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Abstract Probabilistic seismic hazard analysis (PSHA) is a regularly applied practice that
precedes the construction of important engineering structures. The Cornell-McGuire procedure is
the most frequently applied method of PSHA. This paper examines the fundamental assumption
of the Cornell-McGuire procedure for PSHA, namely, the log-normal distribution of the residuals
of the ground motion parameters. Although the assumption of log-normality is standard, it has
not been rigorously tested. Moreover, the application of the unbounded log-normal distribution
for the calculation of the hazard curves results in non-zero probabilities of the exceedance of
physically unrealistic amplitudes of ground motion parameters. In this study, the distribution of
the residuals of the logarithm of peak ground acceleration is investigated, using the database of
the Strong-motion Seismograph Networks of Japan and the ground motion prediction equation
of Zhao and co-authors. The distribution of residuals is modelled by a number of probability
distributions, and the one parametric law that approximates the distribution most precisely
is chosen by the statistical criteria. The results of the analysis show that the most accurate
approximation is achieved with the generalized extreme value distribution for a central part of a
distribution and the generalized Pareto distribution for its upper tail. The effect of replacing a
log-normal distribution in the main equation of the Cornell-McGuire method is demonstrated by
the calculation of hazard curves for a simple hypothetical example. These hazard curves differ
significantly from one another, especially at low annual exceedance probabilities.

Keywords ground motion variability · probabilistic seismic hazard analysis · hazard curve ·
ground motion prediction equation · peak ground acceleration

1 Introduction

Probabilistic seismic hazard analysis (PSHA) is a complicated and crucial problem of modern
seismology as it is related to the effects of strong earthquakes and their consequences for the
inhabitants. PSHA is applied to estimate the possible amplitudes of destructive seismic ground
motion and to provide the design loads for the construction of critical structures such as dams
and power plants. The main goal of such analysis is to minimize the negative effect of future
strong earthquakes. Although there are several methods of PSHA (Cornell 1968; Shumilina et al
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2000; Kijko 2008), the most frequently used method is the Cornell-McGuire procedure (Cornell
1968). The theoretical foundations, formulated by C.A. Cornell and L.Esteva (McGuire 2008),
were supplemented by the computer programs developed by R.K. McGuire (McGuire 1976, 1978),
which led to a method of PSHA known as the Cornell-McGuire procedure.

Ground motion variability is an important component of this method (Bender 1984; Bommer
and Abrahamson 2006). This component was introduced in the Cornell-McGuire procedure to
account for the effect of the scatter of the amplitude of seismic ground motion at a site (Cornell
1971) and is included in the main equation of this procedure. The common assumption is that
the ground motion variability can be modelled by a random variable with a log-normal distri-
bution (Joyner and Boore 1981). This implies that the residuals of ground motion parameters
are log-normally distributed about the predicted value or, equivalently, that the residuals of the
logarithms of these parameters are normally distributed. However, this hypothesis has not been
reliably tested. Moreover, the assumption of log-normally distributed residuals has become a
standard, and as a result usually is not tested but is accepted as a given.

The evidence for a log-normal distribution was confirmed by the Kolmogorov-Smirnov (KS)
test at the 90 per cent confidence limit (Campbell 1981). Nevertheless, although the hypothesis
was not rejected by the KS test, it does not imply that the hypothesis is true. The KS test
does perform well in a central part of a distribution, however, it is widely known that the test
demonstrates poor sensitivity to deviations from the hypothesized distribution that occur in the
tails.

The log-normal assumption is criticized in Raschke (2013), where author notes that the
natural distribution for residuals of maxima, such as peak ground acceleration (PGA), is the
generalized extreme value. The theory of extreme values is widely applied in the analysis of
natural disasters in general and in the analysis of seismic hazard in particular. Pisarenko and
Rodkin (2010) provides the results of the application of the extreme value theory for various
aspects of the analysis of natural disasters.

In general, a PSHA is applied to estimate ground motions with an annual probability of
exceedance down to 10−4, a typical annual exceedance probability value designated for nuclear
power plant design. However, in a PSHA performed for the Yucca Mountain nuclear waste
repository, probabilistic hazard curves were extrapolated to an annual exceedance probability
of 10−8. The peak characteristics of ground motion corresponding to an annual exceedance
probability of 10−7 were as high as 20 𝑔 for PGA and up to 1800 𝑐𝑚

𝑠 for peak ground velocity
(PGV) (Corradini 2003; Stamatakos 2004). This instance revealed a controversy in a fundamental
assumption of the modern Cornell-McGuire method. As pointed out e.g. in Abrahamson (2000),
at these low annual probabilities, the hazard estimates are controlled by the tail of the distribution
of the ground motion residuals. Since log-normal distribution is unbounded, extrapolation of a
hazard curve leads to the unlimited increase of the amplitudes of expected ground motions, with
the decreasing of the annual probability of exceedance.

On the other hand, some recent studies of the results of the Global Seismic Hazard Assessment
Program (GSHAP) revealed discrepancies between the observed seismicity and that predicted by
the resulting maps of this program (e.g. Kossobokov and Nekrasova 2011, 2012; Wyss et al 2012).
The authors of these studies concluded that the common methods of PSHA are inadequate and
need to be revised and probably modified.

One probable source of the revealed inadequacy is the assumption of the log-normal distribu-
tion of residuals of the ground motion parameter (e.g. PGA). An upper tail of the distribution
of the ground motion residuals controls the behaviour of hazard curves at long return periods.
Therefore, an accurate modelling of this distribution, especially at an upper tail region, is a
significant problem.
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The current study is methodological in nature and its main purpose is to introduce a suitable
method of studying the ground motion variability. In this study, an analysis of the distribution
of the residuals of the logarithm of PGA is performed in order to select a parametric law that
describes this distribution most accurately. Data obtained from the Japanese Strong-motion
Seismograph Networks were used in the study. The Japanese database was chosen mainly because
of a dense net of strong-motion stations that allows obtaining enough observations. A ground
motion prediction equation (GMPE) of Zhao et al (2006) was used for the calculation of the
forecast values of PGA. Statistical criteria show that the best approximation for the distribution
of residuals of the logarithm of PGA is achieved with the generalized extreme value distribution
(GEVD). The generalized Pareto distribution (GPD) is used to capture the behaviour of an
upper tail more accurately.

The remainder of the paper is organized as follows. In Section 2, the methods used for data
analysis are described. In Section 3, the main results of data analysis are presented and discussed.
An implication for PSHA is demonstrated in Section 4. Concluding remarks are summarized in
Section 5.

2 Methods

The method for studying the distribution of residuals is based on the sequential application
of the KS test and the Akaike information criterion (AIC), and a quantile-quantile plot. The dis-
tribution of the residuals of the natural logarithm of PGA is modelled by a number of parametric
distributions. The residual is defined as

𝜀 = ln(𝑃𝐺𝐴𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − ln(𝑃𝐺𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) (1)

where 𝑃𝐺𝐴𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the observed value and 𝑃𝐺𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the value calculated by using an
appropriate GMPE.

The typical GMPEs allow the calculation of median values of the ground motion parameters
by using their dependence on the magnitude, source to site distance, local soil conditions at a site,
source mechanism, and others. Such equations often have an empirical nature and are developed
based on vast databases of observed values of ground motion parameters (Boore and Joyner
1982). The selection of the most appropriate GMPE is not a trivial task and some guidance and
criteria for choosing the most appropriate GMPE for the application in a PSHA for a particular
site can be found in Scherbaum et al (2009) and Arroyo et al (2014). A comprehensive list of
GMPEs developed during the period 1964-2010 is presented in Douglas (2011).

In this study, data recorded by the Japanese Strong-motion Seismograph Networks were used.
The GMPE of Zhao et al (2006) was used for the calculation of the forecast values of PGA. This
GMPE was developed for the calculation of the ground motion parameters of subduction zone
earthquakes, it allows calculating a geometrical mean of the horizontal components of PGA, or
5% damped acceleration response spectrum.

In this study, the logistic distribution, the Student’s t-distribution and the GEVD were con-
sidered as alternatives to the normal distribution. Following a standard notation, where 𝜇 is a
location parameter and 𝜎 is a scale parameter, PDFs of these distributions can be written as
follows:

The PDF of Student’s t-distribution is defined as

𝑓𝜇,𝜎,𝑛(𝑥) =
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where 𝛤 is an Euler’s gamma function, 𝑛 is a number of degrees of freedom.
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The PDF of logistic distribution is defined as

𝑓𝜇,𝜎(𝑥) =
exp
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The PDF of the GEVD is defined as
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, 𝑥 ∈ (−∞; +∞), 𝜉 = 0

where 𝜉 is a shape parameter.
Statistical analysis was performed in the following order:

– Estimation of the distribution parameters by the maximum likelihood (ML) method.
– Testing the hypothesis that a sample belongs to the current distribution by the KS test at

0.05 significance level.
– Calculation of the AIC for hypotheses that were accepted by the KS test.

The application of the KS test (Massey 1951) for one sample allows rejecting the distri-
butions that do not fit the empirical data. The test statistic of this test with the Bol’shev’s
amendment (Bol’shev and Smirnov 1965) is calculated by using the formula

𝑆𝑘 =
6𝑛𝐷𝑛 + 1

6
√
𝑛

(2)

where 𝐷𝑛 = max (𝐷+
𝑛 , 𝐷

−
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𝑛 = max
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𝑛
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; 𝑛 is a

sample size, 𝑥1, . . . , 𝑥𝑛 - elements of a sample, sorted in ascending order, 𝐹 (𝑥, 𝜃) is a cumulative
distribution function (CDF) of a parametric model that undergoes the test.

An attractive feature of this test is that the distribution of its test statistic itself does not
depend on the underlying cumulative distribution function being tested. However, in composite
hypotheses testing, when the parameters of the probability distribution are estimated on the
analysed sample, the KS test loses this feature. In such instances the conditional distribution of
a test statistic depends on a number of factors (such as form of 𝐹 (𝑥, 𝜃), number of estimated
parameters, method of parameter estimation etc). Lemeshko and Lemeshko (2009) presents the
updated results (tables of percentage points and models of the distributions of statistics) for non-
parametric goodness of fit tests in testing composite hypotheses in case of using ML estimations.

The KS test rejects hypotheses for which the maximum deviation of the theoretical CDF
from the empirical CDF exceeds a critical value at a given significance level.

However, the KS test alone does not allow unambiguous conclusion about which parametric
model approximates the empirical distribution most accurately. Such a conclusion can be made
based on the calculation of the AIC (Akaike 1974) for hypotheses that were accepted by the KS
test. The criterion is defined as

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝑘 (3)

where 𝐿 is a maximised likelihood function, 𝑘 is a number of parameters of the probability
distribution model.

The parametric distribution for which the value of criterion is minimal is considered the best
approximation among the considered alternatives for the empirical distribution.
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The quantile-quantile plot allows comparing the quantiles of empirical and theoretical dis-
tributions. The conception of such a plot has emerged from the observation that for important
classes of distributions, the quantiles are linearly related to the corresponding quantiles of a
standard example from this class (Beirlant et al 2004). Linearity in a graph can be easily checked
by the eye and can further be quantified by means of a correlation coefficient.

3 Results and discussion

The results of the statistical analysis show that the best approximation of the distribution
of residuals is achieved with the GEVD. It is important to note that a similar conclusion was
reached in Dupuis and Flemming (2006) from theoretical considerations. In Dupuis and Flemming
(2006) the regression analysis was performed using both the GEVD and the normal distribution
as a model for the distribution of residuals, it was demonstrated that a better fit to the data
and in turn more accurate acceleration estimates are obtained with the use of the GEVD. A
similar conclusion in regards of the distribution of the ground motion residuals was also reached
in Raschke (2013).

Figure 1 demonstrates the histogram of residuals together with the fitted PDFs.
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Fig. 1: Histogram of residuals
(︁
𝜀 = ln(𝑃𝐺𝐴𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − ln(𝑃𝐺𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

)︁
and the fitted PDFs.

1.Histogram 2.GEVD 3.Normal 4.Student’s t 5.Logistic

Corresponding values of the AIC are presented in Table 1.
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Model AIC
GEVD 531.098
Normal 532.056

Student’s t 534.054
Logistic 537.948

Table 1: Values of the AIC for considered distributions

The CDF of the GEVD is defined as

𝐻𝜉,𝜇,𝜎(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
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, 𝜉 = 0

This is generalized form, also known as the Jenkinson-von Mises representation, which com-
bines three types of extreme value distributions. When 𝜉 = 0 it is equivalent to the Gumbel
distribution (type I), when 𝜉 > 0 it is equivalent to the Fréchet distribution (type II) and when
𝜉 < 0 it is equivalent to the Weibull distribution (type III) (Embrechts et al 1997).

Figure 2 demonstrates the quantile-quantile plot for the quantiles of the GEVD. It can be
seen from the plot, that an upper tail of the distribution of the residuals slightly deviates from
the GEVD. Accurate modelling of that tail is an important problem because it defines the hazard
curve at long return periods.
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Fig. 2: Quantile-quantile plot of sample data vs quantiles of the GEVD
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Therefore, the ”peaks over threshold” method was applied to fit an upper tail of the distribu-
tion of residuals more precisely. This method is based on fitting the GPD to values that exceed
a reasonably large threshold (Embrechts et al 1997). The GPD arises as a limiting distribution
of the excesses for a sufficiently large threshold value and is often used for modelling the tails of
empirical distributions. The CDF of the GPD is defined by the following function

𝐺𝜉,𝜈,𝛽(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1 −

(︁
1 + 𝜉 (𝑥−𝜈)

𝛽

)︁−1/𝜉

, 𝜉 ̸= 0

1 − 𝑒−
𝑥−𝜈
𝛽 , 𝜉 = 0

Similar to the GEVD, the GPD is also characterised by three parameters, namely location 𝜈,
scale 𝛽 and the shape parameter 𝜉. When the GPD is used as a model for a tail of some other
distribution its parameter 𝜈 defines the threshold from which a tail region of that distribution
begins. When 𝜉 = 0 the GPD is equivalent to the exponential distribution, when 𝜉 > 0 the GPD
has a heavy tail, when 𝜉 < 0 the GPD has a finite upper bound defined as 𝑥𝐹 = 𝜈 − 𝛽

𝜉 . Three
possible types of tail of the PDF of the GPD, with different values of the shape parameter are
shown in Figure 3.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

 

 
ξ<0
ξ=0
ξ>0

Fig. 3: Tails of PDF of the GPD with different values of parameter 𝜉

There are several methods for the estimation of the shape parameter. Well-known methods,
such as the Hill estimator (Hill 1975) and the Pickands estimator (Pickands 1975) are both based
on the asymptotic properties and require a significant number of observations. Applicability of
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these methods to the real observations is doubtful (Pictet et al 1998). In this study, therefore, a
shape parameter was estimated by using the ML method.

The robust estimation of the shape parameter 𝜉 requires an optimal choice of the threshold
value 𝜈. If too high a value of 𝜈 is chosen, too few exceedances and, consequently, high variance
estimators will be the result. When 𝜈 is too small, the estimators become biased. The procedure
for the optimal determination of the threshold value is proposed in Embrechts et al (1997). This
procedure utilises the linearity of the mean excess function for the GPD, which is defined as

𝑒(𝜈) = 𝐸(𝑋 − 𝜈|𝑋 > 𝜈) =
𝛽 + 𝜉𝜈

1 − 𝜉
(4)

This procedure suggests selecting the threshold value 𝜈 as a starting point of a linear segment
of the mean excess graph. Such a graph for sample data is presented in Figure 4.
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Fig. 4: Mean excess graph of sample data

By varying the threshold value and observing changes in the estimates of the rest of the
parameters of the GPD, the optimal threshold value can be determined. Evidence of such a
choice is the stabilization of the estimates of the scale and shape parameters. Once again, a
quantile-quantile plot is used as a tool for comparing the data and the model. An estimator of
the quantile of the GPD can be written as

𝑥̂𝑝 = 𝜈 +
𝛽

𝜉

[︂(︁ 𝑛

𝑁𝜈
(1 − 𝑝)

)︁−𝜉

− 1

]︂
(5)
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where 𝑛 and 𝑁𝜈 are sample size and number of exceedances, respectively, and 𝜈, 𝛽 and 𝜉 are
estimates of the GPD parameters.

Quantile-quantile plots of a tail of residual data versus quantiles of the GPD, with the values
of the shape parameter estimated by the ML method for the GEVD and the GPD are shown
in Figure 5 and Figure 6. The estimates of a shape parameter differ for the instances where the
GEVD is used as a model for a full range of residuals and where the GPD is used additionally
to fit an upper tail more accurately. The estimates are 𝜉 = −0.245 for the first instance and
𝜉 = −0.359 for the second.

Therefore, the distribution of residuals is represented by a hybrid distribution model that
consists of the GEVD in a central region and the GPD in a region of an upper tail.
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Fig. 5: Quantile-quantile plot of the tail fraction of residuals, 𝜉 is estimated for the GEVD

A similar analysis was performed during this study by using the GMPEs of Atkinson and
Boore (2003) and Kanno et al (2006) to check how generally applicable these results are. The
results obtained with these GMPEs are very close to those presented in this study.

4 Implication for Probabilistic Seismic Hazard Analysis

For a demonstration of the effect of replacing a normal distribution, hazard curves were
calculated in the following manner:

1. Using an unbounded normal distribution.
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Fig. 6: Quantile-quantile plot of the tail fraction of residuals, 𝜉 is estimated for the GPD

2. Using a normal distribution, truncated at a specified level of ground motion.
3. Using the GEVD.
4. Using a hybrid distribution model that consists of the GEVD for a central region and the

GPD for an upper tail.

A brief review of the Cornell-McGuire probabilistic seismic hazard analysis procedure could
be helpful for understanding the following material.

To begin with, recap of a PDF of log-normal distribution could be useful. If the distribution
of a random variable is log-normal, its PDF has the following form

𝑓𝜇,𝜎(𝑥) =
1

𝑥𝜎
√

2𝜋
𝑒−

(ln 𝑥−𝜇)2

2𝜎2 , 𝑥 > 0

The transformation 𝑌 = ln𝑋 leads to a normally distributed random variable with a location
𝜇 and a scale 𝜎 parameters. The values of these parameters are estimated by using an appropriate
GMPE. Given an earthquake with magnitude 𝑚, the probability can be calculated that ground
motion at distance 𝑟 from the source will exceed a particular level 𝑎0 by the following equation

𝑃 (𝑦 ≥ ln(𝑎0)|𝑚, 𝑟) =
1√
2𝜋𝜎

∫︁ ∞

𝑎0

𝑒−
(𝑦−𝜇)2

2𝜎2 𝑑𝑦 (6)

This equation can be conveniently expressed in terms of the standard normal distribution

𝑃 (𝑦 ≥ ln(𝑎0)|𝑚, 𝑟) = 1 − 𝛷(𝑧) (7)
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where 𝑧 = ln(𝑎0)−𝜇
𝜎 is a standardised normal random variable and 𝛷(𝑧) is the standard normal

CDF.
Next, consider a site surrounded by 𝑁 seismic sources. Each seismic source is characterized by

magnitude 𝑀𝑖, distance to site 𝑅𝑖 and annual activity rate 𝜈𝑖. The parameters of future seismic
events are yet unknown, therefore 𝑀𝑖 and 𝑅𝑖 are random variables with corresponding PDFs
𝑓𝑀𝑖

(𝑚) and 𝑓𝑅𝑖
(𝑟). The total annual rate of exceedance of a particular level of ground motion

𝑎0 can be calculated as follows

𝜆(𝑦 ≥ ln(𝑎0)) =

𝑁∑︁
𝑖=1

𝜈𝑖

∫︁∫︁
𝑃 (𝑦 ≥ ln(𝑎0)|𝑚, 𝑟)𝑓𝑀𝑖

(𝑚)𝑓𝑅𝑖
(𝑟) 𝑑𝑟𝑑𝑚 (8)

From an assumption that the sequence of major seismic events can be modelled by the
Poisson distribution it follows that the probability for a particular level of ground motion 𝑎0 to
be exceeded at least once during the time interval 𝑇 can be calculated (Anderson and Brune
1999) as follows

𝑃 (𝑦 ≥ ln(𝑎0), 𝑇 ) = 1 − exp(−𝜆(𝑦 ≥ ln(𝑎0)) × 𝑇 ) (9)

The equation 9 with 𝑇 = 1 year defines the seismic hazard curve, the main result of the
PSHA. For small values of the annual rate of exceedance (𝜆(𝑦 ≥ ln(𝑎0)) ≪ 1), equation 9 can be
approximated as

𝑃 (𝑦 ≥ ln(𝑎0), 𝑇 = 1) = 1 − exp(−𝜆(𝑦 ≥ ln(𝑎0))) ∼= 𝜆(𝑦 ≥ ln(𝑎0)) (10)

As emphasized in Wang (2011), 𝑇 = 1 year is neglected on the right side of 10, thus both
sides of this equation contain a dimensionless quantity, i.e. the annual probability of exceedance.

As can be seen from equation 8, the ground motion variability is explicitly incorporated in the
calculation of the seismic hazard. It is, namely used in a calculation of the conditional exceedance
probability of a ground motion of a particular level 𝑎0.

The normal distribution is unbounded, therefore the further a hazard curve extrapolated, the
higher the level of ground motion is expected to be exceeded. The necessity of an upper bound
of the ground motion, as well as the difficulties related to its determination are summarized
in Bommer et al (2004). Strasser et al (2004) proposed the truncation of the distribution of
residuals at a level of three standard deviations above the median as a measure to prevent the
effect of unbounded normal distribution.

Given a normal distribution, truncated at a value 𝑎𝑇 , the PDF has to be renormalized to
satisfy the fundamental properties of PDF. Then, the probability that an earthquake with mag-
nitude 𝑚 will produce ground motion at distance 𝑟 from the source that exceeds a particular
level 𝑎0 can be expressed as

𝑃 (𝑦 ≥ ln(𝑎0)|𝑚, 𝑟) =

⎧⎨⎩1 − 𝛷(𝑧)
𝛷(𝑧𝑇 ) , 𝑦 ≤ 𝑎𝑇

0, 𝑦 > 𝑎𝑇

(11)

where 𝑧𝑇 = ln(𝑎𝑇 )−𝜇
𝜎 .

After the replacement of a normal distribution by the GEVD, the same probability can be
expressed as

𝑃 (𝑦 ≥ ln(𝑎0)|𝑚, 𝑟) = 1 −𝐻𝜉(𝑧) (12)

where 𝐻𝜉 is a standardised CDF of the GEVD.
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And after the replacement of a normal distribution by a hybrid model, this probability can
be written as

𝑃 (𝑦 ≥ ln(𝑎0)|𝑚, 𝑟) =

⎧⎨⎩1 − (1 − 𝑝)
𝐻𝜉(𝑧)
𝐻𝜉(𝑧𝜈)

, 𝑦 ≤ 𝜇 + 𝜈

𝑝(1 −𝐺𝜉(𝑧)), 𝑦 > 𝜇 + 𝜈

(13)

where 𝑧𝜈 = ln(𝑎𝜈)−𝜇
𝜎 , 𝑎𝜈 = exp(𝜇 + 𝜈), 𝐺𝜉(𝑧) is a standardised CDF of the GPD, 𝑝 is a fraction

of the residual values that fall in a tail region.
For the purpose of demonstration, a simple hypothetical example was considered. This ex-

ample is similar to an example used in Baker (2008) and assumes there are two seismic sources
that may affect the site. Both sources are subduction slab sources. The first source is capable of
producing an earthquake of magnitude 𝑚1 = 5.5 every 100 years (𝜈1 = 0.01) and is located at a
depth of 𝑑1 = 30 𝑘𝑚 and a distance of 𝑟1 = 140 𝑘𝑚 from the site. The second source is capable
of producing an earthquake of magnitude 𝑚2 = 6.5 every 500 years (𝜈2 = 0.002) and is located
at a depth of 𝑑2 = 30 𝑘𝑚 and a distance of 𝑟2 = 200 𝑘𝑚 from the site. The soil conditions at a
site are characterized as medium soil (𝑉𝑆30 = 250 𝑚

𝑠 ). For the given combinations of parameters,
a GMPE of Zhao et al (2006) gives ln(𝑃𝐺𝐴) values of 𝜇1 = 1.8404 𝑐𝑚

𝑠2 , 𝜇2 = 2.0233 𝑐𝑚
𝑠2 and a

standard deviation 𝜎 = 0.6840, which is a constant in this GMPE for seismic events generated
by sources of identical type. With the defined earthquake scenarios, equation 8 simplifies to the
following

𝜆(𝑦 ≥ ln(𝑎0)) = 𝜈1 × 𝑃 (𝑦 ≥ ln(𝑎0)|𝑚1, 𝑟1) + 𝜈2 × 𝑃 (𝑦 ≥ ln(𝑎0)|𝑚2, 𝑟2) (14)

By repeating these calculations for a range of values of PGA, a total hazard curve can be
constructed. Hazard curves calculated by using the above-mentioned distributions are represented
in Figure 7.

As can be seen, the hazard curve calculated by using the GEVD displays the highest ground
motion estimates, almost down to an annual exceedance probability of 10−6 where it crosses
with the hazard curve calculated by using an unbounded normal distribution. The hazard curve
calculated by using a hybrid distribution model is very close to the curve calculated by using a
truncated normal distribution, down to an annual exceedance probability of 10−5, after which it
estimates higher ground motions and the difference gradually increases.

As can be seen from Figure 7, the hazard curves calculated by using the GEVD and a hybrid
distribution model depend strongly on the shape parameter 𝜉. Although the method applied
for statistical analysis in this study is satisfactory, the estimations of the shape parameter can
only be called preliminary. These estimations were obtained based on the strong ground motion
records from a particular region and, therefore, are valid only for this particular region, which,
in this instance is Japan. Such analysis should be performed for a multiple number of datasets
of the recordings of seismic ground motions that were induced by earthquakes of various types
and magnitudes, and were recorded worldwide, for a possible generalization of these results.

5 Conclusion

In this study, the distribution of the residuals of ln(𝑃𝐺𝐴) was modelled by a number of
probability distribution laws, using the database of the Strong-motion Seismograph Networks
of Japan and a GMPE of Zhao et al (2006). The results of the analysis indicate that the best
approximation for the distribution of residuals was obtained with the GEVD. This result is
consistent with the conclusions of Dupuis and Flemming (2006) and Raschke (2013). The ”peaks
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Fig. 7: Hazard curves calculated using different parametric distributions

over threshold” method was applied in an attempt to model an upper tail of the distribution
of residuals more precisely. Thus, the resulting distribution of residuals is a hybrid model that
consists of the GEVD in a central region and the GPD in a region of an upper tail. Similar analysis
was performed during this study by using GMPEs of Atkinson and Boore (2003) and Kanno et al
(2006), which demonstrated analogous regularities.

The estimations of the shape parameter of the GEVD and the GPD resulted in negative
values, indicating that the distribution of residuals has a finite upper bound. Consequently, a
maximum value of PGA can be associated with an earthquake scenario involved in the PSHA.
This approach is preferred to the truncation procedures proposed in Strasser et al (2004), because
a maximum value of PGA, unlike the truncation of a distribution, has a clear physical meaning.

Hazard curves were calculated for a simple hypothetical example to demonstrate the effect of
the replacement of the normal distribution. Hazard curves were calculated by using the GEVD
and a hybrid distribution model, which differ from each other and from the curves calculated by
using the normal distribution. This difference is particularly evident at low annual exceedance
probabilities.
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