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Abstract :

Liquid- liquid equilibrium (LLE) data are important for designing and modeling of
process equipments. In this paper, the Group Method of Data Handling technique
has been applied for estimation of LLE data of the ternary system of water +
alcohol +solvent at 298.15 K. Using this technique, a new model has been
proposed that suitable to use in place of conventional methods to predict LLE.
The experimental results and predicted data by the Group Method of Data
Handling, also mean deviations of the proposed, UNIQUAC and NRTL models have
been compared.
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1. Introduction

The importance of the availability of precise liquid-liquid equilibrium (LLE) data
in rational design of many chemical processes and separation operations, have
been the subject of much research in recent years. A large amount of
investigation has been carried out on the LLE measurements, in order to
understand and provide further information about the phase behavior of such
systems. Usually, the equilibrium data presented are correlated using
thermodynamic methods. The thermodynamic models have been successfully
applied for the correlation of several LLE systems but these conventional methods
for LLE data prediction of complex systems are tedious. Recently, to avoid these
limitations, new prediction methods were developed by using artificial neural
network (ANN). ANNs are non linear and highly flexible models that have been
successfully used in many fields to model complex non-linear relationships.
Hence they offer potential to overcome the Ilimitations of the traditional
thermodynamic models and polynomial correlation methods for the complicated
systems, especially in estimating the LLE and vapour- liquid equibilirum (VLE)
[2-7]. ANNs may be viewed as the universal approximators but the main
disadvantage of them is that the detected dependencies are hidden within the
neural network structure [13]. Conversely, Group Method of Data Handling
(GMDH) [8] is aimed to identify the functional structure of a model hidden in the
empirical data. The main idea of GMDH is the use of feed- forward networks
based on short- term polynomial transfer function whose coefficients are
obtained using regression technique combined with the emulation of the self-
organizing activity for the ncural network (NN) structural learning [9]. GMDH was
developed for complex systems modelling, prediction, identification and
approximation of multivariate processes, diagnostics, pattern recognition and
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clusterization of data sample. It was proved, that for inaccurate, noisy or small
data can be found best optimal simplified model, accuracy of which is higher and
structure is simpler than structure of usual full physical model. In this work, to
avoid the limitations of ANNs, an LLE prediction method was developed by using
GMDH algorithm. The aim of this proposed method is to predict LLE data of a
quaternary system [1], Corn Oil + Oleic acid + Ethanol + Water, using GMDH
algorithm. Using cxisting data in [1], the proposed network was traincd and the
trained network used to predicting of LLE data in oil phase and alcohol phase.
Then, the predicted data of the proposed model compared with the experimental
data. Also mean deviations obtained by NRTL, UNIQUAC and proposed model
have been compared. The phase diagrams for the studied quaternary system
including both the experimental and predicted tie lines are presented.

2. Group Method of Data Handling (GMDH)

The Group Method of Data Handling is a combinatorial multi- layer algorithm in
which a network of layers and nodes is generated using a number of inputs from
the data strcam being cvaluated. The Group Method of Data Handling was first
proposed by Alexy G. Ivakhnenko [8]. The GMDH network topology has been
traditionally determined using a layer by layer pruning process based on a pre-
selected criterion of what constitutes the best nodes at each level. The goal is to
obtain a mathematical model of the object under study. The GMDH creates
adaptively models from data in form of networks of optimized transfer functions
in a repetitive generation of layers of alternative models of growing complexity
and corresponding model validation and fitness selection until an optimal
complex model which is not too simple and not too complex has been created.
Neither, the number of neurons and the number of layers in the network, nor the
actual behavior of each created neuron are predefined. All these are adjusted
during the process of self- organization by the process itself. As a result, an
explicit analytical model representing relevant relationships between input and
output variables is available immediately after modeling. This model contains the
extracted knowledge applicable for interpretation, prediction, classification or
diagnosis problems [10].

2.1 GMDH Algorithm

The traditional GMDH method [8-9] is based on an underlying assumption that
the data can be modeled by using an approximation of the Volterra Series or
Kolmorgorov- Gabor polynomial [11] as shown in equation (1).

y=a, +Zal.x,. +22aijxl.xj +Z Zaijkxixjxk... (1)
i=1 i=l j=l1 i=1 j=l k=1

Where x, x;, xi are the inputs, y the output and as, a, ay a; are the coefficients of
the polynomial functional node.

A GMDH network can be represented as a set of neurons in which different pairs
of them in each layer are connected through a quadratic polynomial and thus
produce new neurons in the next layer [12]. In the classical GMDH algorithm, all
combinations of the inputs are generated and sent into the first layer of the
network. The outputs from this layer are then classified and selected for input
into the next layer with all combinations of the selected outputs being sent into
layer 2. This process is continued as long as cach subsequent layer(n+1) produces
a better result than layer(n). When layer(n+1) is found to not be as good as
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layer(n), the process is halted. The formal definition of the problem is to find a
function fso that can be approximately used instead of actual one, f,in order to
predict output ¥ for a given input vector X = (xi, X2, X3, . . ., X,) as close as possible

to its actual output y. Therefore, given M observation of multi- input—single-
output data pairs (training data set) so that

yi:f(xiﬁxﬂ’xﬂ"“’xin) =1, 2, ..., M. 2)

It is possible to train a GMDH-type network to predict the output values Vusing
training data, i.e.

P = fx Xy XXy, =1, 2, oo M. (3)

This equation is tested for fit by determining the mean square error of the
predicted J and actual y values as shown in equation (4) using the set of testing

o

data. This value should be minimized.

M 2

Y (7 -y) »>min 4)

i=l

General connection between inputs and output variables can be expressed by
equation (1). For most application the quadratic form of only two variables is used
in the form

N — — 2 2
y=0(x,x,)=a,+a,x, +a,x, +a,x, X, +a,x, +asx; (5)

to predict the output y. A typical feed- forward GMDH-type network is shown in
figure 2. The coefficients a; in equation (5) are calculated using regression
techniques [8-9] so that the difference between actual output, p, and the
calculated one, V. for each pair of x;, x; as input variables is minimized. Indeed, it
can be seen that a tree of polynomials is constructed using the quadratic form
given in equation (5) whose coefficients are obtained in a least- squares sense. In
this way, the coefficients of each quadratic function G; are obtained to optimally
fit the output in the whole set of input—output data pair, i.e.

s 2y =GP

= l:IvM ’ —min (6)
d =17
X1 G,
X, o/ o by |
SN eV 1
X3 ./ -

Fig. 1. Feed- forward GMDH-type network.
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In the basic form of the GMDH algorithm, all the possibilities of two independent
variables out of total n input variables are taken in order to construct the
regression polynomial in the form of equation (5) that best fits the dependent
observations (v, i=1,2,..., M) in a least- squares sense. Consequently,

{”\_ n(n—l)
)2

neurons will be built up in the second layer of the feed- forward network from the

observations {(/, xp, X4 ), (= 1, 2, ..., M)} for different p, g € {1, 2,..., M}[9]. In
other words, it is now possible to construct M data triples {(v, xp, xis ), (i= 1,2, ...
, M)} from observation using such p, ¢ € {1, 2, ..., M}in the form

Xip Xy Con

x2p xzq yz

Xpp g D Yy

Using the quadratic sub- expression in the form of equation (5) for each row of M
data triples, the following matrix equation can be readily obtained as

Aa=Y (7N

where a is the vector of unknown coefficients of the quadratic polynomial in
equation (5):

a={a0,a,,a2,a3,a4,a5} ®)

and

o G (9)

is the vector of output’s value from observation. It can be readily seen that

2 2
1 X, X, XX, X, X,
2 2
I x X X, X X X
_ 2p 2q 2p72q 2p 2q
A= (10)
1 - e e s 2 2
LY Mg Yap*ug Ay iy |

The least- squares technique from multiple- regression analysis Icads to the
solution of the normal equations in the form of

a=(A"4"ATY (11

which determines the vector of the best coefficients of the quadratic equation (5)
for the whole set of M data triples.

2.2. Prediction of LLE using the GMDH- type network
The proposed model is a feed- forward GMDH-type network and has constructed
using experimental data set from ref. [1]. This data set is constituted of 25 points
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in four different concentrations of water in solvent. In Table 1, the overall
experimental compositions of the mixtures and in Table 2, experimental mass
fractions of the components in alcohol and oil phase are shown. The data set is
divided in two parts, 80% used as training and 20% used as ftesting data. Each
point in training and test data is constituted of 13 values. The four mass fractions
in overall compositions and water concentration in solvent are normalized and
used as inputs of GMDH-type network (X, ..., X5)and other cight values arc used
as desired outputs of network, 4 mass fractions in alcohol phase (Y., ..., ¥Ys) and 4
mass fractions in oil phase (Z;, ...,Z4). After applying the data set to the network,
GMDH- type network eight polynomial equations are obtained that can be used to
predicting of mass fractions in alcohol and oil phase, Table 3. For example, the
prediction equations of mass fraction of the acid in alcohol and oil phase are:

Y, =1.1575%, - 7.5332K,X, X,
Z,=1.9626 K2 +1.5001 (K, X, +1543560,X, X,

where X, is the water concentration in solvent and X,, X; and X; are the
normalized mass fraction of olcic acid, ethanol and water in overall composition,
respectively. The network topology of this part of GMDH model is shown in Figure
2.

(a)

(b

Figure 2. The GMDH-type network topology for mass fraction of acid in (a) alcohol phase
(b) oil phasec.

We used GMDH model to calculate the mass fractions of the components in
alcohol and oil phase. The calculated values are see in Figure 3 and 4 show the
experimental points and predicted tie lines from GMDH model for the systems
corn oil/oleic acid/5% aqueous ethanol and corn oil/oleic acid/8% aqueous
ecthanol. The equilibrium diagrams were plotted in triangular coordinates. For
representing the pseudo ternary systems in triangular coordinates, ethanol +
water was admitted as a mixed solvent [1]. These figures indicate that GMDH
model provided a good estimation in both phases.
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Table 1. The Overall Composition of Liquid- Liquid Equilibrium Data for the System
+solvent(1)+ ethanol (3) + Water (4)] at 298.15 K

waler overall composition
conc.
n 100w, 100w, 100w; 100w,
solvent
5 wt %  47.98 0.00 49.40 2.63
47.21 2.53 47.72 2.54
43.46 4.91 49.02 2.61
39.25 9.87 48.32 2.57
35.65 14.52 47.32 2.51
29.85 19.99 47.62 2.53
8wt Y% 49.97 0.00 46.03 4.00
44.97 5.39 45.67 1.97
39.78 9.81 46.38 4.03
35.49 14.59 45.93 3.99
30.99 19.77 45.30 3.94
12 wt 50.07 0.00 43.94 5.99
o 47.94 2.40 43.70 5.96
45.85 4.92 43.32 5.91
41.49 9.65 43.26 5.90
34.15 14.79 44.93 6.13
30.04 19.99 43.97 5.99
24.59 25.06 44.30 6.04
18 wt 50.35 0.00 40.72 8.94
% 48.27 2,42 40,44 .88
44.10 4.91 4181 9.18
39.94 9.80 41.22 9.05
34.70 15.08 41.18 9.04
29.66 20.15 41.16 9.03
25.22 24.89 40.91 8.97

Figure 3 and 4 presents the fatty acid distribution between the phases. The
distribution coefficient and solvent selectivity can be calculated by Egs (12) and
(13) respectively

k=4 (12)
k,

§=-2
p (13)

The deviations between experimental and predicated compositions in both phases
are calculated according to eq (14) and shown in Table 4. These values are
compared with the calculated deviations from NRTL and UNIQUAC models [1]. As
be shown, GMDH model provided a better estimation against the other models.

l,e 1,cale 2 1,e I cale 2
T I Ll

N C
ZZ (Wi,n _wr.n i.n in

Aw=1 00\] 0
INC

where N is the total number of tic lines, C is the total number of components. w is
the mass fraction, the subscripts /, » are component and tie line, respectively and
the superscripts I and II stand for oil and alcoholic phases, respectively; ex and
calc refer to experimental and calculated concentrations.

In this work, we designed a GMDH model for different water concentration in
solvent from all point of data set. For a better comparison with NRTL and
UNIQUAC models [1] that were presented for systems with different water
concentration, one can design four GMDH models for systems with 5%, 8%, 12%
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and 18% aqueous ethanol. It is obvious that each GMDH model uses four inputs
(X3, ..., X5) that are the mass fractions of the components according to Table 1.

3. Conclusions

In this study, a GMDH model designed using the experimental liquid- liquid
equilibrium data for system Corn Oil + Oleic Acid + Ethanol + Water at 298.15 K
[1]. The LLE data are predicted by GMDH model and then compared with the
experimental data. Despite the complexity of the studied system, GMDH model
allows a good prediction of phase equilibrium. Also the global deviation of the
proposed model were lower than 0.57% in relation to the experimental data and
the calculated data from NRTL an UNIQUAC models. GMDH model may be
suitable to use in place of conventional methods predicting of LLE. The quality of
the model is related to the quality of data used for the training of the model. For a
better comparison it neceds to design an independent GMDH model for ecach water
concentration in solvent that can be studied in future works.
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Figure 3. System of cyclohexane +ethanol + water at 298.15 K: (e) experimental; (...)

GMDH.
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Figure 4. System of cron oil (1) + oleic acid (2) + 8% aqueous solvent [ethanol (3) + water
(4)] at 298.15 K: (@) experimental; (...) GMDH.
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