
 

HEFAT2007 
5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 

Sun City, South Africa 
Paper number: MM6 

 

MULTI-FLUID STRATIFIED SHEAR FLOWS IN PIPES. PART 2. 

CRITICAL CONDITIONS IN THE DEVELOPMENT OF INTERFACIAL PROFILES 
 
 

Mutti M.* and Paoletti A. 
*Author for correspondence 

Department of Hydraulic and Maritime Constructions and Hydrology, 
Politecnico di Milano, 

Piazza Leonardo da Vinci n. 32, 20133 Milano, 
Italy, 

E-mail: matteo.mutti@polimi.it 
 
 

ABSTRACT 
The focus of this paper is on mathematical formulation and 

computation of critical flow conditions in horizontal or nearly 
horizontal pipes. Continuity and momentum equations are 
derived considering an arbitrary number of fluids and then 
rearranged so as to yield a system of ordinary differential 
equations. It is shown that the matrix of the system needs to be 
invertible so as to compute interfacial profiles. Critical 
conditions are recognised as those for which the matrix 
becomes singular and the hypothesis of gradually varied flow 
fails. Some well known results of linear algebra are here used 
to define criteria capable of discerning between geometric and 
kinematic conditions of the flow which are certainly non-
critical and others which may or may not be critical. 

INTRODUCTION 
Under the hypothesis of stratified shear flows, uniform flow 

solutions give precious information about the final flow 
configuration which the fluids flowing in a prismatic pipe will 
eventually reach at a significant distance from the inlet or the 
outlet. Uniform flow solutions are therefore independent of 
possible boundary conditions. In long pipelines, the effects of 
boundary conditions cover limited lengths compared to the 
overall pipe length and so may be neglected during the first 
design step. Conversely, in short pipelines, boundary conditions 
may influence the overall length of the conduit, so uniform 
flow solutions are of little use. Actual flow depths developing 
in pipes due to particular inlet or outlet conditions may in fact 
inhibit the hydraulic performance of the system leading in turn 
to bad control of operations. 

The focus of this paper is on critical conditions which can 
be met during the integration of multi-fluid flow profiles. The 
concept of critical flow depths, quite common in one-

dimensional free-surface flows, will be extended to stratified 
flows with an arbitrary number of fluids. 

The analysis will be limited to incompressible and 
isothermal flows. Continuity and momentum equations will be 
first derived for the steady state case and then rearranged, 
finally ending up with a system of ordinary differential 
equations. The system will be recast in matrix form and solved 
for the interfacial flow profiles moving either upstream or 
downstream according to the proper boundary conditions. This 
can be done until the matrix associated to the system of 
ordinary differential equations is non singular and therefore 
invertible. Mathematically speaking critical conditions will be 
defined as those for which the inverse of the above cited matrix 
does not exist. Physically speaking critical conditions will be 
instead classified as those for which the interfacial flow profiles 
explode, tending to asymptotes. In such situations gradually 
varied flows will not exist anymore. 

The matrix coefficients will be derived in analytical form. 
Since the matrix singularity can be inferred from its spectrum, 
using Gershgorin’s Circle Theorem on the localisation of 
matrix eigenvalues, critical conditions will be solved in closed 
form in some particular cases. 

NOMENCLATURE 
Make reference to Part 1 of “Multi-fluid stratified shear 

flow in pipes” presented at HEFAT 2007. 

GOVERNING EQUATIONS 
Consider the pipe geometry shown in Figure 1. At any time 

t  the flow of each phase is predominantly along the positive x  
direction and at any position the pipe is inclined at an angle θ  
from the horizontal. Only incompressible and isothermal flows 
are here considered, therefore a multi-fluid flow system can be 
modelled using a combination of one-dimensional continuity 
and momentum equations in integral form. 



 

 
Figure 1. Steady non-uniform flow profiles. 
 
The integral form of the continuity equations gives: 

( ) 0=
∂
∂

ppp AU
x

ρ  (1) 
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Since the flow is incompressible, the continuity equations 
can be expressed in terms of the interfacial heights. 

The pressure distribution is assumed to vary hydrostatically 
along the transverse section and thus, owing to the effects of 
interfacial tension pσ , the pressure acting on the upper side of 
each interface differs from the pressure acting on the lower side 
by a small amount proportional to the interfacial curvature pκ : 
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By using Leibniz’s theorem for differentiation of an 
integral, the momentum equations can be expressed quite 
straightforwardly as: 
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or as: 
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depending on whether the hydrostatic pressure distribution 
is calculated in terms of the pressure condition existing at the 
bottom or top part of the pipe. 

Making use of continuity equations, subtracting the 
momentum equation of phase 1+p  from the momentum 
equation of phase p  and rearranging, the following combined 
momentum equations are obtained: 
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where the shear stress functions pF  and the wall-fluid and 

fluid-fluid shear stresses are defined as in Part 1 of “Multi-fluid 
stratified shear flows in pipes”. 

The left hand sides of combined momentum equations take 
into account the inertial and gravitational terms, the effects of 
the interfacial tensions and do not depend on the choice of the 
shear stress closure laws in quasi-steady conditions. 

The definitions of the shear stress relationships, instead, is 
fundamental to model the right hand side terms through which 
the steady uniform flow conditions are pursued. 

 



 

CRITICAL CONDITIONS IN THE INTEGRATION OF 
FLOW PROFILES 

When variations of momentum coefficients and surface 
tension effects are neglected, continuity and combined 
momentum equations can be reduced to the form: 

p
q

pq F
x

H
G =

∂

∂
 (8) 

where: 

( )

( )

( )

( )qp
A

P
U

qp

A

P
U

A

P
U

g

qp
A

P
UG

p

j
p

ppp

p

j
p

ppp

p

j
p

ppp

pp

p

j
p

ppppq

−+










+

−





























−

−

−

+

−−










=

+

+
+++

+
+++

+

−

1

cos

1

1

12
111

1

2
111

2

1

12

δψρ

δ

ψρ

ψρ

θρρ

δψρ

 (9) 

or, alternatively: 
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δ  being the Dirac’s delta function. 
The G  matrix inverse is rather important in computing 

steady non-uniform profiles of stratified shear flows. When 
0det ≠G , G  is said to be non singular and 1−G  exists, 

therefore interfacial slopes follow from: 

qpq
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while flow profiles can be computed using for instance a 
standard step method and integrating either in the upstream or 
downstream direction according to the appropriate kinematic 

conditions. Conversely when ( ) 0det =G , G  is said to be 

singular and 1−G  does not exist implying that interfacial slopes 
reach a singular point tending to infinity. Singular points 
represent therefore critical physical situations in which the 
hypothesis of gradually varied flow is lost. The identification of 
such critical conditions or, less restrictively, of criteria 
discerning within geometric and kinematic conditions which 
are certainly non-critical and others which may or may not be 
critical is therefore of fundamental importance and is the 
objective of this work. Given that  the G  matrix singularity can 
be inferred from its spectrum, Gershgorin’s Circle Theorem 
[1,2] on the localisation of matrix eigenvalues is widely used to 
give sufficient conditions for the existence of its inverse. From 
the theorem , for instance, it follows that a strictly diagonally 
dominant matrix is non singular and its inverse can be 
computed. Since G is a diagonally dominant when: 
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the elements on the principal diagonal are to be different 
from zero (i.e. 0≠ppG ). From previous definitions it follows 

easily that 0≠ppG  when: 
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When 0<ppG , conditions (12) may be expressed as: 
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while conditions (13) may be expressed as: 
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When 0>ppG , conditions (12) may be expressed as: 
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CRITICAL CONDITIONS FOR CO-CURRENT AND 
COUNTER-CURRENT FLOWS WITHOUT 
GRAVITATIONAL STRATIFICATION 

In this paragraph, flow conditions which are critical in the 
sense of previous definitions are outlined for co-current and 
counter-current flows characterised by the absence of 
gravitational stratification. Two cases, each one to be further 
sub-divided in two sub-cases, are to be considered. 
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G  is a diagonally dominant matrix (i.e. 
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TG  is a diagonally dominant matrix (i.e. 
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CRITICAL CONDITIONS FOR CO-CURRENT AND 
COUNTER-CURRENT FLOWS WITH GRAVITATIONAL 
STRATIFICATION 

In this paragraph, flow conditions which are critical in the 
sense of previous definitions are outlined for co-current and 
counter-current flows characterised by the absence of 
gravitational stratification. Two cases, each one to be further 
sub-divided in two sub-cases, are to be considered. 
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TG  is a diagonally dominant matrix (i.e. 
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Case 2 

0>ppG  (28) 

Case 2.1 
G  is a diagonally dominant matrix (i.e. 
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Solutions ( )1, +pp QQ  satisfying inequalities are 2∞  and are 
asymptotically bounded by an ellipse. 

Case 2.2 
TG  is a diagonally dominant matrix (i.e. 
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Solutions ( )1, +pp QQ  satisfying inequalities are 2∞  and are 

asymptotically bounded by an ellipse. 

CONCLUSIONS 
In this paper a general mathematical model aiming at 

computation of critical flow conditions in horizontal or nearly 
horizontal pipes has been developed. The model stems from 1-
D continuity and momentum equations in integral form treating 
an arbitrary number of fluids. It has been shown that these 
equations can be rearranged so as to yield a system of ordinary 
differential equations and that the matrix of the system needs to 
be invertible so as to compute interfacial profiles. Critical 
conditions have been recognised as those for which the matrix 
becomes singular and the hypothesis of gradually varied flow 
fails. Some well known results of linear algebra have been  
used to define criteria capable of discerning between geometric 
and kinematic conditions of the flow which are certainly non-
critical and others which may or may not be critical. 
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