is worth pointing out the current corporate practice of three major life insurance 

operators in South Africa from a capital management perspective as contained in their 

annual reports. Given that their domicile is SA, the insurers largely follow the guidelines 

noted and discussed above with a considerable use of sensitivity analysis in their 

valuations to judge the exposure to economic and other unfavourable shocks. 

 

This chapter has considered the qualitative aspects needed in the valuation of a life 

insurer’s liabilities as per the various guidelines available. The goal was to gain an 

understanding of how these guidelines fit into the considered frameworks in the research. 

Overall, the frameworks considered do not fall short of the need for prudent, sound and 

market consistent models needed in valuation. 
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CHAPTER 7 

Summary and Conclusion 
 

7.1. Summary 

 

The variable annuity industry is one of the topical issues in the life insurance business at 

the time of writing this research and its importance undisputed. The report set out to 

investigate the state of the industry from a pricing and hedging perspective, the reasons, 

motivations and limitations for the as-is and the applicability or otherwise of a more 

refined model for the underlying given the link in performance between the annuities and 

the financial markets. The justification is that if the underlying can be thoroughly 

modelled then the annuities can be more accurately priced and hedged. 

 

It is a well accepted premise in quantitative finance that the underlyings, more so asset 

prices, display many small jumps (see for example Kélani and Quittard-Pinon (2014)) 

thus the model so chosen should be aligned with this understanding. The published 

research, thus far, on the choice of such a model is however inconclusive and this is what 

has guided the discourse of this research, in particular, to answer (together with the 

associated objectives) whether: 

 

a. The guarantees embedded in variable annuities, more specifically GMxBs, can be 

effectively priced and hedged using a suitably chosen exponential jump model. 

b. The approach in (a) can concurrently meet the expectations of regulators and other 

stakeholders on the life insurer’s approach to risk and capital management.  

 

The Variance-Gamma (VG) model is a natural choice for the jump model given its ability 

to generate an infinite number of jumps within any finite interval and together with its 

related offshoots provided the frameworks to address these questions.  

 

The analyses and empirical findings were developed and summarized in four steps:  

firstly the general state of the global variable annuity industry was discussed in Chapters 

1 and 2, the products and associated guarantees in Chapter 3, the pricing frameworks and 

numerical illustrations in Chapter 4 and finally the risk and capital management 

considerations in Chapters 5 and 6. 

 

Chapters 1, 2 and 3 served as a broad introduction to the subject matter. Chapter 1 was an 

introductory chapter that contained the objectives and structure from which the rest of the 

chapters are built. In Chapter 2, a more thorough literature review was presented from 

which the practical issues facing the industry were identified followed by a discussion of 

the core embedded derivatives concepts in Chapter 3. The discussion is model 

independent and concludes with guarantee representations using the more familiar notions 

of call and put options. This was important for the chapters that followed. 

 

In Chapter 4 the discussion narrowed down to the pricing of the GMxBs. The standard 

Black-Scholes model was the starting point of the chapter given its huge acceptance and 

appeal in finance. The regime switching log normal model has however been shown to be 

better than the Black-Scholes model in the guarantees context by among others Hardy 

(2003) thus no pricing was done in the Black-Scholes setting.  
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The JSE ALSI was first fitted to a two regime Markov model using the Baum-Welch 

algorithm and two regimes for the period under consideration were clearly evident; a low-

volatility and a high-volatility regime. The Esscher transform was used in making the 

choice of the martingale measure that was used to price the GMxB in an incomplete 

market setting.  

 

The exponential jump models were then considered and applied in the pricing. These 

were the VG model and the VG stochastic volatility model. Monte Carlo simulation was 

used extensively to simulate the prices with a critical discussion on parameter estimation 

being done in Sections 4.6.3 and 4.6.4. The output was then analysed from a parameter 

sensitivity perspective. The prices showed statistical stability in this regard and the next 

step was the comparison of these prices with those of the two regime Markov model. The 

findings confirmed that the prices obtained from the VG model frameworks lay within the 

low volatility and high volatility regime prices of the Markov model in most cases. If the 

prices fell outside these price bounds then the prices so obtained were just slightly higher 

than those of a high volatility regime.  

  

In considering the results from Chapter 4, theoretically more improved models can 

provide a pricing framework and conclusions not significantly different from current 

models that assume a normal distribution for the underlying returns. The former have the 

added advantage of incorporating stylized facts on financial markets behaviour and hence 

giver a truer picture over time. The use of this approach would thus provide benefits to 

the insurer more so from an asset-liability perspective. 

 

The risk management discussion in Chapter 5 began with a hedging consideration of the 

contracts based on a VG model that incorporated stochastic volatility, the Variance-

Gamma Cox-Ingersoll-Ross model, with the commonly used and more traditional 

approaches of delta and delta-gamma hedging being considered.  

 

The delta hedging was based on the underlying asset and considered a semi-annually 

rebalanced hedge portfolio. The results showed that if the guarantee is a single digit 

percentage then the contract will most likely end out-of-the-money and the insurer is 

protected. The delta-gamma hedge discussion involved the use of both the underlying and 

any liquid options traded on the JSE for the hedging portfolio with the latter approach 

protecting the portfolio against changes in the delta. The hedge portfolio constructed in 

both cases is reasonably easy to apply in the context of the South African market and 

hence provides a platform to always ensure the insurer is protected. 

 

The assessment of risk was done using two commonly accepted risk measures, Value-at-

Risk (VaR) and Expected Shortfall (ES) using the Monte Carlo approach to risk 

measures. The risk measures showed that the insurer can expect to lose proportions 

greater than a quarter of the initial amount with considerably small probabilities. In other 

instances, the insurer will be protected and in the better instances, the insurer will not 

make a loss from the guarantees. The empirical loss distribution captured this with an 

extended negative skewness. 

 

The life insurance industry is becoming a heavily regulated industry and Chapter 6 

considered the foregoing in this light. The various guidelines at the time of this writing tilt 

to the use of a fair value approach in the pricing of guarantees with the need for a reliable, 

sound and consistent approach. The frameworks considered met the criteria and can thus 

be incorporated in the pricing toolbox of the life insurance industry. 
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The variable annuity industry is noted by many authors as one of the most complex in the 

life insurance industry not the least because of the riders offered, the link to the financial 

markets of these riders which adds to their complexity and the need for these riders due to 

increased competitiveness. Even in these circumstances, there is no dispute to the 

proposition that the pricing of options should take into account empirically observed 

features such as skewness and kurtosis.  

 

This research has encouraged thinking in this regard. It does not suggest that the 

frameworks so applied are the perfect models, but rather frameworks more in tune with 

reality and the observed dynamics of the SA financial markets. 

   

The scale of complexity and extent of debate on the subject matter correctly pre-empts the 

need for further studies on the topic in an endeavour to ensure that the variable annuities 

are appropriately priced and hedged. This research can be built on by exploring a number 

of issues which could not be looked at either due to the scope of the study or limitations 

which presented themselves as a result of the methodology adopted. 

 

The use of a deterministic interest rate could be changed to assess the impact of stochastic 

interest rates on the prices. Kijima and Won (2007), Peng, Leung and Kwok (2009) and 

Tiong (2013) have considered research in this direction under different frameworks using 

some of the well known interest rate models. This approach is helpful in explicitly taking 

into account interest rate risk in the pricing and would be a further refinement to the 

framework.  

 

The study has also made assumptions on the impact of some demographic risks such as 

mortality and policyholder behaviour. The mortality rates are based on the ASSA tables 

and though they give a representative picture, the use of a stochastic mortality model may 

be a viewpoint worth taking. Milevsky and Posner (2001) considered the use of 

exponential mortality models which could be incorporated to the case at hand or the 

application of the stochastic mortality models discussed in Cairns et al. (2008).  

 

The sub-optimality of the policyholder (for instance, divorce and buying a house may link 

to withdrawal, start date of GMxBs may link to other personal event like spousal cancer 

treatment) could be much larger forces than a more refined model for movement of the 

underlying asset and its calibration in a deep / shallow market. A research from this angle 

could also provide interesting perspectives. 

 

The assumption that the VA risk factors are independent may not always hold thus 

correlation risk arising from the relationship between the different risk drivers and 

decrements could be another perspective worth integrating into the current framework. 

The objective in this case will be to investigate whether the conclusions will be 

significantly different with regard to the pricing of the guarantees and their subsequent 

hedging.  

 

Kienitz and Wetterau (2012) also note that Lévy processes may fail over different 

maturities due to the restrictions they impose on the shape of the future volatility surface. 

Another possible research extension could be in this direction with the recent work of 

Carr and Wu (2010), Homescu (2011) and Ma (2014) providing insightful direction on 

the subject. 
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7.2. Conclusion 

 

The use of quantitative techniques in asset-liability management, though deemed 

sometimes complex, will continue to be of relevance in the insurance industry for many 

years to come. In recent years, senior management has moved towards simpler and more 

explainable models in this regard but interestingly, the products offered have continued to 

be complex.  

 

The early adopters of any new model are normally able to gain competitive advantage and 

the VG together with its extended frameworks provide such a basis. The costs in this 

setting will not necessarily be too high for the insurer and the principal conclusion of this 

research is that the frameworks are tenable.  

 

The younger generation which will evolve to buy life insurance in South Africa is likely 

to be a more demanding generation more so with regard to the innovativeness expected in 

this generation’s products. This further adds to the complexity and dictates a move to 

complex yet realistic models. The issue of capital management on the insurer’s balance 

sheet will however remain uncompromisable and whichever approach is adopted, the 

insurer must always endeavour to closely reflect, as much as possible, the market. 
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Appendix A 
 

The pricing of the embedded options was mainly done in Matlab given the software’s 

efficiency in computational implementations.  

 

The nature of the dissertation meant that the code is extensive and a selection of the code 

follows in this and subsequent appendices. The full codes will be available electronically on 

the author’s Google page. 

 

The code is interactive in most cases and allows the user to input the main parameters such as 

initial regime, initial index price, time to maturity and guaranteed amount or rate. 

 

A.1 Hamilton filter approach  

 

The code below uses the Hamilton filter approach to fit the JSE ALSI returns to a two regime 

Hidden Markov Model. 

 

It is adapted from the Matlab code by Perlin (2012) which is available at:  

 

https://sites.google.com/site/marceloperlin/matlab-code/ms_regress---a-package-formarkov- 

regime-switching-models-in-matlab 

 

Main program 

 
 

%.........................................................................% 
% Master's research: A M Ngugi (2014)  
% MSc candidate: University of Pretoria  
% Markov Switching estimation on the South African JSE ALSI log-returns 
% Adapted from Perlin (2012)and amended accordingly for the case at hand  
% Script MS_Regress_Fit.m 
%.........................................................................% 

 
clear; 
 

logRet=importdata('JSE_ALSI_daily_returns.txt');  % load some data and 

change depending on whether it is daily or monthly source file 

 
dep=logRet(:,1);                    % Defining dependent variable from .txt 

file 
constVec=ones(length(dep),1);       % Defining a constant vector in mean 

equation 
indep=[constVec];                   % Defining some explanatory variables 
k=2;                                % Number of States 
S=[1 1];                            % Defining which ones from indep will 

have switching effect  
advOpt.distrib='Normal';            % The Distribution assumption 

('Normal', 't' OR 'GED') 
advOpt.std_method=1;                % Defining the method for calculation 

of standard errors 

  
[Spec_Out]=MS_Regress_Fit(dep,indep,k,S,advOpt); % Estimating the model 

 

 

 

 



 

 

MS_Regress_Fit program 

 

The main program above references the MS_Regress_Fit which is the code where the actual 

Markov model is fitted. It is shown herebelow. 

 
% Function for estimation of a general Markov Switching regression 
% 
%   Input:  dep     - Dependent Variable (vector (univariate model) or 

matrix (multivariate) ) 
%           indep   - Independent variables (explanatory variables), should 
%                     be cell array in the case of multivariate model (see 

examples). 
%           k       - Number of states (integer higher or equal to 2) 
%           S       - This variable controls for where to include a Markov 

Switching effect. 
%                     See pdf file for details. 
%           advOpt  - A structure with advanced options for algorithm. 
%                     See pdf file for details. 
% 
%   Output: Spec_Output - A structure with all information regarding the 
%                         model estimated from the data (see pdf for 

details). 
% 
%   Author: Marcelo Perlin (UFRGS/BR) 
%   Contact:  marceloperlin@gmail.com 

  
function [Spec_Output]=MS_Regress_Fit(dep,indep,k,S,advOpt) 

  
% Error checking lines 

  
checkInputs(); % checking if inputs variables are OK 

  
% building constCoeff for the cases when it is not specified 

  
build_constCoeff(); 

  
% checking if all fields are specified and make sense 

  
check_constCoeff(); 

  
% checking sizes of fields in constCoeff 

  
checkSize_constCoeff(); 

  
% Pre calculations before calling the optimizer 

  
preCalc_MSModel(); 

  
% Initialization of optimization algorithm 

  
warning('off'); 

  
options=optimset('fmincon'); 
options=optimset(options,'display','off'); 

  
dispOut=advOpt.printIter; 

  
% Defining linear contraints in model 



 

 

  
A=[];   % inequality constrain (not used) 
b=[];   % inequality constrain (not used) 

  
% equality constraint (each collum of Coeff.p must sum to 1) 

  
beq=ones(k,1);   
Aeq=zeros(k,numel(param0)); 

  
for i=1:k 
    idx=Coeff_Tag.p(:,i); 

     
    for j=1:numel(idx) 
        if idx(j)==0 
            continue; 
        else 
            Aeq(i,idx(j))=1; 
        end 
    end 

     
end 

  
for i=1:k 
    if all(Aeq(i,:)==0) 
        Aeq(i,:)=0;    % fixing equality restrictions for when using 

contrained estimation in Coeff.p 
        beq(i,:)=0; 
    end 
end 

  
param0=param0'; % changing notation for param0 

  
% Call to optimization function 

  
switch advOpt.optimizer 
    case 'fminsearch' 
        options=optimset('fminsearch'); 
        options=optimset(options,'display','off'); 
        options=optimset(options,'MaxIter',500*numel(param0)); 
        options=optimset(options,'MaxFunEvals',500*numel(param0)); 

         
        

[param]=fminsearch(@(param)MS_Regress_Lik(dep,indep_nS,indep_S,param,k,S,ad

vOpt,dispOut),param0,options); 

         
    case 'fminunc' 
        options=optimset('fminunc'); 
        options=optimset(options,'display','off'); 
        

[param]=fminunc(@(param)MS_Regress_Lik(dep,indep_nS,indep_S,param,k,S,advOp

t,dispOut),param0,options); 

        
    case 'fmincon' 
        options=optimset('fmincon'); 
        options=optimset(options,'display','off'); 
        

[param]=fmincon(@(param)MS_Regress_Lik(dep,indep_nS,indep_S,param,k,S,advOp

t,dispOut),param0, ... 
            A,b,Aeq,beq,lB,uB,[],options); 

         



 

 

         
end 

  
% Calculation of Covariance Matrix 

  
[V]=getvarMatrix_MS_Regress(dep,indep_nS,indep_S,param,k,S,std_method,advOp

t); 
param_std=sqrt(diag((V))); 

  
% Controls for covariance matrix. If found imaginary number for variance, 

replace with 
% Inf. This will then be showed at output 

  
param_std(isinf(param_std))=0; 
param_pvalues=2*(1-tcdf(abs(param./param_std),nr-numel(param))); 

  
if ~isreal(param_std) 
    for i=1:numel(param) 
        if ~isreal(param_std(i)) 
            param_std(i)=Inf; 
        end 
    end 
end 

  
typeCall='se_calculation'; 

  
[Coeff_SE]=param2spec(param_std,Coeff_Tag,constCoeff,typeCall); 
[Coeff_pValues]=param2spec(param_pvalues,Coeff_Tag,constCoeff,typeCall); 

  
% After finding param, filter it to the data to get estimated output 

  
[sumlik,Spec_Output]=MS_Regress_Lik(dep,indep_nS,indep_S,param,k,S,advOpt,0

); 

  
% calculating smoothed probabilities 

  
Prob_t_1=zeros(nr,k); 
Prob_t_1(1,1:k)=1/k; % This is the matrix with probability of s(t)=j 

conditional on the information in t-1 

  
for i=2:nr 
    Prob_t_1(i,1:k)=(Spec_Output.Coeff.p*Spec_Output.filtProb(i-1,1:k)')'; 
end 

  
filtProb=Spec_Output.filtProb; 

  
P=abs(Spec_Output.Coeff.p); 

  
smoothProb=zeros(nr,k); 
smoothProb(nr,1:k)=Spec_Output.filtProb(nr,:);  % last observation for 

starting filter 

  
for i=nr-1:-1:1     % work backwards in time for smoothed probs 
    for j1=1:k 
        for j2=1:k 
            

smooth_value(1,j2)=smoothProb(i+1,j2)*filtProb(i,j1)*P(j2,j1)/Prob_t_1(i+1,

j2); 
        end 



 

 

        smoothProb(i,j1)=sum(smooth_value); 
    end 
end 

  
% Calculating Expected Duration of regimes 

  
stateDur=1./(1-diag(Spec_Output.Coeff.p)); 
Spec_Output.stateDur=stateDur; 

  
% passing values to output structure 

  
Spec_Output.smoothProb=smoothProb; 
Spec_Output.nObs=size(Spec_Output.filtProb,1); 
Spec_Output.nEq=nEq; 
Spec_Output.Number_Parameters=numel(param); 
Spec_Output.advOpt.distrib=distrib; 
Spec_Output.advOpt.std_method=std_method; 
Spec_Output.Coeff_SE=Coeff_SE; 
Spec_Output.Coeff_pValues=Coeff_pValues; 
Spec_Output.AIC=2*numel(param)-2*Spec_Output.LL; 
Spec_Output.BIC=-2*Spec_Output.LL+numel(param)*log(Spec_Output.nObs*nEq); 

  
% ploting probabilities 

  
if advOpt.doPlots 
    doPlots(); 
end 

  
% Sending output to matlab's screen 

  
disp(' '); 
if advOpt.printOut 
    doOutScreen() 
end 

 

 

Hamilton filter MLE output for JSE ALSI daily returns data 

 

The fitted two state model from the Hamilton filter approach is contained in the tables below 

with the first table showing the model fit and the second the transition probability matrix. 

 



 

 

 
 

 
 

 

 

 

 

 

 



 

 

Hamilton filter MLE output for JSE ALSI monthly returns data 

 

The Hamilton filter method is then applied to monthly data from which it is worthwhile to 

note that it understates the probabilities of transitioning from one state to the next and hence 

misses some of the instances of switches in regime. 

 

 
 

 
 

 

 



 

 

A.2 Baum-Welch approach  

 

The Baum-Welch algorithm is an expectation maximisation approach to fitting the Markov 

model. It is preferred by some authors and hence considered for this research. 

 
%.........................................................................% 
% Master's research: A M Ngugi (2014)  
% MSc candidate University of Pretoria 
% Hidden Markov Model estimation on the South African JSE ALSI log-returns 
% Adapted from Kritzman, Page and Turkington (2012), Perlin (2012) and 

amended accordingly for the case at hand  
% Baum-Welch approach 
%.........................................................................% 

  
function [] = MarkovSwitchingFitBaumWelchMethod(y) 
T=length(y); 

  
% Simple initial guesses for parameters - can be changed 

  
mu=[mean(y),mean(y)]+randn(1,2)*std(y); sigma=[std(y),std(y)]; 
A=[.8,.2;.2,.8]; p=.5; 
iteration=2; 
likelihood(1)=-999; change_likelihood(1)=Inf; 
tolerance=0.000001; 
while change_likelihood(iteration-1) > tolerance 
    for t=1:T % 0. probability of observing data, based on gaussian PDF 
        B(t,1)=exp(-.5*((y(t)-mu(1))/sigma(1)).^2)/(sqrt(2*pi)*sigma(1)); 
        B(t,2)=exp(-.5*((y(t)-mu(2))/sigma(2)).^2)/(sqrt(2*pi)*sigma(2)); 
    end 
    forward(1,:)=p.*B(1,:); 
    scale(1,:)=sum(forward(1,:)); 
    forward(1,:)=forward(1,:)/sum(forward(1,:)); 
    for t=2:T % 1. probability of regimes given past data 
        forward(t,:)=(forward(t-1,:)*A).*B(t,:); 
        scale(t,:)=sum(forward(t,:)); 
        forward(t,:)=forward(t,:)/sum(forward(t,:)); 
    end 
    backward(T,:)=B(T,:); 
    backward(T,:)=backward(T,:)/sum(backward(T,:)); 
    for t=T-1:-1:1 % 2. probability of regime given future data 
        backward(t,:)=(A*backward(t+1,:)')'.*B(t+1,:); 
        backward(t,:)=backward(t,:)/sum(backward(t,:)); 
    end 
    for t=1:T % 3-4. probability of regimes given all data 
        smoothed(t,:)=forward(t,:).*backward(t,:); 
        smoothed(t,:)=smoothed(t,:)/sum(smoothed(t,:)); 
    end 
    for t=1:T-1 % 5. probability of each transition having occurred 
        xi(:,:,t)=(A.*(forward(t,:)'*(backward(t+1,:).*B(t+1,:)))); 
        xi(:,:,t)=xi(:,:,t)/sum(sum(xi(:,:,t))); 
    end 
    p=smoothed(1,:); 
    exp_num_transitions=sum(xi,3); 
    A(1,:)=exp_num_transitions(1,:)/sum(sum(xi(1,:,:),2),3); 
    A(2,:)=exp_num_transitions(2,:)/sum(sum(xi(2,:,:),2),3); 
    mu(1)=(smoothed(:,1)'*y)'/sum(smoothed(:,1)); 
    mu(2)=(smoothed(:,2)'*y)'/sum(smoothed(:,2)); 
    sigma(1)=sqrt(sum(smoothed(:,1).*(y-mu(1)).^2)/sum(smoothed(:,1))); 
    sigma(2)=sqrt(sum(smoothed(:,2).*(y-mu(2)).^2)/sum(smoothed(:,2))); 
    likelihood(iteration+1)=sum(sum(log(scale))); 



 

 

    change_likelihood(iteration)=abs(likelihood(iteration+1)-

likelihood(iteration)); 
    iteration=iteration+1; 
end 

  
disp('...........Smoothed probabilities............'); 
disp(smoothed); 
disp('........Transition probability matrix........'); 
disp(A); 
disp('..............Mean (mu) vector...............'); 
disp(mu); 
disp('................Sigma vector.................'); 
disp(sigma); 

  
% Plotting time varying probabilities 

  
smoothed(:,[1,2])=smoothed(:,[2,1]); 

  
for i=1:iteration 
    States{i}=['State ',num2str(i)]; 
end 

  
for i=1:iteration 
    States{i}=['State ',num2str(i)]; 
end 

  
% figure(1); 
% xlabel('Time'); 
% ylabel('Filtered States Probabilities'); 
% legend(States); 

  
figure(1) 

  
plot(smoothed); 
xlabel('Time'); 
ylabel('Smoothed States Probabilities'); 
legend(States); 

  
subplot(3,1,2); 
plot(smoothed); 
xlabel('Time'); 
ylabel('Smoothed States Probabilities'); 
legend(States); 

  
end 

 

The estimation from the Baum-Welch algorithm yields: 

 



 

 

A.3 Regime switching model pricing  

 

Conditional put option price function 

 

The function that follows below, CondPutFun, is a Matlab implementation of Equation 4.28 

that is derived in Theorem 4.3 

 
% Master's research: A M Ngugi (2014) 
% MSc candidate University of Pretoria 
% Conditional put option price function 
%..........................................% 
function y=CondPutFun(S0, K, T, Ot, r1, r2, sigma1, sigma2) 
%Conditional put price; conditioned on the occupation time 
d2=(log(S0/K)+((r1-r2)*Ot+r2*T)-0.5*((sigma1^2-

sigma2^2)*Ot+T*sigma2^2))/(sqrt((sigma1^2-sigma2^2)*Ot+T*sigma2^2)); 

  
d1=d2+sqrt((sigma1^2-sigma2^2)*Ot+T*sigma2^2); 

  
CPP=K*exp(-((r1-r2)*Ot+r2*T))*normcdf(-d2)-S0*normcdf(-d1); 

  
y=CPP; 
end 

 

Regime switching option valuation: Call and put option 

 

The following Matlab code uses the conditional put price function above and Equation 4.29 

to derive the call and put option price in a regime-switching framework. 

 

The Matlab inbuilt functions quad and quadl are used to do the numerical integration 

representing the adaptive Simpson quadrature and the adaptive Gauss-Lobatto quadrature 

respectively. 

 

 
%.........................................................................% 
% Master's research: A M Ngugi (2014) 
% MSc candidate University of Pretoria 
% Regime switching option valuation: Call and put option 
%.........................................................................% 
% Parameters 

  
regime=input('The initial regime, i, is (1=Low volatility, 2=High 

volatility): '); 
S0=input('The initial stock price, S0, is: '); 
T=input('The maturity time, T, in months is: '); 
K=input('The guaranteed amount at maturity is: '); 

  
%K=1000;  %The strike price is sometimes fixed at R 1000 since normally the 

amount guaranteed is known ab initio  

  
% These parameters are derived from monthly data on the JSE ALSI and 
% 10-year SA government bond for the period from July 1994-June 2013 

% beta1 and beta2 are the off diagonal elements in the generator matrix 
r1=0.011; r2=0.0067; 
sigma1=0.0371; sigma2=0.0775;  
beta1=0.071335; beta2=0.101829; 

 
%.........................................................................% 



 

 

% Call option function, numerical integration and pricing 

  
funC = @(u) CondCallFun(S0, K, T, u, r1, r2, sigma1, sigma2).*myFfun(T, u, 

regime, beta1, beta2); 
q1 = quadl(funC,0,T); 

  
%Plot of the function 
%figure(1) 
%ezplot(funC, [0,T]) 

  
C1=q1; 

  
if regime==2 
    Ot=0; 
    C2=exp(-beta2*T)*CondCallFun(S0, K, T, Ot, r1, r2, sigma1, sigma2); 
else 
    C2=0; 
end 

  
if regime==1 
    Ot=T; 
    C3=exp(-beta1*T)*CondCallFun(S0, K, T, Ot, r1, r2, sigma1, sigma2); 
else 
    C3=0; 
end 

  
% Call option price from formula 
CPrice=C1+C2+C3; 

  
display('Call option price: '), disp(double(CPrice)); 

  
%.........................................................................% 
% Put option function, numerical integration and pricing 

  
funP = @(u) CondPutFun(S0, K, T, u, r1, r2, sigma1, sigma2).*myFfun(T, u, 

regime, beta1, beta2); 
q2 = quadl(funP,0,T); 

  
% Plot of the function 
%figure(2) 

  
P1=q2; 

  
if regime==2 
    Ot=0; 
    P2=exp(-beta2*T)*CondPutFun(S0, K, T, Ot, r1, r2, sigma1, sigma2); 
else 
    P2=0; 
end 

  
if regime==1 
    Ot=T; 
    P3=exp(-beta1*T)*CondPutFun(S0, K, T, Ot, r1, r2, sigma1, sigma2); 
else 
    P3=0; 
end 
% Put option price from formula 
PPrice=P1+P2+P3; 

  
display('Put option price: '), disp(double(PPrice)); 



 

 

  
figure(1) 
funPP = @(S0, u) CondPutFun(S0, K, T, u, r1, r2, sigma1, sigma2); 
ezsurfc(funPP, [500, 1500, 0, T]), view([135,30]) 
xlabel('Initial stock price (S0)'); ylabel('Occupation time (u) in 

months'); 
title('Conditional put option price (Maturity-10 years, Initial regime=1) 

'); 

  
figure(2) 
ezplot(funP, [0,T])  
xlabel('Occupation time (u) in months'); 
title('Put option immanent integrand (Maturity=10 years, Initial 

regime=1)'); 

  
figure(3) 
funPPP = @(S0, u) CondPutFun(S0, K, T, u, r1, r2, sigma1, 

sigma2).*myFfun(T, u, regime, beta1, beta2); 
ezsurfc(funPPP, [500, 1500, 0, T]), view([135,30]) 
xlabel('Initial stock price (S0)'); ylabel('Occupation time (u) in 

months'); 
title('Put option immanent integrand (Maturity=10 years, Initial 

regime=1)'); 

  

 

Guaranteed Minimum Death Benefit charge calculation 

 

This Matlab code implements the regime switching model in a Guaranteed Minimum Death 

Benefit (GMDB) context by taking the year of death into consideration before multiplying 

with the applicable ASSA mortality rates. 

 

This approach is important so as to assess the maximum cost over the contract period if death 

occurs at any time in point. 

 
%..........................................% 
% Master's research: A M Ngugi (2014) 
% MSc candidate University of Pretoria 
% Guaranteed Minimum Death Benefit (GMDB) charge calculation 
%..........................................% 
regime=input('The initial regime, i, is (1=Low volatility, 2=High 

volatility): '); 
S0=input('The initial stock price, S0, is: '); 
D=input('The year of death is (first=1, second=2...): '); 
T=D*12; 
disp(['  The duration/time to maturity (in months) is: ' num2str(T)]); 
g=input('The annual guarantee rate in decimal form is: '); 
K=input('The initial guaranteed amount based on the premium is: '); 
K=K*(1+g)^(D-1); 
disp(['  The exercise amount used is: ' num2str(K)]); 
%K=1000;  %The strike price is sometimes fixed at R 1000 since normally the 

amount guaranteed is known ab initio  

  
% These parameters are derived from monthly data on the JSE ALSI and 
% 10-year SA government bond for the period from July 1994-June 2013 
r1=0.011; r2=0.0067; 
sigma1=0.0371; sigma2=0.0775;  
beta1=0.071335; beta2=0.101829; 

  
%.........................................................................% 



 

 

% Put option function, numerical integration and pricing 

  
funP = @(u) CondPutFun(S0, K, T, u, r1, r2, sigma1, sigma2).*myFfun(T, u, 

regime, beta1, beta2); 
q2 = quadl(funP,0,T); 

  
% Plot of the function 
%figure(2) 

  
P1=q2; 

  
if regime==2 
    Ot=0; 
    P2=exp(-beta2*T)*CondPutFun(S0, K, T, Ot, r1, r2, sigma1, sigma2); 
else 
    P2=0; 
end 

  
if regime==1 
    Ot=T; 
    P3=exp(-beta1*T)*CondPutFun(S0, K, T, Ot, r1, r2, sigma1, sigma2); 
else 
    P3=0; 
end 
% Put option price from formula 
PPrice=P1+P2+P3; 

  
display('Put option price: '), disp(double(PPrice)); 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix B 
 

B.1 Estimating the VG model using the MLE approach 

 

This Matlab code is an implementation of the discussion in Section 4.6.3.1 where the 

Variance-Gamma model is fitted using the maximum likelihood estimation (MLE) approach. 

 
% Master's research: A M Ngugi (2014)  
% MSc candidate University of Pretoria 
% Variance Gamma model estimation on the South African JSE ALSI log-returns 
% Adapted from Brigo et al. (2007) and amended accordingly for the case at 

hand  
%.........................................................................% 

  
data = xlsread('JSEALSIDataAndLogarithmicReturns.xls','JSEALSILogReturns'); 

  
% Parameter estimation 

  
dt=1; 

  
figure(1) 
hist(data); 
figure(2) 
histfit(data); 
title('JSE ALSI monthly returns histogram fit '); 
figure(3) 
qqplot(data); 
figure(4) 
plot(data); 
xlabel('Time (in months)'); ylabel('JSE ALSI returns'); 
title('JSE ALSI monthly returns over time: July 1994-June 2013 '); 

  
M = mean(data); 
display(['M: ', num2str(M)]); 
V = var(data); 
display(['V: ', num2str(V)]); 
S = skewness(data); 
display(['S: ', num2str(S)]); 
K = kurtosis (data); 
disp(['K: ', num2str(K)]); 

  
% Initial VG parameter estimates 
disp('............Initial MME parameter estimates................'); 
sigma = sqrt(V/dt); 
disp(['Sigma: ',num2str(sigma)]); 
nu = (K/3 -1)*dt; 
disp(['Nu: ', num2str(nu)]); 
theta = (S*sigma*sqrt(dt))/(3*nu); 
disp(['Theta: ',num2str(theta)]); 
mu = (M/dt)-theta; 
disp(['Mu: ',num2str(mu)]); 

  
% MLE VG parameter estimation 
pdf_VG = @(data,theta, nu, sigma, mu) max(realmin, VGdensity(data, theta, 

nu, sigma, mu, dt)); 
start = [theta, nu, sigma, mu]; 
lb = [-intmax 0 0 -intmax]; 
ub = [ intmax intmax intmax intmax ]; 
options = statset ('MaxIter', 1000 , 'MaxFunEvals', 100000); 



 

 

[params, pci] = mle(data , 'pdf', pdf_VG , 'start', start, 'lower', lb, 

'upper', ub, 'options', options); 
disp('............MLE VG final parameter estimates................'); 
disp('....Theta.......Nu......Sigma.......Mu.....'); 
disp(params); 
disp(pci); 

 

Initial MME estimates for use in the MLE 
 

 
 

Final VG MLE parameter estimates 
 

 
 

B.2 Autocorrelation and normality test on the JSE ALSI log returns 

 

The procedures below, in the Statistical Analysis Software platform, test the hypothesis that 

the monthly returns are independent and normally distributed. 

 
proc arima; 

 identify var=Logarithmic_return nlag=12; 

run; 

proc univariate; 

 var Logarithmic_return; 

histogram Logarithmic_return/ normal(percents=1 5 20 40 60 80 95 99 

midpercents) 

                        name='MyPlot' ; 

    inset n normal(ksdpval) / pos = ne format = 6.3; 

run; 

/* Return Analysis*/ 

/*Set graphic options & titles*/ 

goptions reset=all i=join; 

axis1 label=(angle=90 'Return'); 

axis2 offset=(0 cm)label=('Year') minor=(number=98); 

legend1 label=none cborder=black 

        position=(bottom right inside) 

        mode=share; 

symbol1 i=join v=none c=red    w=1 l=1;  

proc gplot; 

   title1 "Return Analysis"; 

   plot Logarithmic_return*Date/ overlay legend=legend1 vaxis=axis1 

haxis=axis2 vref= (0) 

 cvref=(black); 

run; 



 

 

B.3  VG call and put option pricing 
 

The following Matlab code is an implementation of Equations 4.44-4.47 whose results are 

presented in Section 4.6.5.2. The Monte Carlo simulation is based on the discussion in 

Section 4.6.1. 

 
%.........................................................................% 
% Master's research: A M Ngugi (2014)  
% MSc candidate: University of Pretoria 
% Variance Gamma call and put option pricing on the South African JSE ALSI 
% log-returns using the theoretical framework in Madan, Carr and Chang 

%(2008). Adapted from QuantCode Inc (2006) and amended accordingly for the 
case at hand  
%.........................................................................% 

  
clear all; 

  
%%%%%%%%% parameters setting  %%%%%%%%%%%%%%% 
S0=input('The initial stock price, S0, is: '); 
In=input('Are you pricing an 10-year option with a guarantee (Yes=1, No=0): 

'); 
if In==1 
    g=input('The annual guarantee rate in decimal form is: '); 
    K=input('The initial guaranteed amount based on the premium is: '); 
    K=K*(1+g)^10; 
else  
    K=input('The strike/guaranteed amount at maturity is: '); %K=1000; 
end 
T=input('The maturity time, T, in months is: '); 

  

  
disp(['  The exercise amount used is: ' num2str(K)]); 

  
sigma=0.0544; %volatility for VG model 
r=0.0088; %risk free rate 
VG_nu=0.4461; %nu for VG model 
VG_theta=-0.0148; %theta of VG model 
nsimulations=10000; % no. of MC simulations 
nbatches=100; % Extra MC simulations for accuracy 
S=S0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Analytical pricing approach as discussed in Madan, Carr and Chang (1998) 

  
v=VG_nu; 
theta=-VG_theta; 
zhi=-theta/(sigma*sigma); 
s=sigma/(1+(theta/sigma)^2*(v/2))^0.5; 
alpha=zhi*s; 
c1=v*(alpha+s)^2/2; 
c2=v*alpha*alpha/2; 
tmp=log(S/K) + r*T + (T/v)*log( (1-c1)/(1-c2) ); 
d=(1/s)*tmp;  

  
a=d*((1-c1)/v)^0.5; 
b=(alpha+s)*(v/(1-c1))^0.5; 
ga=T/v; 

  
fun1 = @(u) PsiIntegrand(u, a, b, ga); 



 

 

tmp1=quadgk(fun1, 0, 200); % Use the same bounds as in the integrand below 

otherwise inconsistencies will arise 

  

  
a=d*((1-c2)/v)^0.5; 
b=(alpha)*(v/(1-c2))^0.5; 
ga=T/v; 

  
fun1 = @(u) PsiIntegrand(u, a, b, ga); 
tmp2=quadgk(fun1, 0, 200); % Use the same bounds as in the integrand above 

otherwise inconsistencies will arise 

  

  
VG_CallPriceA=S*tmp1-K*exp(-r*T)*tmp2; 

  
%disp(VG_CallPriceA); 

  
VG_PutPriceA=VG_CallPriceA-S+K*exp(-r*T); 

  
display('Analytical formula put option price: '), 

disp(double(VG_PutPriceA)); 
%----------------------------------------------------------- 
%Verify results using brute force integration as described in Rebonato 

(2004). 

  
fun1 = @(g) BruteForceIntegrand(g, r, T, K, S, VG_nu, VG_theta, sigma); 
BFI=quadgk(fun1,0,200); 

  
VG_CallPriceBFI=BFI; 

  
%disp(VG_CallPriceBFI); 

  
VG_PutPriceBFI=VG_CallPriceBFI-S+K*exp(-r*T); 

  
display('Brute force integration put option price: '), 

disp(double(VG_PutPriceBFI)); 
%----------------------------------------------------------- 
% MC simulation 

  
omega=(1/VG_nu)*( log(1-VG_theta*VG_nu-sigma*sigma*VG_nu/2) ); 
StockProcess=zeros(nsimulations,1); 
for l=1:nbatches 
    for i=1:nsimulations 
        g = gaminv(unifrnd(0,1), T/VG_nu, VG_nu); 
        % The equivalent definition of a VG process  
        h = VG_theta*g + sigma*sqrt(g)*norminv(unifrnd(0,1)); 
        StockProcess(i)=S*exp(r*T+omega*T+h); 
    end 
    %figure; plot(StockProcess); title(' Monte Carlo simulation: VG economy 

stock price value after 10 years -\nu,\sigma,\theta'); xlabel ('Simulation 

number ');  ylabel ('Stock price at maturity (T=10 years; S0=R 1000)'); 
   % disp(num2str(StockProcess)); 
    payoffvecC=max(StockProcess-K,0); 

     
    payoffvecP=max(K-StockProcess,0); 

     
    mc_callprice(l)=exp(-r*T)*mean(payoffvecC); 

     
    mc_putprice(l)=exp(-r*T)*mean(payoffvecP); 



 

 

end 

  
mc_callprice_estimate=mean(mc_callprice); 
%disp(mc_callprice_estimate); 

  
%mc_putprice_estimate=mc_callprice_estimate-S+K*exp(-r*T); 

  
mc_putprice_estimate=mean(mc_putprice); 

  
display('Monte Carlo put option price: '), 

disp(double(mc_putprice_estimate)); 

 

B.3  VG GMDB pricing algorithm 
 

The Matlab code below is an implementation of the GMDB pricing discussed in Section 

4.6.6.2. 

 
%.........................................................................% 
% Master's research: A M Ngugi (2014)  
% MSc candidate University of Pretoria 
% Variance Gamma call and put option pricing on the South African JSE ALSI 
% log-returns using Madan, Carr and Chang (2008). 
% Adapted from QuantCode Inc (2006) and amended accordingly for the case at 

hand  
%.........................................................................% 

  
clear all; 

  
%%%%%%%%% parameters setting  %%%%%%%%%%%%%%% 
S0=input('The initial stock price, S0, is: '); 
D=input('The year of death is (first=1, second=2...): '); 
T=D*12; 
disp(['  The duration/time to maturity (in months) is: ' num2str(T)]); 
g=input('The annual guarantee rate in decimal form is: '); 
K=input('The initial guaranteed amount based on the premium is: '); 
K=K*(1+g)^(D-1); 
disp(['  The exercise amount used is: ' num2str(K)]); 
%K=1000; input('The strike/guaranteed amount at maturity is: '); 

  
sigma=0.0544; %volatility for VG model 
r=0.0088; %risk free rate 
VG_nu=0.4461; %nu for VG model 
VG_theta=-0.0148; %theta of VG model 
nsimulations=10000; % no. of MC simulations 
nbatches=100; % Extra MC simulations for accuracy 
S=S0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%----------------------------------------------------------- 
% MC simulation 

  
omega=(1/VG_nu)*( log(1-VG_theta*VG_nu-sigma*sigma*VG_nu/2) ); 
StockProcess=zeros(nsimulations,1); 
for l=1:nbatches 
    for i=1:nsimulations 
        g = gaminv(unifrnd(0,1), T/VG_nu, VG_nu); 
        % The equivalent definition of a VG process  
        h = VG_theta*g + sigma*sqrt(g)*norminv(unifrnd(0,1)); 
        StockProcess(i)=S*exp(r*T+omega*T+h); 



 

 

    end 
    %figure; plot(StockProcess); title(' Monte Carlo simulation: VG economy 

stock price value after 10 years -\nu,\sigma,\theta'); xlabel ('Simulation 

number ');  ylabel ('Stock price at maturity (T=10 years; S0=R 1000)'); 
   % disp(num2str(StockProcess)); 
    payoffvecC=max(StockProcess-K,0); 

     
    payoffvecP=max(K-StockProcess,0); 

     
    mc_callprice(l)=exp(-r*T)*mean(payoffvecC); 

     
    mc_putprice(l)=exp(-r*T)*mean(payoffvecP); 
end 

  
mc_callprice_estimate=mean(mc_callprice); 
%disp(mc_callprice_estimate); 

  
%mc_putprice_estimate=mc_callprice_estimate-S+K*exp(-r*T); 

  
mc_putprice_estimate=mean(mc_putprice); 

  
display('Monte Carlo put option price: '), 

disp(double(mc_putprice_estimate)); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix C 
 

C.1  Monte Carlo VGCIR call and put option prices 
 

This Matlab code is an implementation of Section 4.8.1 where the VG process is 

subordinated to the time integral of a CIR process. The discretisation approach is adopted in 

the generation of asset paths from the VGCIR process that are then used as inputs to estimate 

the respective option price. 

 
%.........................................................................% 
% Master's research: A M Ngugi (2014)  
% MSc candidate: University of Pretoria 
% Levy models with Stochastic Volatility Variance Gamma-Cox Ingersoll Ross 

(VGCIR) 
% call and put option pricing on the South African JSE ALSI log-returns 

using the theoretical framework discussed in Carr et al.(2003) and Fiorani 

(2004). 
% Adapted from Kienitz and  Wetterau (2012), Financial Modelling-Theory,  
% Implementation and Practice with Matlab source and amended accordingly  
% for the case at hand. 
%.........................................................................% 

  
clear all; clc; 
%% Parameters 

  
r = 0.0088;                      % Discount factor 
d = 0;                           % Dividend yield 

  
%%%%%%%%% parameters setting  %%%%%%%%%%%%%%% 
S0=input('The initial stock price, S0, is: '); 
In=input('Are you pricing an 10-year option with a guarantee (Yes=1, No=0): 

'); 
if In==1 
    g=input('The annual guarantee rate in decimal form is: '); 
    K=input('The initial guaranteed amount based on the premium is: '); 
    K=K*(1+g)^10; 
else  
    K=input('The strike/guaranteed amount at maturity is: '); %K=1000; 
end 
T=input('The maturity time, T, in months is: '); 

  

  
disp(['  The exercise amount used is: ' num2str(K)]); 

  

  
% VG model parameters: Estimated using method of maximum likelihood 
theta=-0.0148; 
nu=0.4461; 
sigma=0.0544; 

  
C = 1/nu; 
G = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)-0.5*theta*nu)^(-1); 
M = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)+0.5*theta*nu)^(-1); 

  
kappa = 1.25;      % CIR parameter 
eta = 1;           % CIR parameter 
lambda = 1;        % CIR parameter 

  



 

 

%% Simulation parameters 
NTime = 72; NSim = 3000; NBatches = 100;        % Time steps for the 

overall process 
NTime_clock = 1000;          
intNt = 100;             % Steps used for integration the CIR clock 
allsteps = intNt * NTime;  % All Nts that have to be simulated 
deltaT = T / NTime; 
time = 0 : T/NTime : T;                     % Variable time for the 

martingale correction factor 

  
pathS = zeros(NSim,NTime+1,NBatches); 
lnS = ones(NSim,NTime+1);  % Stores the values of the log asset prices 
lnS(:,1) = log(S0); 

  
% precompute constants 
psiVG = (-1i)*C*log(G*M/(G*M+(M-G)-1));   % Characteristic exponent 
gamma = sqrt(kappa^2-2*lambda^2*1i*psiVG);  % CIR parameter   
denom = ( cosh(0.5*gamma*time) ... 
    + kappa*sinh(0.5*gamma*time)./gamma ).^(2*kappa*eta*lambda^(-2));   

%denominator 
% coth is inf at 0 
phiCIR(time>0) = kappa^2*eta*time(time>0)*lambda^(-2) ... 
         + 2*1i*psiVG./(kappa+gamma.*coth(gamma*time(time>0)/2)) ... 
         - log(denom(time>0)); % Characteristic function 
phiCIR(1) = log(denom(1)); 
omegaT = -phiCIR;                                % Martingale correction                               
omegaT(1) = 0; 

  
Y = zeros(NSim,NTime+1);           % Integrated clock 
y = zeros(NSim,allsteps+1); 
y(:,1) = 1; 
Y(:,1) = 0; 

  
for l = 1 : NBatches       
    % Generating time change 
   deltaaT = T / allsteps; 
   sdeltaaT = sqrt(deltaaT); 
   W = randn(NSim,allsteps); 
   for n = 1 : allsteps              
       Y1 = y(:,n) + kappa * (eta - y(:,n)) * deltaaT + lambda * 

sqrt(y(:,n))*sdeltaaT .* W(:,n); % Time change process 
       %Y1(Y1<0) = 0;               % absorbing 
       Y1(Y1<0) = -Y1(Y1<0);        % reflecting 
       y(:,n+1) = Y1; 
   end 
   y(:,1)=0; 
   for m=1:NTime 
        Y(:,m+1) = Y(:,m) + sum(y(:,1+(m-1)*intNt:m*intNt),2)*deltaaT; 
   end 

    
   Intensity = C * (Y(:,2:end)-Y(:,1:end-1)); 
   DGam = gamrnd(Intensity,1/M) - gamrnd(Intensity,1/G); 
   diffomegaT = omegaT(2:end) - omegaT(1:end-1);     % Martingale 

correction 

     
   for m=2:NTime+1 
    lnS(:,m) = lnS(:,m-1) + (r-d)*deltaT + diffomegaT(m-1) + DGam(:,m-1);   

%Simulate by difference 
   end 
   pathS(:,:,1) = exp(lnS); 

    



 

 

   payoffvecC=max(pathS(:, NTime+1)-K,0); 

    
   payoffvecP=max(K-pathS(:, NTime+1),0); 

    
   mc_callprice(l)=exp(-r*T)*mean(payoffvecC); 

    
   mc_putprice(l)=exp(-r*T)*mean(payoffvecP); 
end 

  
PPrice=mean(mc_putprice); 

  
disp('............10-year VGCIR European put option 

price................'); 
display(['                          R ', num2str(PPrice)]); 

  

 

C.2  GMDB VGCIR Monte Carlo pricing 
 
%.........................................................................% 
% Master's research: A M Ngugi (2014)  
% MSc candidate University of Pretoria 
% Levy models with Stochastic Volatility Variance Gamma-Cox Ingersoll Ross 

(VGCIR) 
% call and put option pricing on the South African JSE ALSI log-returns 

using Carr et al.(2003) and Fiorani (2004). 
% Adapted from Kienitz and  Wetterau (2012), Financial Modelling-Theory,  
% Implementation and Practice with Matlab source and amended accordingly  
% for the case at hand. 
%.........................................................................% 

  
clear all; clc; 
%% Parameters 

  
r = 0.0088;                      % Discount factor 
d = 0;                           % Dividend yield 

  
%%%%%%%%% parameters setting  %%%%%%%%%%%%%%% 
S0=input('The initial stock price, S0, is: '); 
D=input('The year of death is (first=1, second=2...): '); 
T=D*12; 
disp(['  The duration/time to maturity (in months) is: ' num2str(T)]); 
g=input('The annual guarantee rate in decimal form is: '); 
K=input('The initial guaranteed amount based on the premium is: '); 
K=K*(1+g)^(D-1); 
disp(['  The exercise amount used is: ' num2str(K)]); 
%K=1000; input('The strike/guaranteed amount at maturity is: '); 

  

  
% VG model parameters: Estimated using method of maximum likelihood 
theta=-0.0148; 
nu=0.4461; 
sigma=0.0544; 

  
C = 1/nu; 
G = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)-0.5*theta*nu)^(-1); 
M = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)+0.5*theta*nu)^(-1); 

  
kappa = 1.25;      % CIR parameter 
eta = 1;           % CIR parameter 



 

 

lambda = 1;        % CIR parameter 

  
%% Simulation parameters 
NTime = 72; NSim = 3000; NBatches = 100;        % Time steps for the 

overall process 
NTime_clock = 1000;          
intNt = 100;             % Steps used for integration the CIR clock 
allsteps = intNt * NTime;  % All Nts that have to be simulated 
deltaT = T / NTime; 
time = 0 : T/NTime : T;                     % Variable time for the 

martingale correction factor 

  
pathS = zeros(NSim,NTime+1,NBatches); 
lnS = ones(NSim,NTime+1);  % Stores the values of the log asset prices 
lnS(:,1) = log(S0); 

  
% precompute constants 
psiVG = (-1i)*C*log(G*M/(G*M+(M-G)-1));   % Characteristic exponent 
gamma = sqrt(kappa^2-2*lambda^2*1i*psiVG);  % CIR parameter   
denom = ( cosh(0.5*gamma*time) ... 
    + kappa*sinh(0.5*gamma*time)./gamma ).^(2*kappa*eta*lambda^(-2));   

%denominator 
% coth is inf at 0 
phiCIR(time>0) = kappa^2*eta*time(time>0)*lambda^(-2) ... 
         + 2*1i*psiVG./(kappa+gamma.*coth(gamma*time(time>0)/2)) ... 
         - log(denom(time>0)); % Characteristic function 
phiCIR(1) = log(denom(1)); 
omegaT = -phiCIR;                                % Martingale correction                               
omegaT(1) = 0; 

  
Y = zeros(NSim,NTime+1);           % Integrated clock 
y = zeros(NSim,allsteps+1); 
y(:,1) = 1; 
Y(:,1) = 0; 

  
for l = 1 : NBatches       
    % Generating time change 
   deltaaT = T / allsteps; 
   sdeltaaT = sqrt(deltaaT); 
   W = randn(NSim,allsteps); 
   for n = 1 : allsteps              
       Y1 = y(:,n) + kappa * (eta - y(:,n)) * deltaaT + lambda * 

sqrt(y(:,n))*sdeltaaT .* W(:,n); % Time change process 
       %Y1(Y1<0) = 0;               % absorbing 
       Y1(Y1<0) = -Y1(Y1<0);        % reflecting 
       y(:,n+1) = Y1; 
   end 
   y(:,1)=0; 
   for m=1:NTime 
        Y(:,m+1) = Y(:,m) + sum(y(:,1+(m-1)*intNt:m*intNt),2)*deltaaT; 
   end 

    
   Intensity = C * (Y(:,2:end)-Y(:,1:end-1)); 
   DGam = gamrnd(Intensity,1/M) - gamrnd(Intensity,1/G); 
   diffomegaT = omegaT(2:end) - omegaT(1:end-1);     % Martingale 

correction 

     
   for m=2:NTime+1 
    lnS(:,m) = lnS(:,m-1) + (r-d)*deltaT + diffomegaT(m-1) + DGam(:,m-1);   

%Simulate by difference 
   end 



 

 

   pathS(:,:,1) = exp(lnS); 

    
   payoffvecC=max(pathS(:, NTime+1)-K,0); 

    
   payoffvecP=max(K-pathS(:, NTime+1),0); 

    
   mc_callprice(l)=exp(-r*T)*mean(payoffvecC); 

    
   mc_putprice(l)=exp(-r*T)*mean(payoffvecP); 
end 

  
PPrice=mean(mc_putprice); 

  
disp('............10-year VGCIR European put option 

price................'); 
display(['                          R ', num2str(PPrice)]); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix D 
 

D.1  Delta hedging under the VGCIR framework 
 

The following code is an implementation of the results in Section 5.4.1 where the delta 

hedging approach is applied using the perturbation approach. 

 
%.........................................................................% 
% Master's research: A M Ngugi (2014)  
% MSc candidate University of Pretoria 
% Delta hedging levy models with Stochastic Volatility: Variance Gamma-Cox 

Ingersoll Ross (VGCIR) 
% Adapted from Kienitz and  Wetterau (2012), Financial Modelling-Theory,  
% Implementation and Practice with Matlab source and amended accordingly  
% for the case at hand. 
%.........................................................................% 

  
clear all; clc; 
%% Parameters 

  
r = 0.0088;                      % Discount factor 
d = 0;                           % Dividend yield 

  
%%%%%%%%% parameters setting  %%%%%%%%%%%%%%% 
S=input('The stock price, S(t), is: '); 
S0=S; 
eps=input('The perturbation used in delta and gamma estimation is: '); 

  
D=input('The no. of years to maturity is (one=1, one and half=1.5, 

two=2...): '); 
T=D*12; 
disp(['  The duration/time to maturity (in months) is: ' num2str(T)]); 
g=input('The annual guarantee rate in decimal form is: '); 
K=input('The initial guaranteed amount based on the premium is: '); 
K=K*(1+g)^(10-1); % Assuming a 10-year option with a roll-up guarantee 
disp(['  The exercise amount used is: ' num2str(K)]); 

  
% VG model parameters: Estimated using method of maximum likelihood 
theta=-0.0148; 
nu=0.4461; 
sigma=0.0544; 

  
C = 1/nu; 
G = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)-0.5*theta*nu)^(-1); 
M = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)+0.5*theta*nu)^(-1); 

  
kappa = 1.25;      % CIR parameter 
eta = 1;           % CIR parameter 
lambda = 1;        % CIR parameter 

  
%% Simulation parameters 
NTime = 72; NSim = 2000; NBatches = 100;        % Time steps for the 

overall process 
NTime_clock = 1000;          
intNt = 100;             % Steps used for integration the CIR clock 
allsteps = intNt * NTime;  % All Nts that have to be simulated 
deltaT = T / NTime; 
time = 0 : T/NTime : T;                     % Variable time for the 

martingale correction factor 



 

 

  
pathS = zeros(NSim,NTime+1,NBatches); 
lnS = ones(NSim,NTime+1);  % Stores the values of the log asset prices 
lnS(:,1) = log(S0); 

  
% precompute constants 
psiVG = (-1i)*C*log(G*M/(G*M+(M-G)-1));   % Characteristic exponent 
gamma = sqrt(kappa^2-2*lambda^2*1i*psiVG);  % CIR parameter   
denom = ( cosh(0.5*gamma*time) ... 
    + kappa*sinh(0.5*gamma*time)./gamma ).^(2*kappa*eta*lambda^(-2));   

%denominator 
% coth is inf at 0 
phiCIR(time>0) = kappa^2*eta*time(time>0)*lambda^(-2) ... 
         + 2*1i*psiVG./(kappa+gamma.*coth(gamma*time(time>0)/2)) ... 
         - log(denom(time>0)); % Characteristic function 
phiCIR(1) = log(denom(1)); 
omegaT = -phiCIR;                                % Martingale correction                               
omegaT(1) = 0; 

  
Y = zeros(NSim,NTime+1);           % Integrated clock 
y = zeros(NSim,allsteps+1); 
y(:,1) = 1; 
Y(:,1) = 0; 

  
for l = 1 : NBatches       
    % Generating time change 
   deltaaT = T / allsteps; 
   sdeltaaT = sqrt(deltaaT); 
   W = randn(NSim,allsteps); 
   for n = 1 : allsteps              
       Y1 = y(:,n) + kappa * (eta - y(:,n)) * deltaaT + lambda * 

sqrt(y(:,n))*sdeltaaT .* W(:,n); % Time change process 
       %Y1(Y1<0) = 0;               % absorbing 
       Y1(Y1<0) = -Y1(Y1<0);        % reflecting 
       y(:,n+1) = Y1; 
   end 
   y(:,1)=0; 
   for m=1:NTime 
        Y(:,m+1) = Y(:,m) + sum(y(:,1+(m-1)*intNt:m*intNt),2)*deltaaT; 
   end 

    
   Intensity = C * (Y(:,2:end)-Y(:,1:end-1)); 
   DGam = gamrnd(Intensity,1/M) - gamrnd(Intensity,1/G); 
   diffomegaT = omegaT(2:end) - omegaT(1:end-1);     % Martingale 

correction 

     
   for m=2:NTime+1 
    lnS(:,m) = lnS(:,m-1) + (r-d)*deltaT + diffomegaT(m-1) + DGam(:,m-1);   

%Simulate by difference 
   end 

    
   pathS(:,:,1) = exp(lnS); 
   path=transpose(pathS(:,:,1)); 
   path=mean(path,2); 
   %disp(path); 
   payoffvecP=max(K-pathS(:, NTime+1),0); 

      
   mc_putprice(l)=exp(-r*T)*mean(payoffvecP); 

    
end 

  



 

 

PPrice=mean(mc_putprice); 

  
disp('............10-year VGCIR European put option 

price................'); 
display(['                          R ', num2str(PPrice)]); 

  
%% Upstate perturbation 
S0=S+eps; 

  
pathSU = zeros(NSim,NTime+1,NBatches); 
lnS = ones(NSim,NTime+1);  % Stores the values of the log asset prices 
lnS(:,1) = log(S0); 

  
% precompute constants 
psiVG = (-1i)*C*log(G*M/(G*M+(M-G)-1));   % Characteristic exponent 
gamma = sqrt(kappa^2-2*lambda^2*1i*psiVG);  % CIR parameter   
denom = ( cosh(0.5*gamma*time) ... 
    + kappa*sinh(0.5*gamma*time)./gamma ).^(2*kappa*eta*lambda^(-2));   

%denominator 
% coth is inf at 0 
phiCIR(time>0) = kappa^2*eta*time(time>0)*lambda^(-2) ... 
         + 2*1i*psiVG./(kappa+gamma.*coth(gamma*time(time>0)/2)) ... 
         - log(denom(time>0)); % Characteristic function 
phiCIR(1) = log(denom(1)); 
omegaT = -phiCIR;                                % Martingale correction                               
omegaT(1) = 0; 

  
Y = zeros(NSim,NTime+1);           % Integrated clock 
y = zeros(NSim,allsteps+1); 
y(:,1) = 1; 
Y(:,1) = 0; 

  
for l = 1 : NBatches       
    % Generating time change 
   deltaaT = T / allsteps; 
   sdeltaaT = sqrt(deltaaT); 
   W = randn(NSim,allsteps); 
   for n = 1 : allsteps              
       Y1 = y(:,n) + kappa * (eta - y(:,n)) * deltaaT + lambda * 

sqrt(y(:,n))*sdeltaaT .* W(:,n); % Time change process 
       %Y1(Y1<0) = 0;               % absorbing 
       Y1(Y1<0) = -Y1(Y1<0);        % reflecting 
       y(:,n+1) = Y1; 
   end 
   y(:,1)=0; 
   for m=1:NTime 
        Y(:,m+1) = Y(:,m) + sum(y(:,1+(m-1)*intNt:m*intNt),2)*deltaaT; 
   end 

    
   Intensity = C * (Y(:,2:end)-Y(:,1:end-1)); 
   DGam = gamrnd(Intensity,1/M) - gamrnd(Intensity,1/G); 
   diffomegaT = omegaT(2:end) - omegaT(1:end-1);     % Martingale 

correction 

     
   for m=2:NTime+1 
    lnS(:,m) = lnS(:,m-1) + (r-d)*deltaT + diffomegaT(m-1) + DGam(:,m-1);   

%Simulate by difference 
   end 

    
   pathSU(:,:,1) = exp(lnS); 

    



 

 

   payoffvecPU=max(K-pathSU(:, NTime+1),0); 

      
   mc_putpriceU(l)=exp(-r*T)*mean(payoffvecPU); 

    
end 

  
PPriceU=mean(mc_putpriceU); 

  
disp('............10-year VGCIR European put option 

price................'); 
display(['                          R ', num2str(PPriceU)]); 

  
%% Downstate perturbation 
S0=S-eps; 

  
pathSD = zeros(NSim,NTime+1,NBatches); 
lnS = ones(NSim,NTime+1);  % Stores the values of the log asset prices 
lnS(:,1) = log(S0); 

  
% precompute constants 
psiVG = (-1i)*C*log(G*M/(G*M+(M-G)-1));   % Characteristic exponent 
gamma = sqrt(kappa^2-2*lambda^2*1i*psiVG);  % CIR parameter   
denom = ( cosh(0.5*gamma*time) ... 
    + kappa*sinh(0.5*gamma*time)./gamma ).^(2*kappa*eta*lambda^(-2));   

%denominator 
% coth is inf at 0 
phiCIR(time>0) = kappa^2*eta*time(time>0)*lambda^(-2) ... 
         + 2*1i*psiVG./(kappa+gamma.*coth(gamma*time(time>0)/2)) ... 
         - log(denom(time>0)); % Characteristic function 
phiCIR(1) = log(denom(1)); 
omegaT = -phiCIR;                                % Martingale correction                               
omegaT(1) = 0; 

  
Y = zeros(NSim,NTime+1);           % Integrated clock 
y = zeros(NSim,allsteps+1); 
y(:,1) = 1; 
Y(:,1) = 0; 

  
for l = 1 : NBatches       
    % Generating time change 
   deltaaT = T / allsteps; 
   sdeltaaT = sqrt(deltaaT); 
   W = randn(NSim,allsteps); 
   for n = 1 : allsteps              
       Y1 = y(:,n) + kappa * (eta - y(:,n)) * deltaaT + lambda * 

sqrt(y(:,n))*sdeltaaT .* W(:,n); % Time change process 
       %Y1(Y1<0) = 0;               % absorbing 
       Y1(Y1<0) = -Y1(Y1<0);        % reflecting 
       y(:,n+1) = Y1; 
   end 
   y(:,1)=0; 
   for m=1:NTime 
        Y(:,m+1) = Y(:,m) + sum(y(:,1+(m-1)*intNt:m*intNt),2)*deltaaT; 
   end 

    
   Intensity = C * (Y(:,2:end)-Y(:,1:end-1)); 
   DGam = gamrnd(Intensity,1/M) - gamrnd(Intensity,1/G); 
   diffomegaT = omegaT(2:end) - omegaT(1:end-1);     % Martingale 

correction 

     



 

 

   for m=2:NTime+1 
    lnS(:,m) = lnS(:,m-1) + (r-d)*deltaT + diffomegaT(m-1) + DGam(:,m-1);   

%Simulate by difference 
   end 

    
   pathSD(:,:,1) = exp(lnS); 

    
   payoffvecPD=max(K-pathSD(:, NTime+1),0); 

      
   mc_putpriceD(l)=exp(-r*T)*mean(payoffvecPD); 

    
end 

  
PPriceD=mean(mc_putpriceD); 

  
disp('............10-year VGCIR European put option 

price................'); 
display(['                          R ', num2str(PPriceD)]); 
%disp('............10-year VGCIR European put option price (S0 = 

1000)................'); 
%disp(mc_putprice);  
%disp('............10-year VGCIR European put option price (Epsilon = 

+100)................'); 
%disp(mc_putpriceU);  
%disp('............10-year VGCIR European put option price (Epsilon = -

100)................'); 
%disp(mc_putpriceD); 

  
%% Delta calculation 
delta=(mc_putpriceU-mc_putpriceD)/(2*eps); 
disp('............Monte Carlo Delta estimates................'); 
%disp(delta); 

  
mdelta=mean(delta); 

  
disp(mdelta); 

  
%% Gamma calculation 

  
gamma=(mc_putpriceU-2*mc_putprice+mc_putpriceD)/(eps^2); 
disp('............Monte Carlo Gamma estimates................'); 
%disp(gamma); 

  
mgamma=mean(gamma); 

  
disp(mgamma); 

 

 

 

 

 

 

 

 

 

 

 



 

 

D.2  GMxB risk measures and loss distribution 
 

The loss distribution results used to calculate the GMxB risk measures in Section 5.5 are 

calculated using the Matlab implementation below. 
 

%.........................................................................% 
% Master's research: A M Ngugi (2014)  
% MSc candidate University of Pretoria 
% GMxB loss distribution with Stochastic Volatility: Variance Gamma-Cox 
% Ingersoll Ross (VGCIR) dynamics. Adapted from Kienitz and  Wetterau 

(2012),  
% Financial Modelling-Theory, Implementation and Practice with Matlab 

source  
% and amended accordingly for the case at hand. 
%.........................................................................% 

  
clear all; clc; 
%% Parameters 

  
r = 0.0088;                      % Discount factor 
d = 0;                           % Dividend yield 

  
%%%%%%%%% parameters setting  %%%%%%%%%%%%%%% 
S0=input('The initial stock price, S(0), is: '); 
D=input('The no. of years to maturity is (one=1, one and half=1.5, 

two=2...): '); 
T=D*12; 
disp(['  The duration/time to maturity (in months) is: ' num2str(T)]); 
g=input('The annual guarantee rate in decimal form is: '); 
K=input('The initial guaranteed amount based on the premium is: '); 
K=K*(1+g)^(10-1); % Assuming a 10-year option with a roll-up guarantee 
disp(['  The exercise amount used is: ' num2str(K)]); 

  
tpx=input('The probability that a life aged x will NOT die within the next 

T years: '); 
% VG model parameters: Estimated using method of maximum likelihood 
theta=-0.0148; 
nu=0.4461; 
sigma=0.0544; 

  
C = 1/nu; 
G = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)-0.5*theta*nu)^(-1); 
M = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)+0.5*theta*nu)^(-1); 

  
kappa = 1.25;      % CIR parameter 
eta = 1;           % CIR parameter 
lambda = 1;        % CIR parameter 

  
%% Simulation parameters 
NTime = 72; NSim = 3000; NBatches = 10;        % Time steps for the overall 

process 
NTime_clock = 1000;          
intNt = 100;             % Steps used for integration the CIR clock 
allsteps = intNt * NTime;  % All Nts that have to be simulated 
deltaT = T / NTime; 
time = 0 : T/NTime : T;                     % Variable time for the 

martingale correction factor 

  
pathS = zeros(NSim,NTime+1,NBatches); 
lnS = ones(NSim,NTime+1);  % Stores the values of the log asset prices 
lnS(:,1) = log(S0); 



 

 

 % precompute constants 
psiVG = (-1i)*C*log(G*M/(G*M+(M-G)-1));   % Characteristic exponent 
gamma = sqrt(kappa^2-2*lambda^2*1i*psiVG);  % CIR parameter   
denom = ( cosh(0.5*gamma*time) ... 
    + kappa*sinh(0.5*gamma*time)./gamma ).^(2*kappa*eta*lambda^(-2));   

%denominator 
% coth is inf at 0 
phiCIR(time>0) = kappa^2*eta*time(time>0)*lambda^(-2) ... 
         + 2*1i*psiVG./(kappa+gamma.*coth(gamma*time(time>0)/2)) ... 
         - log(denom(time>0)); % Characteristic function 
phiCIR(1) = log(denom(1)); 
omegaT = -phiCIR;                                % Martingale correction                               
omegaT(1) = 0; 

  
Y = zeros(NSim,NTime+1);           % Integrated clock 
y = zeros(NSim,allsteps+1); 
y(:,1) = 1; 
Y(:,1) = 0; 

  
for l = 1 : NBatches       
    % Generating time change 
   deltaaT = T / allsteps; 
   sdeltaaT = sqrt(deltaaT); 
   W = randn(NSim,allsteps); 
   for n = 1 : allsteps              
       Y1 = y(:,n) + kappa * (eta - y(:,n)) * deltaaT + lambda * 

sqrt(y(:,n))*sdeltaaT .* W(:,n); % Time change process 
       %Y1(Y1<0) = 0;               % absorbing 
       Y1(Y1<0) = -Y1(Y1<0);        % reflecting 
       y(:,n+1) = Y1; 
   end 
   y(:,1)=0; 
   for m=1:NTime 
        Y(:,m+1) = Y(:,m) + sum(y(:,1+(m-1)*intNt:m*intNt),2)*deltaaT; 
   end 

    
   Intensity = C * (Y(:,2:end)-Y(:,1:end-1)); 
   DGam = gamrnd(Intensity,1/M) - gamrnd(Intensity,1/G); 
   diffomegaT = omegaT(2:end) - omegaT(1:end-1);     % Martingale 

correction 
   for m=2:NTime+1 
    lnS(:,m) = lnS(:,m-1) + (r-d)*deltaT + diffomegaT(m-1) + DGam(:,m-1);   

%Simulate by difference 
   end 

    
   pathS(:,:,1) = exp(lnS); 
   path=transpose(pathS(:,:,1)); 

    
   PnL=(K-pathS(:, NTime+1)).*tpx.*exp(-r*T); 

      
end 
filename = 'testdata.xlsx'; 
xlswrite(filename,PnL) 

  
disp('............Empirical distribution for GMMB................'); 

  
disp(PnL); 


