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ABSTRACT

The present work presents a numerical approach using the
hybrid differential transform/finite difference method to study
heat transfer in a thin film exposed to ultrashort-pulsed lasers.
This problem involving high energy flux caused by lasers
within a very short duration is formulated based on the
hyperbolic two-step model that includes the features of finite
speed of thermal wave and the coupling effects of energy flux
between the electron-lattice systems. The governing equations
are transformed from the time domain into the spectrum
domain using the differential transform technique. The
numerical solutions are obtained through a recursive process
associated with the discretized equations in the space domain
using the finite difference method. An axisymmetric case of a
gold film subjected to a laser beam is given as a numerical
example. Both the electron and lattice temperatures are
obtained by the proposed method.

INTRODUCTION

Laser manufacturing technique has been playing a very
important role in the modern precision manufacturing. Some
materials with properties such as high thermal conductivities or
low melting point are difficult to fabricate because laser energy
could diffuse in the materials that greatly reduce precision and
quality of laser manufacturing. Reducing the duration of laser
pulses can help alleviate energy dissipation. Because the ability
to improve precision and reduce thermal damage with very
short pulse duration, ranging from sub-picosecond to
femtoseconds, ultrashort-pulsed lasers have increasing
applications in a variety of fields such as engineering, science
and medicine [1-3]. The applications of ultrashort-pulse lasers
involve the high rate of energy exchange within an extremely
short period of time in which thermal equilibrium can not be
established immediately because the electron system has much
smaller heat capacity than the lattice system. Anisimov [4]
proposed a two-step model to account for the highly unstable
absorption process of laser energy. The process is divided into
two steps. First, the laser energy is absorbed by electrons and
the electron temperature increases. Then, electron energy flows

into the lattice system through the coupling effects of heat
transfer between the electron and the lattice.

NOMENCLATURE

C [J/m’K] Heat capacity

G [W/m’K] | Electron-lattice coupling factor
J [J/m7] Laser fluence

k [W/mK] | Thermal conductivity
L [um] Length

q, [W/m’] Heat flux

[¢] [-] Differential transform of heat flux ¢
t [ps] Time

t, [ps] Laser pulse duration

T [K] Temperature

T [-] Differential Transform of temperature 7
7y [ wm] Spatial profile parameter of laser

r [ um] Cylindrical axis coordinate

S [W/m’] Laser energy absorption rate

5 [-] Differential Transform of Laser energy absorption rate S
z [ nm] Cylindrical axis coordinate

Zs [1m] Optical penetration depth

T [ps] Relaxation time

Subscripts and Superscripts

r [-] Cylindrical axis direction

z [-] Cylindrical axis direction

e [-] Electron

/ [-] Lattice

ij.k [-] Integer index

The pulse duration of ultrashort-pulsed lasers lasts a very
short period. The highly unstable heat flux causes significant
temperature gradient in the materials. Under the circumstances,
the Fourier heat transfer model is not appropriate because the
effects of the speed of thermal wave are no longer able to be
neglected. The hyperbolic heat transfer model is much suitable
for this kind of problems. Tien and Qiu [5,6] provided the
fundamental basis for the applications of the hyperbolic two-
step model to laser manufacturing by calculating macroscopic
physical quantities of electric and heat flux. Several researchers
[7-10] studied heat transfer in a thin film exposed to ultrashort-
pulsed lasers based on the hyperbolic two-step model. The
success in determining physical properties, including the
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electron heat capacity, electron relaxation time, electron
conductivity, reflectivity, and absorption coefficient using full-
run quantum treatments by Jiang and Tsai [11] makes the
applications of the hyperbolic two-step model more feasible
and practical.

Hyperbolic heat transfer problems have been widely studied
using a variety of methods [12-14]. Differential transformation
method [15,16] is a function transformation technique based on
Taylor’s series. The present paper applies the hybrid
differential transform/finite difference method to solve the
problems of heat transfer in a thin film subjected to an
ultrashort-pulsed laser. An axisymmetric case of a gold film
subjected to a laser beam is given as a numerical example.

MATHEMATICAL MODEL

Consider a 2-D axisymmetric thin film exposed to an
ultrashort-pulsed laser acting at the origin as shown in Figure 1.
The thin film made of gold has a diameter of Sum and a
thickness of 0.1um. The laser energy absorbed by electrons is
represented as the Gaussian heat source function [7-10]

— 2 t—2t
§=0947 =8 exp[—— — 1 —2.77(—2)’] 0
t z z 7 t

where S is the energy absorption rate, J is laser fluence, R is
surface reflectivity, ¢, is laser pulse duration, z; is optical
penetration depth and r, is spatial profile parameter. The
material properties of gold are listed in Table 1.

Ultrashort-Pulsed
Laser

$ golden film |$ 4
5L | 5 pm |

0.1 zm

z
Figure 1 A 2-D axisymmetric thin film irradiated by a laser
Based on the hyperbolic two-step model, the laser energy is
first absorbed by electrons and then transfer from the electron

system to the lattice system. The governing equations can be
given as follow [17]

Electron energy equations
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where 7, is electron temperature, 7; is lattice temperature, T, is
initial temperature, electron heat capacity C.(7,)=C,y(7T./T;) and
electron thermal conductivity k.(7,,T))=ky(T./T)) are given as
function of the electron and lattice temperature, k; is lattice
thermal conductivity, G is electron-lattice coupling factor, C; is
lattice heat capacity, 7, andt, are electron and lattice
relaxation time. ¢&,q> are the electron heat flux in r and
zaxes, and g¢/.q; are the lattice heat flux in rand zaxes,
respectively.

Eq. (2)-(4) and Eq. (5)-(7) represent energy conservation in
the electron system and in the lattice system, respectively. The
coupling effects of heat transfer between the electron and lattice
systems are given in Eq. (2) and (4). The effects of time lag in
heat transfer are given in Eq. (3), (4) and Eq. (6), (7). The
model is reduced to the conventional parabolic heat transfer
model if both 7 , and 7 ; vanish. If the electron temperature and
the lattice temperature are kept the same (7,=7}), the model is
further reduced to the one-step model.

The uniformly distributed electron and lattice temperature
are set to be 7;,=300°K and no heat flux exists at the beginning.

Initial conditions:
T,=T,=T,=300
e e Er at t=0 ®)
9.=9.=4,=4; =0
Heat flux across the surface of the thin film is neglected.

Boundary conditions:

r=0,r=5
z=0,z=0.1

q:=q; =0 at

al—a =0 at ©)

Table 1. Material properties of gold

[ 2.0 X107 um’K || R 0.93

(o 2510 um’K || s Ium

G 2.6 X10"Jjum’K Vs 1.52X10°um
J 500107 T jum’ b 0.1ps

ko 3 XA10°WumK || 7. | 0.04ps

ki 315X00°Wum’K || 7, | 0.8ps

DIFFERENTIAL TRANSFORM AND NUMERICAL
METHOD

The differential transform is one of transformation technique
based on Taylor’s expansion series. Assuming that f{¢) is an
analytic function in the time domain, the differential transform
of f(¢) at =0 is defined by

F(k):T[f(t)]:%:[d;;(t)]tzo k=123, (10)

where H is the time span of differential transformation. F(k) is
called the spectrum of f(¢) in the spectrum domain. The original
analytic function f{f) .can be given by the inverse differential
transform as the infinite sum in Eq. (11). In practice, f(¥) .is
usually approximated by the #-th partial sum of power series
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The addition and multiplication are defined directly based on
the operation of Taylor’s series. Assume that Ah(¢)=f(¢)g(?),
z()=At)/g(¢) and T[f(t)]=F(k), T1g(t)]=G(k), then the differential
transform of /(¢) and z(¢) are defined as follow

HE)=T{H0]= X F ()G -1)

1=0

F(k)-Y 2 0[ (%(Z)}G(k_l) (12)

G(0)

Z(k)=T[=(1)]=

The following numerical procedures for applying the hybrid
differential transform / finite difference method are used to
solve the current 2-D axisymmetric heat transfer problem of a
thin film exposed to an ultrashort-pulsed laser. First, apply the
differential transformation technique to the governing equations,
Eq. (1)~(7), with respect to the time 7. The resulting transform
equations in a recursive form are

Recursive electron energy equations:
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T0 =1
......................................................................... (13)
w0

7 (k)
= T (k Tl Tl T k—1 k

T(O)[ (0=ZIT.(0/7, ()T, )} —0r (k)

......................................................................... (14)
ﬂQz(lm)
- [T (k)— Z[T /71T (k- 1)} 1) _g: ry

70
......................................................................... (15)
Recursive lattice energy equations:

C  F e =
Qf(lk) 01 ) an(k) N e (16)
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r or
Ql (k+1)=—k, aT(;(k) O () oo (17)
,—Q, (k+1)=—k, S ’(k) COFR) e (18)

where the capital letters represent the differential transforms of
the functions of the corresponding lowercase letters, i.e., 0} is
the transform function of ¢; . Also, i(k),f,(k),g (k) are the
transform functions of 7.(f), T(¥), S(¢), respectively. Eq. (13)-
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(18) are recursive equations, which means the k-th order values
can be calculated from the previous (k-1)-th order results.
Because of symmetry, the right-half space domain is divided
equally into n,xn. equal subintervals, r;, i=1,2,3...,n,+1 and z;,
7=1,2,3,...,n.+1.The above equations are further discretized by
the finite difference method on each node as

Discretized electron energy equations:
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Discretized lattice energy equations:
cl%(m,,_,(kﬂ):—w
1
- [(O —(or (22
2 '11’" [(©O))in,; ()= (O ; (K)] 22)
=5 1@ (=01, o O]+ GU(T. ), ; (k) = (7)), ; ()]
"“(QJ S+
J OO (23)
= —g[(T, )i (K) =Ty, )= (Q) (k)
»
k+1, .
! 7( OOl (24)

kl T T z
=—E[(T1)i,j+1(k)—(T/)f,j_l(k)]—(Qz )i (k)
Boundary conditions and initial conditions given in the
spectrum domain are
Initial conditions:
(T, (=), ;(k)=Ty at k=0 forall i,

(0);j()=(0);.j(k)=0 at k=0 forall i,j ..cococovrrre. (26)
(02);,;(k)=(07); ;(k)=0 at k=0 forall i,j

Boundary conditions:
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ati=1landn, +1forallk
at j=1andn, +1forall k

Transform function of system variables at &=0 are given in
the initial conditions. The higher order values (k=1) of the
transform functions are calculated from the recursive equations
and boundary conditions. The values of system variables are
determined using the inverse differential transform method with
the n-partial sum (Eq.11) However, the differential transform is
only applicable within the time span, 0=¢=H. When a large
time span is used, it requires large n to achieve accurate
convergent values. Therefore, in practical applications, in order
to increase the convergence rate and to improve the accuracy of
solutions, it is usual to divide the time intervals ¢ into smaller
time increments At . The above numerical procedure is carried
out sequentially at each time increment Af, setting H=At for
each time increment. The initial conditions at each time
increment are obtained from the numerical solution at the
previous time increment.

NUMERICAL RESULTS AND DISCUSSION

The accuracy of analysis depends on the size of the time span
(time increment) and the terms of the partial sum in the inverse
process. Generally speaking, a larger time span requires more
terms used in the partial sum. The 7-order partial sum (#=7) is
used throughout this analysis. Four different time spans,
H=0.01ps, 0.0025ps, 0.0005ps, and 0.0001ps are used to check
the accuracy by comparing the values of the simulated laser
heat source function to the exact laser heat source function at
the origin (=0, z=0), which is the centre of the projecting laser
beam. The comparison is shown in Figure 2. Laser fluence is
set to be J=500x10""7um’.and pulse duration is set to be #,=
0.2ps. The laser intensity reaches its maximum at 7=0.2ps.
There is a very small difference between the simulated source
function and exact source function for #=0.0001ps. Hence, this
time span is used as time increments through out the paper.
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Figure 2 Comparison of simulated and exact laser heat source
function at the origin (=0,z=0)

The adequacy of mesh selection is checked by the
convergence test with different mesh sizes, 20x20, 30x30,
40%40, 50x50. Figure 3 shows the electron temperature at the
origin for Ops=t=0.5ps. Laser fluence and pulse duration are
kept unchanged. The results show that 2020 mesh and 30x30
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mesh are too coarse to obtain the accurate solution. On the
other hand, the electron temperatures from 40x40 mesh and
50x50 mesh have a very good match. Hence, the 50x50 mesh is
used in the remaining analysis.

3500

50 by 50
40 by 40

20 by 20

30 by 30

o
Q
a

-
=
2
©

oy
o
s

% ‘o1 T oz 03 ‘04 0s
time (ps)

Figure 3 Electron temperature at the origin (+=0,z=0) for
various mesh (20x20, 30x30, 40x40, 50x50)
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Figure 4 The electron and lattice temperature at the origin
(r=0, z=0) for J=500x10"21/sunr’.
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Figure 5 The electron and lattice temperature at the origin
(=0, z=0) for J=2000x10™"J/nr’

The electron and lattice temperatures at the origin for
J=500x10"%J/un’. are shown in Figure 4. Because the laser
energy is absorbed by free electrons first, the electron
temperature rises to 3300°K rapidly when the laser pulse is
applied. After the laser pulse vanishes, the electron temperature
gradually reduce to about 420 °K at /=20ps. Over the same
period of time, the lattice temperature gradually increases by



the energy flux from the electron system through the coupling
effects. The rate of temperature change in the electron system is
fast than that in the lattice system because the electron system
has much smaller heat capacity than the lattice system. After
the laser heat source is removed, the lattice temperature keep
rising due to continuous energy flux from the electron system
until the thermal balance between two systems is reached. The
balanced temperature is about 420 °K at #=18ps. Figure 5 shows
the electron temperature for J=2000x10"%J/um’. The stronger
laser heat source boots the maximum electron temperature to
about 6500 °K, shown in Figure 5. It also takes a longer time to
balance the energy flux between electrons and lattice. The
electron temperature is still much higher than the Ilattice
temperature after 20ps.
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Figure 6 Electron temperature on the top in the r direction,

(z=0) for J=500x10""2 /.
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Figure 7 Lattice temperature on the top in the r direction, (z=0)
for J=500x10™"*J/um’.

The electron and lattice temperatures along the » direction for
t=0.25ps, 0.5ps, 1ps, 5ps, 10ps and 20ps are shown in Figure 6
and 7. The results show the coupling effects between the
electron and lattice system. It is noted that the effects of the
thermal wave is not significant in r direction since the length is
much longer than the thickness. It is noted that there is no
significant temperature change for »>2.5um.

Figure 8 and 9 show the electron and lattice temperature
along the z direction at different time increments. At =0.25ps,
there is a significant temperature difference, about 2750°K,
between the top and bottom surface. The effects of thermal
wave propagation are indicated by decrease of electron
temperature on the top and increase at the bottom. The

Heat and mass transfer

temperature difference between the top and the bottom reduces
to about 300°K at 7/=0.5ps. The electron temperature is almost
uniformly distributed along the z-direction after =1ps. This
uniform temperature gradually reduces due to the
electron/lattice coupling effects. Because the lattice has a larger
heat capacity, the change of lattice temperature is not as
dramatic as the electron, shown in Figure 9. The lattice
temperature on the top increases first and on the bottom follows.
It is mainly due to the difference between the electron and
lattice temperature.

Figure 10 shows the lattice heat flux in the z direction on the
centre axis. The major electric heat flux occurs within 0.5ps.
After that, its magnitude drops quickly to the level of the lattice
heat flux, which has the larger values in the middle region
around 7=0.5ps. Figure 11 to 14 show the temperature
distribution of the electron and the lattice at several difference
time increments.
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Figure 14 Lattice temperature distribution at t=20ps

CONCLUSION

Temperature distribution for an axisymmetric heat transfer
problem of a thin film exposed to an ultrashort-pulsed laser is
successfully determined using the proposed hybrid differential
transform/finite difference method. The maximum electron
temperature can reach as high as several thousand degrees. The
equilibrium electron/lattice temperature is only a couple
hundred degrees. The results find obvious thermal wave
propagation along the z direction. The recursive procedure can
be implemented easily and efficiently.
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