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ABSTRACT 
The focus of this paper is on mathematical formulation and 

computation of uniform flow solutions in horizontal or nearly 
horizontal pipes. Continuity and momentum equations are 
derived considering an arbitrary number of fluids. Closure 
relationships are introduced and complete definitions of 
hydraulic diameters are given for co-current and counter-
current flows. A numerical procedure to compute phase hold-
ups and pressure gradients is outlined. The iterative and direct 
method is shown to be robust and not limited by the choice of 
the friction factor correlations needed to define shear stresses. 
Uniform flow equations are linearized so that Newton’s 
methods can be applied in the search for solutions. It is given 
evidence that the Jacobian matrix of the shear stress functions 
can be used as a measure of the flow stability. 

INTRODUCTION 
Complex mixtures of immiscible fluids flowing together are 

frequently encountered in a variety of practical applications in 
civil, hydroelectric and nuclear plants as well as in chemical-
process, petroleum, power and space industries. Classically 
they are referred to as multi-fluid or multi-phase flows. 

Two fluid liquid-gas flows occur naturally in many 
hydraulic structures. In dam bottom outlets and side-spillways 
and in overflow structures commonly used in sewer systems 
such as baffled weirs and leaping weirs, significant water-air 
interactions may develop at the interfaces, so that incorrect 
results may be obtained when considering classical hydraulic 
theories. Two-fluid models should then be used in these cases 
to capture the actual flow behaviour. Two fluid liquid-gas and 
three-fluid liquid-liquid-gas flows have great importance in the 
oil and gas industry, given that all hydrocarbon reservoirs 
contain water, oil and gas in proportions which vary during the 
exploitation. When the production of a new petroleum reservoir 
starts, owing to the huge pressure existing in the accumulation, 

the quantity of water in the well flow rate is negligible, 
regardless of whether the field is bounded or not by an aquifer. 
In this first stage, two-fluid flows are far more prevalent than 
three-fluid flows. With ageing of the field, the productivity 
decreases as a result of the pressure depletion associated with 
fluid production. The negative effects of this inevitable pressure 
reduction are usually mitigated either by the water infiltrating 
naturally from a surrounding or underlying aquifer or by 
artificially injecting the water into the depleted reservoir. In 
both cases the quantity of water in the well flow rate grows 
significantly. In this second stage, three-fluid flows are far 
more frequent than two-fluid flows. On a world-wide basis, 
most petroleum companies produce already more water than 
oil. Furthermore most oil corporations have recognised the 
economical advantages of sending the well production directly 
to existing platforms, where the hydrocarbons may then be 
separated, instead of building new pricey platforms near the oil 
fields. Three-fluid flows therefore are becoming recurrent also 
in pipelines used for hydrocarbon recovery. 

In this work, the analysis will be limited to incompressible 
and isothermal stratified shear flows, focusing on the definition 
and computation of uniform solutions in horizontal or nearly 
horizontal pipes. Continuity and momentum equations will be 
derived considering an arbitrary number of fluids. Closure 
relationships will be introduced and complete definitions of 
hydraulic diameters will be given for co-current and counter-
current flows. A numerical procedure to compute phase hold-
ups and pressure gradients will be outlined. The iterative and 
direct method will be shown to be robust and not limited by the 
choice of the friction factor correlations needed to define shear 
stresses. Uniform flow equations will be linearized thus making 
Newton’s methods applicable in the search for solutions. It will 
be given evidence that the derived coefficients can be used as a 
measure of the flow stability. 

 



 

NOMENCLATURE 
The following list of symbols is common to Part 1, Part 2 

and Part 3 of “Multi-fluid stratified shear flows in pipes”. All 
parts are presented at HEFAT 2007. 

 
Roman symbols: upper-case letters 
A  [m2] Area of the pipe 

pA  [m2] 
Area of the cross-section surface occupied by 
fluid p  

D  [m] Diameter of the pipe 

pD  [m] 
Diameter of the equivalent hydraulic conduit 
wetted by fluid p  

pH  [m] 
Height of the fluid-fluid interface between fluid 
p  and fluid 1+p  

P  [m] Perimeter of the pipe 
i
pP  [m] 

Perimeter of the wall-fluid interface wetted by 
fluid p  

j
pP  [m] 

Perimeter of the fluid-fluid interface between 
fluid p  and fluid 1+p  

pQ  [m3s-1] 
Volumetric discharge of fluid p  through its 
corresponding cross-section surface 

pU  [ms-1] 
Average velocity of fluid p  through its 
corresponding cross-section surface 

 
Roman symbols: lower-case letters 
c  [ms-1] Wave celerity 

i
pf  [-] 

Friction factor at the wall-fluid interface wetted 
by fluid p  

j
pf  [-] 

Friction factor at the fluid-fluid interface between 
fluid p  and fluid 1+p  

g  [ms-2] Acceleration due to gravity 
i  [-] Imaginary unit 
k  [m-1] Wave number 
m  [-] Calibration parameter 
n  [m] Number of fluids 
r  [m] Absolute roughness of the pipe  
t  [s] Time 

z
y
x

 [m] Cartesian axis directions 

 
Greek symbols: upper-case letters 

pΠ  [kgm-1s-2] 
Pressure acting on the cross-section surface 
occupied by fluid p  

inf
pΠ  [kgm-1s-2] 

Pressure acting on the lowermost part of the 
cross-section surface occupied by fluid p  

sup
pΠ  [kgm-1s-2] 

Pressure acting on the uppermost part of the 
cross-section surface occupied by fluid p  

i
pΤ  [kgm-1s-2] 

Shear stress acting on the wall-fluid interface 
wetted by fluid p  

j
pΤ  [kgm-1s-2] 

Shear stress acting on the fluid-fluid interface 
between fluid p  and fluid 1+p  

 
Greek symbols: lower-case letters 

p

p

p

γ
β
α

 [-] 
Coefficients used to define  critical conditions at 
the fluid-fluid interface between fluid p  and 

fluid 1+p  

θ  [°] Angle of inclination of the pipe 

pκ  [m-1] 
Curvature of the fluid-fluid interface between 
fluid p  and fluid 1+p  

λ  [m] Wave length 

pµ  [kgm-1s-1] Dynamic viscosity of fluid p  

pν  [m2s-1] Kinematic viscosity of fluid p  

pρ  [kgm-3] Density of fluid p  

pσ  [kgs-2] 
Surface tension at the fluid-fluid interface 
between fluid p  and fluid 1+p  

pψ  [-] Momentum coefficient of fluid p  

ω  [rads-1] Wave angular frequency  
 

Superscripts 
~ [-] Dimensionless quantity 
-  [-] Steady state value 
^ [-] Perturbed value 
i  [-] Wall-fluid interface 
j  [-] Fluid-fluid interface 
inf  [-] Lowermost part of the cross-section surface 
sup  [-] Uppermost part of the cross-section surface 

 
Subscripts 

qp,  [-] 
Indexes denoting either the fluid, the wall-fluid 
interface etc. np ,...,1=  or the fluid-fluid 
interface 1,...,1 −= np  

 

GOVERNING EQUATIONS 
Consider the pipe geometry shown in Figure 1. At any time 

t  the flow of each phase is predominantly along the positive x  
direction and at any position the pipe is inclined at an angle θ  
from the horizontal. Only incompressible and isothermal flows 
are here considered, therefore a multi-fluid flow system can be 
modelled using a combination of one-dimensional continuity 
and momentum equations in integral form. 

 
Figure 1. Steady uniform flow profiles. 
 
By assuming a fully developed flow with non significant 

acceleration or change in properties (i.e. ( ) ( ) 0=∂∂=∂∂ xt ) 
continuity equations can be expressed in the following form: 

ppp QAU =  (1) 



 

while momentum equations result in: 
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CLOSURE RELATIONSHIPS 
Additional closure laws are required to solve the above set 

of equations because the number of variables to be determined 
exceeds the available number of equations. The additional 
relationships follow from the hypothesis of hydrostatic pressure 
distribution on the flow cross-section, as sketched in Figure 2, 
implying: 
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d
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and from definitions of wall-fluid and fluid-fluid shear 
stresses in terms of the kinematic flow field so that: 
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In particular, following the approach usually adopted in 
multi-phase flow calculations, the average wall-fluid shear 
stresses can be predicted in terms of the average velocities of 
the fluids as: 
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while the fluid-fluid shear stresses can be calculated as: 
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The interfacial friction factors are therefore evaluated as 
equal to the wall friction factors pertaining to the faster phase at 
each interface [2]. Possible definitions of hydraulic diameters 
for co-current and counter-current flows are reported in 
Appendix. 

A general method for evaluating the wall friction factors in 
two-phase one-dimensional models is to adopt single-phase 
flow correlations in terms of the Reynolds number and the pipe 
roughness. The definition of the interfacial friction factors 
represents instead a much more controversial question, because 
of the complex interactions occurring between the two fluids 
when the interface is not flat [1,2]. Considerable attention has 
been given to this issue over the past years and many 
correlation laws have then been elaborated. The same approach 
has been adopted in three-phase one-dimensional models and 
friction factors have been obtained partly modifying two-phase 
flow correlations and partly proposing new ones [4,5]. 

It is to be stressed that the accuracy of the predictions (i.e. 
pressure gradient and phase hold-ups) may vary in a significant 
manner using different correlation laws and even the most 
appropriate one may still result in considerable discrepancies 
between predictions and experimental measurements. Clearly, 
this is true of both two-phase and three-phase flows. 

 
Figure 2. Hydrostatic pressure distribution. 
 

COMPUTATION OF SOLUTIONS 
The hypothesis of hydrostatic pressure distribution on the 

cross-section and previous definitions of shear stresses make it 
possible to rearrange momentum equations so as so as to yield 

1−n  non-linear algebraic equations: 
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with the functions pF  being defined as: 
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These equations, when the fluid properties and pipe 
geometric characteristics are given and the volumetric flow 
discharges are specified trough continuity equations, depend 
just on 1−n  unknowns i.e. the 1−n  interface levels 
( )11 −np ,...,H,...,HH  and make the problem well posed. 

Instead of searching for the zeroes of the non linear system 
of equations directly, an equivalent and easier to handle 
problem is here considered. In fact, defining a new function *F  
as: 

pp FFF =*  (10) 

it is easy to show that each solution ( )*
1

**
1 −np ,...,H,...,HH  

which minimises *F  is also a solution of the original problem 
when the following constraints are satisfied: 
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( )( ) 0det ≠FJ  (12) 

with each element of the Jacobian matrix of the original 
system being defined explicitly as: 
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It is to be stressed that the Jacobian matrix of the shear 
stress functions is also relevant in performing viscous Kelvin-
Helmholtz stability analysis of the flow configurations, as it 
will be fully shown in Part 3 of this work. 

To solve the equivalent optimisation problem an iterative 
direct method can be adopted. Basically the numerical 
algorithm generates a sequence of hyper-cubes 1−n

lC  in which 
the solution is likely to be found and a sequence of 
approximated solutions ( )*

1
**

1 lnpll ,...,H,...,HH −  which are 

included in 1−n
lC . Mathematically speaking it is: 
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The approximated solutions are obtained examining directly 
the values assumed by the function *F  on a finite number of 
points either regularly or irregularly spaced into a grid in 1−n

lC  
and taking the minimum. The region in which to search for 

solutions is completely defined through the coordinates of the 
open intervals ] [b

pl
a
pl HH , . The geometric points a

plH , b
plH  and 

the mean points ( ) 2b
pl

a
pl

c
pl HHH +=  are then used to orient 

the search in the next iteration, yielding 12 −n  possible 
alternatives for the choice of 1

1
−

+
n
lC . In particular it is: 
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Since after each iteration the bounds containing the 
solutions decrease by a factor of two, the number of iterations 
required to achieve a given tolerance in the solution can be 
determined a priori. Once the steady state solutions have been 
found, all the other geometric quantities follow quite 
straightforwardly and the actual pressure gradient is calculated 
as the average of the pressure gradient in each phase. 

The procedure herein illustrated describes how the routine 
proceeds when a unique solution is expected to exist. Whenever 
non-unique solutions are expected to exist, instead, the routine 
finds them by applying the single-solution numerical method to 
a discrete set of disjoint subintervals of the solution space. 
Quite obviously, in such a case the procedure may either 
converge or not, thus indicating respectively that a solution 
exists or not in a particular subinterval. The maximum number 
of multiple solutions which can be obtained is clearly equal to 
the number of disjoint subintervals. Given these premises, it 
follows immediately that, no matter how many solutions may 
exist, convergence to at least one solution is always assured as 
long as the grid points are sufficiently numerous. Note that the 
choice of the number of grid points is determined by the 
Frobenius norm of the Jacobian matrix ( )FJ : 
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Different numerical methods can be implemented in order 
to solve the structure of multi-phase flow [3,4,5]. All those 
procedures and the one herein described, however, reflect and 
extend the original approach presented for two-phase flow 
calculations [6]. 

 



 

CONCLUSIONS 
In this paper a general mathematical model aiming at 

computation of uniform flow solutions in horizontal or nearly 
horizontal pipes has been developed. The model stems from 1-
D continuity and momentum equations in integral form treating 
an arbitrary number of fluids. Closure relationships have been  
introduced and possible definitions of hydraulic diameters have 
been described for co-current and counter-current flows. A 
numerical procedure to compute phase hold-ups and pressure 
gradients has been outlined. The iterative and direct method has 
been shown to be robust and not limited by the choice of the 
friction factor correlations needed to define shear stresses. 
Linear equations have been also considered to appropriately use 
Newton’s methods. It has been pointed out that the Jacobian 
matrix of the shear stress functions is strictly needed to perform 
viscous Kelvin-Helmholtz stability analysis. 
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APPENDIX. HYDRAULIC DIAMETERS FOR CO-
CURRENT AND COUNTER-CURRENT FLOWS 

In the multi-fluid flow model, equivalent hydraulic 
diameters are defined according to the relative velocity of the 
phases. Adjustable definitions need to be adopted because the 
velocities of the fluids may either be of comparable magnitude 
(i.e. liquid-liquid systems) or differ significantly from one 
another (i.e. gas-liquid systems). The general case in which 
each fluid has a contact surface with the wall and with both the 
lower and upper fluids is described here in details. Specific 
cases in which the fluid has a contact surface with the wall and 
with either the lower or upper fluid are not treated since they 
can be easily derived from the general case. 

Flows are recognised as co-current whenever the 
lowermost, intermediate and uppermost fluids run along either 
the positive or negative axis direction (i.e. 01 ≥− pp UU  and 

01 ≥+ppUU ). Definitions of the hydraulic diameters follow 
quite straightforwardly from considerations on the relative fluid 
velocities. 
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A first case of counter-current flow may be identified 
whenever the lowermost fluid and the intermediate one move 
co-currently along either the positive or negative axis direction 
while the uppermost fluid runs in the opposite way (i.e. 

01 ≥− pp UU  and 01 ≤+ppUU ). Possible and different velocity 
distributions may then be discerned yielding various definitions 
for the hydraulic diameters. 
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A second case of counter-current flow may be identified 
whenever the uppermost fluid and the intermediate one run co-
currently along either the positive or negative axis direction 
while the lowermost fluid moves in the opposite way (i.e. 

01 ≤− pp UU  and 01 ≥+ppUU ). Possible and different velocity 
configurations may then be discerned yielding various 
definitions for the hydraulic diameters. 
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The last case of counter-current flow which may be 
observed occurs whenever the intermediate fluid runs along 
either the positive or negative axis direction while the 
lowermost and uppermost fluids flow co-currently in the 
opposite way (i.e. 01 ≤− pp UU  and 01 ≤+ppUU ). The hydraulic 

diameters result so defined: 
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