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ABSTRACT

The Lattice Boltzmann Method (LBM) is employed to
computationally analyze the incompressible, laminar flow and
heat transfer for a fluid with constant material properties, in a
two-dimensional channcl with a built-in triangular prism. In
addition to thc momentum transfer, the encrgy transfer is also
modeled by LBM. A uniform lattice structure, along with a
single time relaxation approach is employed. Predictions are
obtained for different Reynolds numbers while keeping the
Prandtl number at the wvalue of 0.71. For validating the
developed LBM code, the predictions are compared with those
obtained by a commercial CFD code. It is observed that the
present LBM code delivers results that are of comparable
accuracy to the well-established CFD code. Results show that
the presence of a triangular prism affects the flow and heat
transfer patterns for the steady-state (for the lower Reynolds
numbers) and unsteady-periodic (for the investigated Reynolds
number values larger than 500) flow regimes. It is obscrved that
heat transfer to channel walls can be enhanced by the triangular
prism, especially for the higher Reynolds numbers, exhibiting
an unsteady-periodic flow structure. The latter is identified to
be the main mechanism responsible for heat transfer
cnhancement. It is also demonstrated that the error in the
predictions can be quite large, if this flow unsteadiness is
artificially suppressed by employing a symmetry plane through
mid-channel (although the time-averaged flow field is
symmettic).

INTRODUCTION

Flow and heat transfer in pipes and channels with built-in
bluft bodies have been investigated by many researchers, both
experimentally [1] and computationally [2]. Because this flow
configuration is important and encountered in different
applications concerning heat exchange systems.

Within this coverage, a triangular prism can be considered
to be a basic bluff body configuration. Abbasi et al. [3]
computationally investigated the incompressible laminar flow
and heat transfer in a planar channel with a built-in triangular
prism. They demonstrated that the employment of a triangular
prism could improve the heat transfer to the channel walls.
Chattopadhyay [4] numerically analyzed a
configuration, for the incompressible turbulent flow, by
applying a steady-state (Reynolds Averaged Navier-Stokes
Equations, RANS) analysis based on a two-equation turbulence
model. The previous numerical analysis [2-4] was exclusively
based on the discretization of the Navier-Stokes equations. The
originality of the present contribution is the application of the
Lattice Boltzmann Method (LBM) [5] to investigate the
problem. The presently developed two-dimensional LBM code
for incompressible flows, which was recently applied [6] to
several benchmark isothermal, steady-state flow problems. This
code is now cxtended to include the transport of thermal
energy, and applied to solve the present problem. The present
results are compared with those obtained by the commercial
CFD code Fluent [7].

Quite recently [8], a similar problem, namely, the forced
convection in a plane-channel with built-in square obstacles
was analyzed by LBM. However, in that investigation [8], the
flow field was modeled by LBM, whereas the continuum’s
energy equation was discretized by the finite difference
method. In contrast to the previous work [8], the temperature
distribution is also computed by LBM, in the present analysis.

similar

NOMENCLATURE

a [m?/s] Thermal diffusivity

B [m] Base of triangular prism cross section
¢ [m/s] Speed
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€ [JrkgK] Isobaric specific heat capacity
[ [my/s] Lattice sound speed
Dy [m] Hydraulic diameter
e, [m/s] Discrete velocity set
Jor [kg/m’] Discrete density distribution function
2. K] Discrete temperature distribution function
H [m] Channel height
h [W/mzK] Heat transfer coefficient (h=q/(Tw-Trp))
k [W/mK] Thermal conductivity
Nu [-] Nusselt number (Nu=hDy/k)
p [Pa] Static pressure
Po [Pa] Reference static pressure
Pr [-] Prandtl number (Pr=c,/k}
q [W/m?] Heat flux
Re [-] Reynolds number (Re=gu,Dy/1)
T [K] Temperature
t [s] Time
# [m/s] Axial velocity
1y [m/s] Mean inlet velocity
X [m] Position vector
X, ¥ [m] 2D Cartesian coordinates
Greek symbols
3 [m] Lattice unit (distance between neighbouring nodes)
St Is] Time step
i [Pa.s] Dynamic viscosity
v [m%s] Kinematic viscosity
P [kg/m®] Density
o [kg/m’] Reference density
© 1-1 Collision frequency for momentum transfer
or [-] Collision frequency for energy transfer

Sub- and superscripts

F Fluid
eq Equilibrium value
w Wall
0 Inlet

% Post collision state

DEFINITION OF THE PROBLEM

The present geometry is similar to the one used by Abbasi
et al. [3] in their analysis based on a Control Volume based
Finite Element Method. A sketch of the geometry is shown in
Figure 1.

The geometry and boundary conditions are symmetric
around a plane at the channel mid-height, running through the
middle of the triangular prism. Thus, a modelling approach
could be to utilize this symmetry, and solve the equations only
for the half of the channel Nevertheless, although the time-
averaged flow is symmetric, the time-dependent flow may not
be. Indeed, the latter is instantaneously asymmetric due to
periodic vortex shedding behind the prism, for most Reynolds
numbers, except a small range of low values. Thus, an a-priori
use of a symmetry plane, which artificially suppresses the
unsteady motion, independently from the Reynolds number,
can lead to errors, as the results of such an enforced symmetric,
steady-state solution can differ from the symmetric, time-
averaged flow field of an unsteady computation.

Nevertheless, a symmetry plane can be used, for sufficiently
low Reynolds numbers that “physically” have a steady-state
solution. Such a symmetry plane can intentionally be used also
for high Reynolds numbers, for purposes numerical
investigations (without claiming physical accuracy), as also
practiced within the present study.

For the momentum cquations, a fully developed, parabolic
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Figure 1 Solution domain, boundary types.

channel flow velocity profile is imposed as boundary condition
at the inlet. At the outlet, a constant static pressure is
prescribed. No-slip boundary conditions hold at the solid walls.
For the energy equation temperature is prescribed to be
constant at the inlet boundary. Walls of the triangular prism are
assumed to be adiabatic. At the outlet, zero-gradient boundary
conditions are applied.

MATHEMATICAL AND NUMERICAL FORMULATION

As it is the case for the most LBM applications, the
Bhatangar-Gross-Krook (BGK) [9] single relaxation time
approximation is adopted. In the present investigation, such a
version [10] of the approach is applied, which is especially
suitable for unsteady, incompressible flows. For the momentum
and energy transport, both, the 2-dimensional 9-velocity lattice
model (D2Q9) is used, which is sketched in Figure 2.

In agreement with the original idea underlying LBM, a
uniform lattice structure is used. This gives rise to an
orthogonal and in both directions equidistant (square shaped)
lattice pattern. In the open literature, various applications of
LBM can be found, where non-equidistant, or even
unstructured computational grids are used in conjunction with
LBM, where LBM is amended with various interpolation
techniques [11,12].

Similarly, there are multiple time relaxation (MTR)
approaches, which allow greater values of the collision
frequency to be used [13], as the maximum allowed values of
the collision frequency are limited by stability limits.
Nevertheless, in the present investigation, it is preferred to
work with the “classical” LBM formulation using the square
shaped lattice structures directly as the computational grid,
without recourse to interpolation procedures to, as well as a
single time relaxation scheme, leaving the topics of non-
equidistant / unstructured grids and multiple time relaxation for
the future work.

6 2 3
3 1
7 4 8

Figure 2 D2Q9 lattice model



Two different distribution functions, one for density
(momentum) and the other for the temperature are used. The
discretized lattice Boltzmann evolution equations for
momentum and energy transport, which are usually solved in
two consecutive steps, l.e. in a “collision” and a following
“streaming” step, are provided below:

Collision:

Fulgrer)= £, E0)-olf, (50~ £ (50)]  aw

g (e +80)=g,(®.0)-0, g, (50)- g2 (0] ab)

Streaming;:

fi(F+ebt.1+60)= 1, (%.1+81) (2a)
g (F+eé dt,0+8t)=2 (%.1+81) (2b)
The collision frequencies are defined by
1
O=—-"7- (3a)
v 1
2 T
c, ot 2
W, = 1 3b)
T = a 1 ( »
2 . + A
c; ot 2
where the lattice sound speed ¢, is defined as
C
c, =— 4)
V3
with the lattice speed ¢:
c= 0 &)
ot
The nine discrete velocities of the model are given by
B 01 0-10 1-1-11
e, =c (6)
001 0-111-1-1

The equilibrium distribution functions are given as

I )

fo=w, lp+ pn[%é}x ST %(EM i) —%ﬁ.u}}
(7a)

gl =w, T[H—ivéa ~ﬁ} (76)
e

with
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4 1 1 1 1 1 1 1 1
W, = = — = = = = — — (8)
{9 9 9 9 9 36 36 36 36}

The macroscopic fields are obtained from

p.=cf, (%)
Br=a e (9b)
8 8
P=2 Py =204 (9¢)
=0 =0
8 8
i=—Y3.p, = LZ%ML" (10)
pO o=0 0 a=0

8
I=Y8. =} 8 (an

The time step size &t is chosen in such a manner that it results
in a lattice speed ¢ (5) of unity, which, in turn, results in a

lattice sound speed in magnitude of ¢, =1/ \/5 (4).

The implementation of the boundary conditions are not
discussed here in detail, for the sake of brevity, but can be
found elsewhere [5,14]. For modelling the boundaries, the so-
called “on-grid” formulation is used, where the boundary lattice
grid lines are defined to be aligned with the “real” boundaries
of the solution domain. At solid walls, the so-called “bounce-
back” boundary condition is applied for the momentum
equations. The boundary conditions are applied by accordingly
prescribing the corresponding boundary values of the
distribution functions [5,14]. For coding the model, sample
Fortran codes provided in [14] are used as a basis.

Due to the presently applied LBM formulation, the resulting
lattice structures are always square shaped, for all of the
considered cases. In some cases, comparisons with the
commercial CFD code Fluent [7] are presented. For a better
comparability of the accuracy, the finite volume grids for the
Fluent computations are also generated as principally square
shaped grids, in an analogous manner to the used lattice
structure. The only “local” exception is the representation of
the shape of the triangular cross-section: In LBM, the triangular
shape is approximated by a staircase lattice structure, whereas it
is accurately resolved by the finite volume grid for the Fluent
computations by using a locally unstructured configuration, but
still, keeping a comparable resolution to the LBM lattice used.

In LBM, no special procedure is applied for the treatment of
convection. In the Fluent computations, a possibly high
accurate procedure, i.e. a Second Order Upwind procedure is
used [7] in discretizing the convective terms. Furthermore, for
handling the pressure-velocity coupling, the SIMPLEC method
is used for the stationary computations, whereas the PISO
algorithm is used for the unsteady calculations by Fluent [7]. In
all Fluent calculations, basically, the default under-relaxation
factors are used, that are 1.0 for the pressure, 0.7 for the
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velocity components and, chosen to be 1.0 for the temperature.
As convergence criteria, hundred times smaller tolerances for
the scaled residuals are required than the default settings (for
the energy equation smaller than 10®, for all remaining
equations smaller than 10°°) in Fluent calculations.

LBM is an intrinsically unsteady method, where, a
stationary solution, if it exists, is found as the result of an
integration in time. The procedure described by Egs. (1,2) may
be considered, in a sense, to be similar to an explicit time
integration in terms of a finite volume formulation. In the
unsteady analysis performed by Fluent, a Second Order Implicit
time [7] integration scheme is applied. Always the same time
step size is used for LBM and Fluent computations. In the
unsteady calculations, the flow from any initial distribution is
calculated for a period of time, which is long enough to get a
periodic flow structure to be established. Subsequently, the
results are time averaged, for a sufficiently long time for getting
time-independent time-averaged values.

RESULTS

Preliminary Validation

The present LBM code was validated for steady-state,
incompressible, laminar flows [6]. The current study represents
an improvement of the code in two aspects: (1) heat transfer is
included, (2) unsteady flows are analyzed, along with the
implementation of an “incompressible” formulation convenient
for unsteady flows [10]. Before starting with the analysis of the
main problem (channel with triangular prism) an analysis is
performed for a simple (classical) channel flow, without any
obstacles, for an initial validation of the implementation of the

heat trancfars T aminar forced convection i invecticatad for a
n¢at wansicrt Laminar orced conveclion IS mvestigated 1or a

fully developed channel flow. A simple channel geometry
(without a triangular prism) is modelled (using 25 lattice units
along half channel height) for Re = 160, with a constant inlet
and a constant wall temperature. The inlet velocity profile is
prescribed to be of a fully-developed channel flow. The channel
length is defined to be long enough to allow a thermally fully
developed flow to be established [15].

Table I compares the predicted and theoretical Nusselt
numbers (Nu). Please note that the Nu used here is based on an
h dcfinition that differs form the onc given in Nomenclature.
Here, the fluid temperature (used to compute the temperature
difference for calculating h) is taken to be the local bulk value
at the corresponding cross-section in accordance with the
related theory [15] (whereas this is taken to be the inlet fluid
temperature in following sections, as given in Nomenclature).
In Table I, one can see that a very good agreement between the
LBM prediction and the theoretical value is observed, which
implics the adequateness of the implementation.

On the Staircase Approximation of the Triangular Shape
With the squarish lattice structure, the shape of the
rectangular prism can only be approximated by a staircase. In
this section, the influence of this approximation on the accuracy
is investigated. The analysis is performed for the stationary
flow, assuming a symmetry boundary through the middle of the
prism (Fig. 1) (since the computation does not aim at a
physically accurate solution, but trics to quantify the influence
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Table I Nu in fully developed channel flow (without prism)

LBM prediction Theory [15]
Nu 7.55 7.54

of an approximation on the numerical results, by comparing
them, an artificial suppression of an eventual flow unsteadiness
by a symmetry planc, is justified, within this context).

The problem is solved for Re = 100. For this comparison,
only the momentum equations are solved, without considering
heat transfer. Denoting the number of lattice units / finite
volumes along height of the triangular cross section by N, four
different grid resolutions, namely grids with N=4, 8, 12 and 16
are analyzed. Figure 3 shows the detail grids in the near-field of
the triangular prism for N=8, for LBM and Fluent calculations.

Predicted variations of axial velocity along the axial
distance at channel-mid height are shown in Figure 4. In the
figure, one can see that the Fluent N=4 predictions exhibit a
deviation from the remaning curves. For N=16, LBM and
Fluent curves agree very well, indicating an accurate enough
resolution of the geometry by LBM. As N=8,12 results (not
shown) also agree very well with N=16, a grid independency at
N=16 can also be assumed. Such comparisons arc donc for
different Re, and also by monitoring different variables. The
finally applied resolution for the main computations
corresponds to N=25.

Figure 3 Grids for N=8, for Re=100: Left: LBM, Right: Fluent

1.0
=
-
El
0.0+ ‘ ---LBM N=4 ——Fluent, N=4
——LBM, N=16 ——Fluent, N=16
1] 5 10 15 20 wB a5 30

Figure 4 Variation of u with x along channel mid-height
(symmetry plane, steady flow) for Re = 100.



Main Computations

Calculations are performed for Re=160,270,530,800 and
1070. Tt is observed that the flow converges to a steady-state
solution for Re=160 and 270 (using the full channel domain,
without introducing a symmetry plane). An unsteady behaviour
is observed for the higher Reynolds numbers, i.c. for Re=530,
800,1070. However, also for those Reynolds numbers,

stationary solutions are nvnﬂmqllv obtained by emploving the
sangnary souiens are arti gotamed oy emp.oymg

symmetry plane, for better dcm(mstmtmg the error done by
neglecting flow unsteadiness, and the effect of unsteady motion
on the wall heat transfer. In all unsteady computations (LBM
and Fluent), the time-step size applied can be considered to be
fairly small (e. g. a period of the prism lift force oscillation was
resolved by at least 1000 time steps). Maximum cell Courant
numbers [16] were about 0.2. With the applied grid resolution
(N=25), the resulting maximum cell Peclet numbers were about
10, for the highest Reynolds number, i.c. for Re=1070, which
indicates that some influence of numerical diffusion can be
expected in the Fluent results, depending on the Reynolds
number, although a second order upwind scheme is used.

Velocity fields

Figure 5 illustrates, in the near-field of the triangular prism,
the unsteady-instantancous streamlines, the unsteady-time-
averaged streamlines, and the steady-state streamlines, as
predicted by LBM for Re = 800 (the steady state streamlines
are obtained by applying a symmetry plane through the middle
of the channel, as discussed above). The instantaneous
streamlines demonstrate the unsteady flow behind the prism,
due to the periodic vortex-shedding, which is not symmetric
(around the channel mid-plane) at any time (Fig. 5 (a)). The

streamlines of the time-averaced velocity field is seen to be
streanuines o1 ¢ me-averaged veioCity IICiG 1S sCen 10 oC

symmetric around the channel mid-plane, of course, and shows
a rather small recirculation zone behind the prism (Fig. 5 (b)).
If the flow unsteadiness is ignored, and a stationary flow is
enforced by suppressing the unsteady-periodic motion
artificially, by a symmetry plane, the size of the recirculation
zong is highly over-predicted (Fig. 5 (¢)).

Temperature fields

LBM predicted isotherms for Re=800 are illustrated in
Figure 6. The unstcady-periodic structure of the temperaturc
field can be observed in Fig. 6a. One can also see that the
temperature field of the (artificial) steady-state solution (Fig.
6¢) does not differ much from that of the case without prism
(Fig. 6d) except in prism’s near-field, and does either not
necessarily imply a substantial heat transfer enhancement.
Time-averaged results of the unsteady solution (Fig. 6b) differ
from the latter and indicate a more remarkable heat transfer
cnhancement comparcd to the case without prism (Fig. 6d).

Heat Transfer

Predicted variations of the Nusselt number along the
channel wall, for Re=160, are presented in Figure 7. One can
sce that the existence of the triangular prism causcs an increasc
in Nu in regions near the prism (3<x/B<9). This is due to the
increased near-wall velocities because of the blockage. The
transient phenomena does not play a role here, as a steady-flow
is predicted for this Re. It is intcresting to note that the Nu

Numerical modelling

values with prism fall slightly below those of without prism
beyond x/B>9 (caused by a flow deceleration following the
acceleration in the prism region). Still, an increase of the mean
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Figure 5 Predicted (LBM) streamlines for Re = 800

(a) unsteady-instantaneous, (b) unsteady-time-averaged,
(c) steady-state using symmetry plane.

(d)

Figure 6 Predicted (LBM) isotherms for Re = 8§00 (a) unsteady
-instantaneous, (b) unsteady-time-averaged, (c) steady-state
using symmetry plane, (d) channel without prism (steady-state).
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Nu by the prism is observed. One can also see that the LBM
predictions agree petfectly well with the Fluent predictions.

Nu variations along the channel wall predicted for Re=800
are illustrated in Figure 8. Here, the flow is unsteady/periodic.
Results neglecting the unsteadiness of the flow, i.e. steady-state
results obtained by an artificial symmetry plane, show an
ncrease of Nu in the area of the triangular prism, purely due to

the increaged ckin friction hv the hlockase Here the lacal
me mereascd s<Kin Irclon vy e Li0CKage, ncre, uic 10Ca:

undershoot of Nu values below those of the case without prism
is more strongly predicted. Nevertheless, a higher mean Nu
value is still predicted. However, since the flow is unsteady, the
artificially obtained stationary results do not have much
physical significance (and can be quite incorrect, as seen in the
comparison). The variation of the instantaneous Nu and the
time-averaged Nu are also displayed in the figure. The time-
averaged Nu variation shows a local peak nearly at the same
location as the stationary solution, which is but, slightly lower.
This is followed by a secondary local peak slightly downstram.
It is interesting to see that the time-averaged Nu values are
much higher than those of the case without prism and those of
the stationary computation, especially in the downstream region
of the prism. Thus, one can see that the heat transfer to channel
walls can be enhanced by a triangular prism, and this effect is
mainly due to the unsteady-periodic vortex shedding. Again, a
perfect agreement with the Fluent predictions is observed.

12

10 4
8 .
=
= 5
4 ,
2 ——LBM With Triangular Prism
—— LBM Without Triangular Prism
0 e Fluent With Triangular Prism
0 (-] 10 15 x/B 20

Figure 7 Predicted Nu variations along channel wall, Re=160.
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Fluent With Tr. Prism Steady/\With-Symmetry-PI.
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Figure 8 Predicted Nu variations along channel wall, Re = 800.
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CONCLUSIONS

LBM is employed to investigate the incompressible, laminar
flow and heat transfer for a fluid with constant material
properties, in a 2D channel with a triangular prism. The
developed LBM code is validated by comparisons with a well-
established commercial CFD code. Results show that the
presence of a triangular prism affects the flow and heat transfer

natterng for the cteadv_ctate (lawer Re) and uncteadvoneriodic
patiems Ior e sieady-siale (UOWEr KE) ang unsicagy-pericGie

flow (Re>500) regimes. It is observed that heat transfer can be
enhanced by the triangular prism, especially for the high Re
flows, exhibiting an unsteady-periodic flow structure. The latter
is shown to be the main mechanism responsible for this
enhancement. It is also shown that an artificial suppression of
flow unsteadiness (e.g. by a symmetry plane) can lead to large
errors in the prediction of the time-averaged values.
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