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ABSTRACT  

In this paper the numerical modeling of the dynamic 
behavior of compressible gas flow is investigated in pipelines. 
The numerical simulation is performed by solving the coupled 
conservation form of the governing equations for two-
dimensional, laminar, viscous, supersonic flow in developing 
region under different thermal boundary conditions. The 
numerical procedure is a finite-volume based finite-element 
method applied on unstructured grids. The convection terms are 
discretized by well-defined Roe Method and diffusion terms by 
a Galerkin finite element formulation. The temporal terms are 
evaluated based on an explicit fourth order Runge-Kutta 
scheme.  

The results indicate that heating the gas flow leads to an 
increase in pressure loss. In the other words, cooling the gas 
flow leads to decrease the pressure drop or power consumption 
of booster pressure station. Furthermore, change in the gas 
viscosity has considerable effects on the flow quantities such as 
pressure loss and friction factor.   
 

 
INTRODUCTION 

The gas flow in pipelines is usually unsteady due to the 
occurrence of rapid and slow disturbances. The slow 
disturbances are associated with the compression and 
expansion of the gas in the pipeline due to pressure and mass 
flow fluctuations. They are caused by the cyclic variation in the 
gas demand. The Rapid disturbances are associated with wave 
effects caused by sharp closure of a shut off valve.  

There have been many studies of compressible gas flow in 
pipelines in textbooks, articles and technical documents. Two 
limiting cases, adiabatic and isothermal, are often considered as 
thermal conditions. Adiabatic flow conditions assume flow 
through an insulated pipe. These conditions are usually valid 
for short pipelines since there is little heat transfer to or from 
the gas. Isothermal flow conditions assume flow through a pipe 
held at a uniform temperature; these conditions are commonly 

assumed when studying the flow of a gas in an uninsulated 
pipeline. Most natural gas pipelines are considered isothermal. 
Specially the analysis of flows and pressure drops in piping 
systems has been studied by many workers and is usually based 
upon the consideration of steady state conditions. 
 Many attempts have been done by researchers to reduce 
the pressure loss along the gas pipeline in order to reduce the 
costs of transportation. One of the main areas in pressure loss 
reduction techniques is lining the gas pipelines with smooth 
coatings to reduce the frictional pressure drop [1]. Another 
method is using chemicals [2], for example in cold weather and 
when the pipeline capacity needs to be increased in a period of 
time. New surfaces is another technique concern the making so 
special patterns on pipeline walls, in some cases to simulate 
natural surfaces, resulting in pressure loss reduction. 
Condensate systems are also used to find out whether the 
pressure loss reduction effects in natural gas pipelines, also 
apply when a liquid fraction is present. Experimental results on 
external flows [3] show that heating the gas can reduce the skin 
friction. Very significant drag reduction will be achieved if the 
beginning part of the model is heated. 
 Numerical simulation of unsteady internal compressible 
flows is the goal of many researchers during the years and 
several algorithms have been presented up to now. Mary et al. 
[4] proposed a second-order accurate algorithm for the 
simulation of unsteady viscous stratified compressible flows. 
The advantage of their method is its capability to deal with a 
broad range of subsonic Mach numbers, including nearly 
incompressible flows with a single modeling, based on the fully 
compressible Navier-Stokes equations. Solution of choked flow 
of low-density air through a narrow parallel plate channel with 
adiabatic walls was investigated by means of finite-difference 
numerical calculation by Shi et al. [5]. Toulopoulos and 
Ekaterinaris [6] investigated the application of second- and 
fourth-order accurate discontinuous Galerkin finite element 
method for the numerical solution of the Euler and the Navier-
Stokes equations with triangular meshes. Xu et al. [7] presented 
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a finite volume formulation for large eddy simulation of 
turbulent pipe flows based on the compressible time dependent 
three-dimensional Navier–Stokes equations in Cartesian 
coordinates with non-Cartesian control volumes. Aydin [8] 
studied the effects of viscous dissipation on heat transfer in 
thermally developing laminar forced convection in a pipe with 
both constant heat flux and the constant wall temperature 
boundary conditions and obtained the distributions for the 
developing temperature and local Nusselt number in the 
entrance region and influence of Brinkman number (Br) and 
the thermal boundary conditions. Martineau and Berry [9] 
presented a new implicit continuous-fluid Eulerian scheme for 
simulating a wide range of transient and steady, inviscid and 
viscous compressible flows on unstructured finite elements 
which is developed as a predictor–corrector scheme by 
performing a fractional-step splitting of the semi-implicit 
temporal discretization of the governing equations into an 
explicit predictor phase and a semi-implicit pressure correction 
phase coupled by a pressure Poisson solution. 
 The above mentioned papers and other studies on unsteady 
compressible flow haven't focused significantly on the effect of 
thermal boundary conditions on pressure loss. In this paper a 
combined FV-FE unsteady procedure have been developed for 
the numerical solution of compressible viscous flow. The 
procedure is based on a general class of cell centered FV Roe 
Method for the discretization of inviscid parts together with the 
discretization of viscous terms by the FE method over a 
triangular grid. The effects of heating on pressure drop in 
unsteady pipe flow have been studied by details. 
 

NOMENCLATURE 
A  [m2] cell area, Jacobian matrix 
b  [W/m2] Heat flux and work of frictional forces 
c  [m2,m/s] triangle area, speed of sound 

vC  [J/Kg.K] constant volume specific heat 

D  [m2] pipe diameter 
E  [J] total internal energy 
F  [Kg/m2.s] vector of inviscid flux terms 
H  [Kg/m.s2] total enthalpy 
k  [W/m.K] Number of triangles, thermal conductivity 
L  [m] length of the pipe 
N  [W/m2] vector of viscous flux terms 

n  [-] unit normal vector 

Pr  [-] Prandtl number, /pC kµ  
p  [N/m2] pressure 
Q  [-] vector of conservative variables 
q  [W/m2] heat flux 
R  [-] matrix of eigenvectors 
Re  [-] Reynolds number, /VDρ µ  
RHS  [-] right hand side terms of governing equation 
r  [m] radial direction 
S  [-] source term 
T  [K] temperature 
t  [s] time 
U  [-] vector of primitive variables 

,r zu  [m/s] velocity components 

V  [m/s] velocity vector 
W  [-] vector of characteristic variables 
z  [m] streamwise direction 

Special characters 
α  [-] constant coefficient for Runge-Kutta method 
∆  [-] difference 
γ  [-] specific heat ratio 
µ  [N.s/m2] dynamic viscosity 
ρ  [Kg/m3] density 
τ  [N/m2] shear stress tensor 
φ  [-] shape function for F.E. formulation 
Λ  [-] matrix of eigenvalues 
Ω  [-] computational domain 
Ψ  [-] vector of auxiliary variables 
∇  [-] operator 
Subscripts 
c   pipe centerline 
h   discretized computational domain 
in   inflow 
, ,i j k

 
 counter indices 

L   lower cell index 
n   normal to the control volume boundary 
out   outflow 
R   upper cell index 
, ,r zθ

 
 associated with cylindrical direction 

S   Sutherland law constant 
t   tangential to the control volume boundary 
w   wall 
0   reference quantity 
Superscripts 
n+1/n  new/old quantity in iteration 
*   dimensional variable 
^   Roe-average of a quantity 

 

GOVERNING EQUATIONS 
For gas flow with variable properties such as density and 

viscosity, the compressible Navier-Stokes equations are 
applicable even if a low-speed case is dealt with. First of all, 
the following variables are used to nondimensionalize the 
governing equations. 
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where the superscript ' '∗  denotes the dimensional variables 
and the subscript '0' denotes values at a reference state. 

0 0, ,D V ρ and 0µ are the pipe diameter, inflow bulk velocity, 
density, temperature and viscosity, respectively at the reference 
state. After dropping the superscript '*', the conservative form 
of the nondimensionalized governing equations in the 
cylindrical coordinates system is as follows. 
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Conservation of momentum 
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Conservation of energy 

( ) ( ) ( )

( )
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(4) 

 
In the above equations, ,z ru u are the axial and radial velocity 
components respectively and te is the total internal energy and 
is defined based on the perfect gas law as: 
 

( ) ( )2 21
1 2t z r

pe u u
ρ γ

= + +
−  

(5) 

 
Heat flux and surface work done by frictional forces terms in 
energy equation are defined as 
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∂
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(6) 

 
and viscous stress terms for the tensor components are: 
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where 
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(8) 

 
The temperature-dependent viscosity based on the Sutherland 
law’s is: 
 

3/ 2

0
0

0

S

S

T TT
T T T

µ µ
⎛ ⎞ ⎛ ⎞+

= ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
 (9) 

 
where ST  is the Sutherland constant temperature.  
Looking at the conservative form of the governing equations, 
we note that they all have the same generic form, given by 
 

( ) ( ) ( ). .Q F Q N Q S Q
t

∂
+∇ = ∇ +

∂
 (10) 

 
Q, ( )zF Q , ( )N Q and S( Q )  are the conservative variables, 
inviscid flux , viscous flux  and source vector respectively. 
 

[ ]Ttrz euuQ ρρρρ=  (11) 
 
The inviscid flux vector ( )F Q includes components ( )zF Q  and 

( )rF Q with the following expressions 
 

( ) ( )2 T

z z z z r t zF Q u u p u u e p uρ ρ ρ ρ⎡ ⎤= + +⎣ ⎦
 

( ) ( )2 T

r r z r r t rF Q u u u u p e p uρ ρ ρ ρ⎡ ⎤= + +⎣ ⎦
 

(12) 

 
The viscous flux vector ( )N Q  also includes ( )zN Q  and 

( )rN Q  with the following forms. 
 

( ) [ ]T
zzrzzz bQN ττ0=  

( ) [ ]T
rrrrzr bQN ττ0=  

(13) 

 
The source vector for axisymmetric flow is written as 
 

( ) [ ]0 0 / 0 TS Q rθθτ= −  (14) 
 
Having solved the set of governing equations, the distribution 
of the thermodynamic variables of gas flow in the pipeline can 
be found. 
 

NUMERICAL TECHNIQUE 
The Navier-Stokes equations for the compressible viscous 

flow are solved by a finite volume-Galerkin upwind technique 
using the Roe [10] Riemann Solver for the convective part and 
standard Galerkin technique for the viscous terms. 

If j jK CΩ =  be a discretization by triangles of 
computational domain Ω  where C  is the triangle area and 
K is the number of triangles and i iK AΩ =  be its partition in 
cells where iA  is cell areas, thus we suppose that F varies 
linearly on each triangle. 
We move the additional terms of the cylindrical operator of 
equation (10) compare to the Cartesian operator to the right 
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hand side of the equation as source terms to use the two 
dimensional Cartesian coordinate system.  

Figure 1 shows the triangulation of computational domain 
and computational nodes. The variables will be computed on 
nodes denote by subscript h . If they are the vertices of triangle 
elements, these nodes are related to finite element grid. 
Otherwise, they are related to the control volume in the center 
of the hexagonal finite volume grid. 

 
 
 
 
 
 
 
 
 
 

Figure 1 Triangulation of computational domain Ω  
 
The weak finite element formulation of governing equation 

(10) without the source term can be written as 
 

( ). 0h
h h h h

Q
dA F N dA

t
φ φ

Ω Ω

∂
+ ∇ − =

∂∫ ∫  (15) 

 
where φ  is the shape function which is set equal to one in the 
finite volume calculations. In the finite element, it is computed 
from the geometry and is used to compute the derivations. For 
example the derivation of a quantity e with respect to 
coordinate z is as: 1 1 2 2 3 3/ / / /∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂e z e z e z e zφ φ φ  
Indices 1, 2, and 3 are related to three vertices of the triangle 
and 1φ , 2φ  and 3φ are their shape functions.  
Integrating the viscous term N using part by part method and 
remaining the convective term F in its original form with shape 
function one, results in: 
 

. . 0h
h h h h h h

Q
dA F dA N dA N n dC

t
φ φ φ

Ω Ω Ω ∂Ω

∂
+ ∇ + ∇ − =

∂∫ ∫ ∫ ∫  (16) 

 
The first term is the time-dependent one. The second and third 
terms respectively show the variation of inviscid and viscous 
parts on the cell. The fourth term is associated with boundary 
treatment. 
Using explicit time integration and introducing divergence 
theorem for convective part, the final formulation is obtained as 
follows. 
 

1

. .
i h

n n

i d h h h h
C

Q QA F n dC N dA N n dC
t

φ φ
+

∂ Ω ∂Ω

−
+ = − ∇ +

∆ ∫ ∫ ∫  (17) 

 
The superscripts n and n+1 denotes the old and new time steps 
respectively. A centered scheme is used to compute the viscous 
part on each cell. The source term is computed explicitly. 

      The second term on the right-hand side of equation (17) is 
related to boundary condition which is set to be zero herein and 
the boundary condition will be applied in finite volume 
formulation of convective terms. The convection term on the 
left hand side is evaluated by finite volume Roe method [10] on 
control volume surfaces which are the sides of hexagonal 
shape. In this way the flux vector across these planes is 
computed from 
 

( ) QRFFF RL ∆Λ−+=
2
1

2
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(18) 

 
where R  is the eigenvector matrix of the Jacobian matrix 

/A F Q= ∂ ∂  , where: 
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Normal and tangential velocity components nu and tu are 
defined, respectively as:  
 

ˆ ˆ ˆ. .
ˆ ˆ ˆ. .

n x y

t x y

u u n v n

u v n u n

= +

= −
  

 
RF  and LF  are the flux vectors computed from the right and 

left states of RQ  and LQ  and R LQ Q Q∆ = − . Λ  is a diagonal 
matrix of eignvalues of Jacobian matrix which includes three 
characteristics with speeds ˆ ˆnu c− , ˆnu , ˆnu , ˆ ˆnu c+ , where ĉ  is 
the sound speed. The hats refer to Roe-average of a quantity 
computed for ˆru , ˆzu and H by weighting with ρ , as follow 

RL

RRLL uu
u

ρρ

ρρ

+

+
=ˆ

 
(21) 

 
The other quantities with hats in eigenvector arrays are not 
averaged independently, but are the basic Roe-averaged 
quantities by their normal functional relation. More details of 
Roe method can be found in [10]. 

Finally the governing equation (10) can be re-write as 
 

Computational 
nodes 

F.V. cell iA  

F.E. cell iC  
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( )Q RHS Q
t

∂
=

∂
 (22) 

 
where ( )RHS Q  contains convective, viscous and source terms. 
The time integration procedure has been done explicitly using a 
fourth order Runge-Kutta scheme as follow 
 

( )
0

1

1
4

1,..., 4

n

i i i i

n

Q Q
tQ Q RHS Q for i

A

Q Q

α −

+

=
∆

= + =

=

 (23) 

 
where ( )1iRHS Q − consists of convective, diffusive and source 
terms in the previous time step. The optimum choice for iα  is 
as follows, [11]. 
 

1 2 3 40 11 0 2766 0 5 1 0. , . , . , .α α α α= = = =  (24) 
 
This scheme enables us to investigate the treatment of time 
dependent pipe flow. 
 

BOUNDARY CONDITIONS 
The governing equations require the specification of the 

boundary conditions at the wall, inlet and outlet due to the 
elliptic nature of the equations. The classical boundary 
condition for velocity on solid walls is no-slip condition, 
namely 0V = . On the symmetry line of the pipe, symmetry 
boundary condition ( . 0V n = ) is also necessary. 

At the pipe inlet the flow is subsonic and two primitive 
variables should be specified there, where for subsonic outflow 
only one variable is required. Inflow and outflow boundaries 
are treated by a new characteristics technique. Along these 
boundaries the fluxes are splitted in positive and negative parts 
following the sign of the eignvalues for the 
Jacobian /A F Q= ∂ ∂ of the convective operator F, [12]. The 
system of equations can be written in the characteristic form as 

 

.W W S
t

∂
+ Λ∇ =

∂
 (25) 

 
with W L Q∂ = ∂  and S L S= . We select well-posed boundary 
conditions by prescribing the characteristic variables whose 
convection velocity direction is towards the interior of the 
domain at the boundary. In this way, the number of boundary 
conditions is a function of the signs of the eigenvalues ofΛ , 
[13]. 
The boundary conditions are simpler to implement if we 
consider the set of primitive variables 
 

( )Tz rU u u pρ=  (26) 
 

which are related to the set of conservative variables by 
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The characteristic variables, written as functions of the 
primitive variables, take the form 
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where the Jacobian matrix of the transformation is given by 
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 (29) 

 
,z rn n  are unit vectors in axial and radial directions, 

respectively. The inlet boundary conditions for steady-state 
consist of imposing the gas density ρ , axial velocity zu , and 
radial velocity ru , which is set to be zero at the inlet. The 
fourth equation is determined from the characteristic property 
that is convected outwards with respect to the domain, 4W∂ , 
resulting in an inlet state given by 
 

( ) ( )1/ 2 ,in in in
in

Q UQ t Q x t
U

+ ∂ ∂
= + ∆Ψ

∂ ∂Ψ
 (30) 

 
with 
 

( )4in z ru u Wρ∂Ψ = ∂ ∂ ∂ ∂  (31) 
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1
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x y
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u u u u

U u u p
U u u u u

u u p

n n c

ρ ρ ρ ρ
ρ

ρ

ρ

ρ

−

−

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥⎛ ⎞∂Ψ ∂ ∂ ∂ ∂ ∂= = ⎢ ⎥⎜ ⎟∂ ∂Ψ⎝ ⎠ ⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥

⎢ ⎥−⎣ ⎦

 (32) 

 
and 
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( )
( )
( )

1/ 2

, 1/ 2

, 1/ 2

,

,

,

0

in

z in z
in

r in r

x t

u u x t

u u x t

ρ ρ +

+

+

⎡ ⎤−
⎢ ⎥
⎢ ⎥−

∆Ψ = ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 (33) 

 
Subscript 1/2 denotes the domain interior point at the inflow. 
The forth row of the Jacobian matrix in equation (32) is taken 
from the forth row of the matrix in equation (29). The 
derivatives that appear in the Jacobian matrix in equation (32) 
are evaluated analytically. 
      At outlet boundary, we set the pressure, p , which must be 
imposed at subsonic outflow. The other three boundary 
conditions to be imposed are the characteristic variables that 
are convected towards the exterior of the domain, 1W∂ , 

2W∂ and 3W∂ , from which we obtain 
 

( ) ( )1/ 2 ,s N out
out

QQ t Q x t−
+

∂
= + ∆Ψ

∂Ψ
 (34) 

with 
[ ]1 2 3

T
out W W W p∂Ψ = ∂ ∂ ∂ ∂  (35) 

 

1/ 2,
0 0 0

N t

T

out out x
p p −

+

⎡ ⎤∆Ψ = −
⎣ ⎦

 (36) 

 
subscript (N+1/2) denotes the domain interior point at the 
outflow. The Jacobian matrix, ( / outQ∂ ∂Ψ ), is determined in an 
analogous way to the previous case. 

For thermal boundary conditions, two separate cases are 
considered. 

 
Constant Wall Heat Flux: Under this condition, the heat 
addition to the gas flow from the pipe wall is subjected to a 
uniform heat flux and hN is replaced by q ′′ in the fourth term 
of the conservative variables vector in equation (16). 
 
Constant wall temperature: In this case, the pipe wall is at a 
constant temperature. Since the velocity vector is also zero on 
the wall, the forth conservative variable, te , at the wall will 
be t v we C T= , where wT  is wall temperature. 
 

INITIAL CONDITIONS 
The initial conditions for transient flow are given by the 

steady-state flow solution with prescribed inlet and outlet 
conditions. This steady-state solution is obtained by running the 
solver that implements the above formulation, starting from an 
arbitrary physically consistent initial condition and imposing 
the steady-state boundary conditions, until the desired degree 
of convergence is achieved. The initial condition selected in 
this paper is a steady state solution of gas flow with adiabatic 
pipe wall. 

 

RESULTS AND DISCUSSION 
The computational domain for the gas flow in the entrance 

region of a pipe is depicted in figure 2. Because of the pipe 
symmetry, half section of the pipe is selected as a 
computational domain. An unstructured triangular grid in the z 
and r directions is employed. In order to get better resolution on 
boundary layer, inflow and outflow, the meshes are fined in 
these positions. Several mesh sizes were tested to insure that 
the solution is not mesh dependent and finally a mesh contains 
2121 nodes and 4000 elements were used for a pipe of 25m 
length and 1m diameter. The computations are done for 
methane which its properties are summarized in table 1. 

 
Table 1 Properties of Methane at 15 oC 

 
Parameter Value Unit 
Molar weight 16.01 gr/mole 
specific Heat 2260 J/Kg.K 
specific heat ratio 1.299 - 
Prandtl Number 0.71 - 
heat conductivity 0.035 W/m.K 

viscosity -51.1083 10×  N.s/m2 
 

If the Prandtl number is assumed constant, thermal 
conductivity can be calculated from the equation: 

 

= pC
k

Pr
µ

 (37) 

 
Before proceeding to computation, the reference quantities are 
designated by index '0' in the governing equations as: 

0 0 0Re 1000, 300 , 0.2T K M= = =  and 5 2
0 1.1 10 . /N s mµ −= ×  

 

 
 

Figure 1 Schematic of computation domain of the pipe 
 

Figure 3 depicts the development of velocity profiles in the 
gas pipeline for different wall heat fluxes. Because the 
momentum and energy equations are coupled in compressible 
flow, the velocity profile gets larger by increasing the heat flux 
on the wall. This means that the heating causes the velocity 
profile becomes more uniform across the pipe. 
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Figure 4 illustrates the time-dependent inlet pressure and 
temperature at different heat fluxes. The pressure and 
temperature profiles are the same. In this case it is assumed that 
the gas flow is suddenly subjected to a constant wall heat flux. 

 
 

Figure 3 Development of gas velocity profile along the pipe 
for (a) q = 0, (b) q = 177.8 J/Kg, (c) q = 444.7 J/Kg 

 
The results show that the required time to reaches a steady 

state depends on the heat flux. In the case of lower heating, 
more time is needed to reach a steady state.  On the other hand, 
the peak values of pressure and temperature increase by 
increasing heat flux.  

 

 
 

Figure 4 Inlet gas temperature profile for different heat fluxes 
 

Figure 5 shows the variation of friction factor along the 
pipe for different heat fluxes on the pipe wall. The results are 
obtained for a constant pressure difference between the inlet 

and outlet of the pipe, * 4p∆ = . The friction coefficient 
increases with increase in heat flux. Therefore, it causes either 
more pressure drop or less mass flow rate occurs in the pipe. 

 

 
 

Figure 5 Average friction factor along the pipe for * 4∆ =p  
 
Figure 6 indicates the variation of mass flow rate with the 

pressure ratio under different thermal conditions. In this graph, 
it is clear that heating will reduce the mass rate from the pipe 
for a specified pressure ratio. Therefore in order to increase the 
rate of gas from pipeline between two stations, one should 
reduce the rate of heat transfer from the pipe wall. 
 

 
 
Figure 6 Inflow mass flow rate for different heat fluxes  
  

Figure 7 shows an average gas temperature against the length 
of the pipe. The temperature is difference with heating of the 
pipe wall. Also the corresponding pressure drop for each case 
was shown on the figure and the enhancement of pressure loss 
with heating is obvious in this results. 
 



 8  
 

 
 

Figure 7 radial temperature profiles at different locations along 
the pipe 

 
Effect of heating on mass flow rate for two various pressure 
losses is depicted in figure 8. A considerable result in this 
figure is that the pressure loss will be increased with heating, 
for a specified mass flow rate. However, since the Reynolds 
number in transportation gas pipelines is actually very high, the 
results of low Reynolds number are more reliable in this 
solution and for high Reynolds numbers, a suitable turbulence 
modeling in necessary. 
 

 
 

Figure 8 Inflow mass flow rate for different pressure losses 
 

CONCLUDING REMARKS 
Two dimensional compressible flow of natural gas 

transmission in pipelines with friction and heat addition are 
studied numerically. The results indicate that heating the gas 
flow leads to an increase in pressure loss. In the other words, in 
order to decrease the pressure loss, one should cool the gas.  
Furthermore, the results show that the change in the gas 

viscosity has considerable effects on the flow quantities such as 
pressure loss and variation of friction factor.   
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