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ABSTRACT

In this work we consider the problem of growth and
detachment of gas bubbles in axi-symmetric reservoirs filled
with viscous liquids whose walls are very close to the gas
injection orifice, in such a manner that the walls affects the
bubble shapes and its maximum volume of growing. Using the
Stokes equations for slow viscous flow, we have studied two
cases of interest: a) the case where the walls make a vertical
inverted cone, and b) the casc of a cylindrical wall concentric to
the injection orifice. In both cases the fluid flow equations were
solved numerically by using the Boundary Element Method
(BEM), and the results are given in terms of the bubble shapes,
their maximum volumes and other properties of interest for
different values of the Bond and Capillary numbers. We present
a qualitative comparison with the experimental bubbles
obtained at constant gas flow rates, in the air-glycerin and air-
silicon oil systems. This comparison allows us to conclude that
the numerical solutions describe very well this phenomenon.
Our results also show that by changing the cone angle or the
cylinder radius it is possible to obtain an efficient method to
control the shape and size of the produced bubbles.

INTRODUCTION

Bubble generation by means of gas injection through
orifices on flat plates is typical in theoretical and experimental
studies. In cases where liquids have very low viscosity a lot of
work has been made [1-5]. Moreover, applications of results
derived from the inviscid approximation are useful for many
industrial processes such as clean of metals, chemical reactors,
because, commonly, operation conditions involve liquids of
very low viscosity. On the other hand, in the case of highly
viscous liquids, the presence of bubbles occurs, for cxample, in
processes of liquid polymers, flows of lava and, in the recovery
of oil in production pipelines [6-9]. The latter case is that we
are most interested and motivated because the technique of gas
lift (gas injection within the pipe) involves the formation of
bubbles in confined spaces and with a narrow possibility of
changing the volume gas flow rate Q injected into the crude oil
[7]. In general, a fundamental study of bubbles in viscous

liquids in semi-infinite systems (in the absence of walls) is well
advanced [11, 14]

In the case of viscous liquids, the presence of walls close to
the bubbles is very important because viscous stresses
importantly affect their growth,, detachment and coalescence.
To appreciate these effects, a theoretical-numeric treatment of
the formation of bubbles in viscous liquids and vessels with
conical and cylinder gcometrics is presented. Conical vesscls
yield a very simple, axy-symmetric system where walls could
affect the bubble formation. This geometry can also be seen as
a system in which the bottom, where the injection orifice is
located, inclines symmetrically. Thus the bubble will grow
from the apex of the inverted cone. We assume that the angle
from cone a is measured from the horizontal up to the surface
of the cone. See Fig. 1.

NOMENCLATURE

Ca Capillary number

Bo Bond number

Re Reynolds number

a Cone inclination angle
R Cylinder radius

a Injection tube radius
g Contact angle

Q Gas flow rate

p Density

u Viscosity

P Pressure

v Velocity field

i Normal vector

c Surface tension

g Gravity

T Stress tensor

r Bubble deformation parameter

Xey  Mass center
Vor Critical dimensionless volume
Vo initial volume
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Another case of interest and the one where gradually, the
influence of the walls on the bubble growth occurs when the
radius R of a cylinder initially large (semi-infinitc systems) it is
reduced to reach values close of the injection tube a (ie.,
R/a — 1); see Fig. 2. In connection with the cones, this case
corresponds formally to have conical containers with ¢ = 90°.

In the case of viscous liquids, the main dimensionless
parameters arc the capillary number, Ca, and the Bond number,
Bo, respectively

2
Ca= :—fz Bo = 24%. (1)

In this work we assume the presence of a viscous liquid and
that the gas injected gas, to a constant flow rate (, is not
viscous. This leads to very low values of the Reynolds number,
Re[11, 14].

We model the formation of bubbles using the Stokes
equations, valid for slow viscous fluid flows. Stokes and
continuity cquations arc solved numerically using the boundary
elements method (BEM). Subsequently, the velocity field and
pressure resulting from the numerical solution are incorporated
into the equation of the free surface, leading to the evolution of
the surface of the bubble in the presence of walls very close to
the gas injection tube

Another parameter influencing the growth of the bubbles in
inviscid and viscous liquids is the contact angle 8 [9]. Inclusion
of this quantity leads to consider wetting properties of the
bottom. Numeric codes similar to those developed for systems
with flat bottoms by Higuera [9, 10] have been used in the
development of the present studies. Following it, we will also
show that the maximum volume of the bubbles is described
adequately, by using the angle of inclination of the cone walls
and the capillary and Bond numbers. As a starting point, in the
following section the governing equations and the boundary
conditions on the bubble surface will be formulated for the
present case.

EQUATIONS FOR THE FORMATION OF BUBBLES IN
VISCOUS LIQUIDS

In the case here considered, an incompressible gas, with
insignificant density and viscosity, is injected at a constant flow
rate, O, into a stagnant viscous liquid of dynamic viscosity L.
Injection 1is through a circular orifice of radius a and wall
thickness &', located at the bottom of the hollow cone or
cylinder. We suppose that f;(x,t) = 0 is the free surface of the
it bubble, with f; > 0 in the liquid. We also assume that inertia

on the viscous liquid is neglected (Re = Z—g &« 1), thus the

continuity and Stokes non dimensional equations are,
respectively,

V-v=10 )
0 = —Vp — Boi + V?v 3)

where p is the pressure, i is the unitary vector on the bubble
surface, pointing to the outer normal direction and v is the
velocity vector. The boundary conditions for the /-th bubble
have the form
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The Eq. (4) states that the surface of each bubble is a
smooth surface [15] and the equation (5) specifies the balance
of the stress acting on the bubble surface.

The quantity D/Dt=3/6t+v-V in (4) is the material derivative
in the points on the surface of the bubbles; n; = Vf;/|Vf;| is a
unit vector normal to the surface f;; 7' is the viscous stress
tensor, given by the Navier-Poisson law [15] and py, is the
dimensionless pressure of the gas in the i-th bubble. This
pressure is determined by conditions on the bubble dynamics
and its volume after departure, V; (with i=1,2,3,... ), which do
not change with time. Finally, we assume that the
dimensionless gas flow rate, of the initial bubble is
dVordt=Ca= constant; i.e., dimensionless gas flow rate that
forms the bubble is exactly the capillary number.

The adherence condition is also satisfied on the cone mouth
z = ma on the cylinder wall » = R and in infinite pressure is
pt+Bmr=constant. Distance and time are scaled with the size of
the gas outlet orifice ¢ and with the viscous time pa/o,
respectively.

For the inverted cone containing a viscous liquid the wall of
the cone obeys the equation. z =my/x2 + y2 = mr, where
z=r=() is the apex of the cone and m = tan «a is their slope. An
important condition for the growing of the bubble that
departure from the gas outlet orifice is the angle of contact.
This angle is mecasured from the horizontal floor, thc same
where the take off orifice is located, towards the bubble
surface. This new parameter is important for the growth and
development of the bubbles, in further works the effect of this
parameter on the dynamic of growth will be analyzed, however
this work only takes into account this parameter to consider the
contact lines fix, witha 8 = 45° .
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Figure 1 Schematic of a conical vessel containing a viscous
liquid. The cone walls are inclined an angle o respect to the
horizontal plane
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Figure 2 Formation of bubbles within a cylinder of radius R
and height L. The reservoir containing the viscous liquid has a
height #>L and the basis of the cylinder is at a height d on the

container.

NUMERICAL SOLUTION

The solution of equations is performed numerically by using
BEM [12,13] this solution give v and p and such fields will be
include in Egs. (4, 5) to found the bubble shapes, f;, with the
Runge-Kutta second order method [9]. This last method was
developed by using 60 and 120 nodes, tests with different node
numbers were performed and it was found that this amount of
nodes is the optimum one. The present work shows formation
surveys from one bubble.
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Figure 3 Dimensionless 2D profiles of the bubbles at the
critical volume (maximum volume reached before the bubble
departure) for different values of the angle of the cone. In this
case the bubbles grow at constant flow. The calculations were

made for Ca=10 and Bo=0.2.

Figure 3 show bubbles formed in cones at different angles
of inclination and the Fig 4 bubbles formed in cylinders of
different radius are shown. The volume of bubbles in cones
and cylinders increases as a function of inclination angle of the
walls or the cylinder radius.
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Figure 4 Dimensionless 2D profiles of bubbles formed in
cylinders of different radii. From left to right, the dimensionless
radii are R/g=5, 4 and 3.5. The dimensionless numbers are
Ca=10 and Bo=0.2.

As the gas outlet orifice coincides with the cone walls
at the bottom, it can be stated that if the inclination angle
approaches to the straight angle the growth of the critical
volume of the bubble will increase more, approaching the
infinite when the angle is 90°, as observed in Fig. 5.
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Figure 5 Dimensionless plot of the critical volume of the
bubbles in cones. Calculations were made for Ca=10, Bo=0.2
(continuous line); Ca=10 y Bo=2 (long dash) and Ca=20 and

Bo=2 (short dash).

Capillary numbers Ca=10, 20 and a Bond numbers
Bo=0.2, 2 were used in Fig. 5, the inclination angle values
were a=0, 45, 507, 55", 60, 65", 70, 75" and 80". Calculations
with higher capillary numbers were performed and results were
similar to those shown in Fig. 5, nevertheless the values of
volumes are higher for low Bo and high «. This effect on the
size bubbles can be understood as a consequence of an effective
friction generated by the walls of the cone, which allows to the
bubble to grow more. By contrast, the volume V¢ only weakly
increases when Bo > 1, except for very large angles, for which
growth of Vyr is very intense. To our knowledge, this is a new
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way to generate bubbles of increasing size, with the consequent
increase of the angle, especially in the limit Ca/Bo>>1.

Figure 6 show a dimensionless plot of the critical volume
for bubbles in cylinder with different radii. As can be seen, the
final volume of the bubble increases with decreasing R. This
volume is almost constant and equal to the volume of a bubble
growing in semi-infinite means without walls, when R/a > 6.
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Figure 6 Dimensionless plot of the critical volume of the

bubbles in tubes as a function of dimensionless radius R/a. The
plot was made for Ca=10 and Bo=0.2.

To quantify the effect of the injected gas flow rate on the
maximum size of the bubbles, we show in Fig. 7 the
dimensionless volume Vg, as a function of capillary number for
R/a=3.5 and Bo=0.2. The volume increases linearly with the
capillary number, which grows faster than that found in a semi-
infinite region or into a wide open cone.
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Figure 7 Dimensionless plot of the critical volume of bubbles
in tubes as a function of capillary number, Ca. In this case
R/a=3.5 and Bo=0.2.

In Fig. 8 it is plotted the center of mass of bubbles during
their growth in cones with several angles; the angles are those
indicatcd in Fig. 5. It can be scen how the curves cvolve as a
function of time. Notice that the evolution of curves changes
with a.
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Figure 8 Evolution of the center of mass dimensionless, xp.
as a function of dimensionless time for different values of . The
calculations were made for Ca=10 and Bo=0.2.

The motion of the center of mass indicates a faster growth
of bubbles at higher angles, this is a strong effect of the inclined
walls, not only producing a faster growth of bubbles, but
directly affecting their form, elongating expanding them in the
higher part, according to the angle being worked on.

t (adimensional)

o yraphical the cvolution of the center of mass. x
gu Graphical the evolution of the cenicr of mass, X, as

a function of time for bubbles in cylindrical tubes with
dimensionless radii, R/a=3.5, 6, 5, 4 and 3.5.

As in the case of the conical vessels, in Fig. 9 the center of
mass, X, as a function of time it is plotted for some
representative values R/a. As in the case of small cone angle,
the existence of walls reflects the existence of an intense
frictional force whose effect is to make the bubble grow by
raising its center of mass at constant speed. As the radius of the
tube gets bigger, this behavior tends to be more weak and
bubbles behave as in the case of semi-infinite reservoirs, for
which the viscous drag force limits the speed of raising of the



center of mass of the bubble because the buoyancy force is
greater, what follows a rapid increase in the size of the bubble
along the axis of the tube.

Figure 10 Pictures from the experiments with cones of
different values of «.

Figure 10 shows bubble shapes similar to those
obtained in the numerical calculations. It is obvious that the
walls affect also the critical volume of the bubbles. In the Fig.
10 bubbles have higher volumes for lower angles and constant
flow rate. Changes of volumes are significant when a > 60°.

For bubbles growing in cylindrical tubes no images is
shown in this work but the shapes obtained arc similar to those
shown numerically.

CONCLUSIONS

As a main conclusion we found that it is possible to solve the
continuity and Stokes equations for the movement of a viscous
liquid, due to the gas injection from an orifice, in conical or
cylindrical vessels. The method of solution is similar to other
one recently published where a liquid is in a semi-infinite
spatial region [11] which also corresponds to a cone with
horizontal walls (o= 0). The cffect of imposing inclined walls
and adherence condition is very strong on the shapes and sizes
of the bubbles. Cases here considered, were those where the
Bond and capillary number were relatively small, and the angle
of contact from thc bubble is 45°. It is bricfly stated that our
numeric results agree quite well with experimental
measurements performed by colleges in our group.
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