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ABSTRACT

It has been observed that classical thermomechanics
can be founded upon the requirement that the total en-
ergy equation is to be consistent with the first axiom of
Newton. Then, since the boost velocity in Galilean trans-
formations is arbitrary, a balance of forces must result.
Mass invariance is then a consistency requirement.

Newtonian continuum mechanics is not totally con-
sistent since material response to applied forces is not
constrained by the first axiom of Newton: the larger Eu-
clidean group must be adopted for all constitutive aspects
of the theory. This dichotomy allows the Cauchy stress
tensor symmetry to be explored from the thermal energy
equation covariance under E . This scalar equation must
be covariant under rigid body motion as a reflection of
material response being independent of observer motion.
The angular momentum equation holds for consistency.

THE STARTING POINT

The development in the paper of Green and Rivlin [1]
is expanded into a more complete form, including body
moments and surface couples and with additional back-
ground detail. The early years of the twentieth century
saw a change in the understanding of classical mechan-
ics. Thus, Tait [2], in 1899, could declare that mechan-
ics is founded upon the basic principles of conservation
of matter and conservation of energy. After Minkowski
had introduced Lorentz transformations into the geomet-
ric structure of the mechanics of Finstein, it became clear
that transformation groups and symmetry considerations
must be a central feature of any theory of mechanics. The
early work on quantum mechanics enhanced this convic-
tion. The adoption of such understanding in classical con-
tinuum mechanics has been sparse with the notable ex-
ception of Green and Rivlin [1] and Marsden and Hughes
[3]. See also Noll [4]. Its adoption in constitutive the-
ory is better known: see Truesdell and Noll [5]. Recent
works include Muschik and Restuccia [6]. The important
application to Newtonian cosmology is not considered.

Attention is usually directed at the second axiom of
Newton since it provides, directly, a formula for comput—

ing body motion. However, it is the first axiom of New-
ton that takes on a deeper meaning since this axiom im-
plies the existence of inertial frames and the action of the
Galilean transformation group, G,, on the event world
W, (axiom I below). A symmetry group is thus intro-
duced into the theory (of both particle and deformable
body dynamics). Herein (as in Moulden [7]) observers,
o € O p, are identified as being associated with a coordi-
nate frame on W . and hence are relative. Each observer
has a set of measurable quantities attached: the thermo-
mechanical observables of the theory.

Write the Galilean group G, as:

x* = Qx + Vrt + Xq; t* =t 4+t (1)
where: Q € SO 3 is a constant orthogonal transformation.
Equation (1) relates equivalent Newtonian observers to a
given Newtonian observer. Vo € R is a constant boost
velocity while vector xo € R3 and the scalar to € T C R
denote constant space and time translations. Group G,
is a subgroup of the special Euclidean group SE ,:

x* = Q(t)x +d(t); t*=t+t (2a)
where Q(t) € SOj5 is the time dependent rotation and
d(t) € R3 denotes an arbitrary time dependent transla-
tion vector. Attention must also be directed to the full
Euclidean group E,, with:

x* = Q(t)x + d(t); t* =t+1 (2b)
but now Q(t) € O3 and E,, relates equivalent Fuclidean
observers. The corresponding velocity transformation is:

v =Qv+ Qx+d(t) (3)
which reduces to v* = Qv 4+ V for the Galilean group.
NOTATION

E. G,CE, Fuclidean and Galilean groups
ng, M3, skew and symmetric matrices
SO3 C O3 special and general orthogonal groups
0cOp set of observers {o}
x€S; CR3 coordinate in space of simultaneity
SE, CE, special Euclidean group
teT CR time and time axis and reals R
W, ={(x,t)} the event world
a; ¢ R3 the acceleration and vorticity vectors

d(t) e R3 arbitrary translation



d(x,y) metric on Euclidean space
D and W symmetric and skew parts of L
fp; fr; fg € R3 body, inertial, surface forces
L=Vx(v)elLs; velocity gradient
l.; m, € R? body and surface couples
Melgs couple stress tensor
Q €SO3 or O3 rotation operator
tand T stress vector and Cauchy stress tensor
veR3 P peR velocity, pressure, density
Vr e R3 arbitrary boost velocity
Z(t) =QQT e M3, , Coordinate spin
Zr =0 € R3 axial vector, r(t), of Z

B; B¢ material body and its exterior

0 =BYB* universal body
0B; n boundary of B and its outward unit normal
D; CR? space occupied by B at time ¢
M(B); V(B) e R body mass and volume
A(T)eR the working action
Eiot(B) € R the total energy of B
P(B); Q(B) € R mechanical and thermal working
E(B); K(B) e R internal and kinetic energy
ReR residual
e;neER specific internal energy and entropy
d/dt material derivative

(a, b> =a;b; €R
[v|” = (v,v) = vv; €R vector norm
Ag, A* standard and arbitrary inertial frames
Im conditions at center of mass

inner product

NEWTONIAN BACKGROUND

The interest is with classical continuum mechanics
wherein matter is spread across space rather than being
the average of randomly distributed particles.

Let B be some identified material body moving in the
event world W, = {(x,t)} due to the action of forces f €
R3. Start with the first axiom of Newtonian mechanics
(the following is adapted from the translation by Cohen
and Whitman [8] of Newton’s “Principia”):

Axiom I: Each body point B of body B re-

mains at rest or moves across W ., with the same

velocity v relative to the standard frame, Ag, in
such a way that:

a). the speed, |v|, is constant.

b). the motion is rectilinear.

unless B is acted upon by a force or torque. [
as Galilei’s aziom of inertia. This axiom also serves to
define the Newtonian observer. Two Euclidean observers
find the velocity at body point dB related as:

v = Q(t)v + Q(t)x + d(t)
If both v and v* are to be constant in accord with the
axiom there must be Q = O (as x is not constant) and

d constant (equal to Vi, say). Integrate these two con-
ditions to find Q is constant and d = V1t + xg; x¢ € R?
is constant. Now v* = Qv + V7 and v* is a constant
when v is constant. The Galilean transformations are

recovered with the constant boost velocity Voy € R? and
constant rotation Q € SO 3. Hence (as in equation (1)):
x* = Qx4+ Vrt 4+ Xg; t* =t+tg

defines an equivalence class of inertial frames and norm
[v*| < |v] 4+ |V7|. The norm |Vr| is always assumed to
be a bounded constant. The above discussion is invariant
under the time translation ¢t — t+tg: the origin of time is
arbitrary. The following treatment is founded on axiom
I of classical mechanics but leads directly to a dichotomy
in the theory. As a corollary of the transformation group
G, there is an implied structure for W .:

Corollary I: W, is a fibre bundle ]

where S; (t € T fixed) identifies the space of simultane-
ous events: the fibres. T forms the base space. Usually,
S is taken as R3 which is made into a Hilbert space by
the definition of an inner product (a norm induced by the
inner product then follows). A metric d(x,y) can be de-
fined on S in classical mechanics (but not on the whole
W) and is again induced by the inner product. It is
important to note that the causal structure of the theory
must be invariant across all inertial frames. The above
comments have shown, unexpectedly, that Euclidean ob-
servers constitute too large a set and there must be:
Result I: Not all observers are Newtonian

which defines the Newtonian observers (ones that identify
with axiom I) as a subset of the Euclidean observers. In
other words, axion I of Newton only holds if E ,, is reduced
to G, as the invariance group of the mechanics. Let Ag
be the standard inertial frame affixed to the distant stars.
A comment is necessary here since equation (1) takes
Q € SO3 while axiom I led to the condition Q € Q3.
The difference being due to the present desire to retain
all coordinate frames as right handed.

The requirement of axiom I must, in sympathy with
the statement above of Tait [2], also apply to the ther-
modynamic content of the continuum theory. That is (to
formalize the development in Green and Rivlin [1]):

Axiom II: The first principle of thermome-

chanics must be covariant under G, I
to be consistent with Newtonian mechanics. (It hardly
needs to be said that axiom II is not related in any way
to the similarly numbered axiom of Newton: but does
lead, with axiom I, to the same balance of forces). As
the first principle of thermomechanics is expressed by a
scalar equation, it is straightforward to ensure its covari-
ance — Marsden and Hughes [3]. However, the restriction
to G, symmetry is not consistent with material response
to applied forces where the whole group E,, (or its sub-
group SE,) is demanded for consistency with observa-
tion. The fundamental dichotomy in Newtonian contin-
uum mechanics thus arises:

Dichotomy: Fither constitutive theory must be re-

duced to invariance under G , or Newtonian mechan-

ics must be extended to E,, covariance. 0
It is well known that the former option allows the stress
tensor (of a fluid) to depend upon the spin tensor W (see



below): contrary to Stokes [9]. The latter option requires
the abandonment of axiom I of Newton. The work of
Silhavy [10] attempts to give an extension of Newtonian
theory to the more general case of E,, invariance.

There are also constitutive components to the first
principle of thermodynamics. These include the internal
energy and the heat flux vector. An additional issue is
now raised: the type of partial differential equation ap-
propriate. The classical theory of Fourier heat conduction
gives a parabolic heat equation with infinite propagation
velocity for information — see Joseph and Preziosi [11].
This is unphysical and parallels the finding of infinite
shear wave propagation velocity for the Navier Stokes
equations in fluid mechanics.

Hidden in the formulation is the fundamental as-
sumption that the time axis, T , is the same for both New-
tonian mechanics and classical thermodynamics. That is
T is the thermomechanical time (and is, essentially, the
absolute time of Newton: see Raine and Heller [12] for
example). The origin of time is arbitrary however. No
attempt is made to justify this equality of time scales for
diverse processes on widely different length scales.

RBM vis MFI

Let A* be a non—inertial frame attached to an ob-
server o € O g and be related to the standard frame Ag
as in equations (2a) or (2b):

X" = Q(t)x +d(t);
Then the observer defines:
a). rigid body motion (RBM) if Q(t) € SO3
b). material frame indifferent (MFI) if Q(t) € O3
The group O3 includes reflections (that is det(Q) = £1)
while Q € SO3 has det(Q) = +1 only. The distinction
is only of importance when distinguished material axes
are present and chirility considerations are necessary (as
in polar materials). These are not of concern herein and
only rigid body motion is adopted for the study of covari-
ance in constitutive theory. As defined above, rigid body
motion is identified with the group SE,. Material frame
indifference identifies with the whole group E,,.

=t +tg

MASS INVARIANCE

Let B < 0; M the universal body for the situation of
interest. Then BY B¢ = (0 defines the exterior of B. 0B
is the boundary (or surface) of B. A measure dm is de-
fined over 0 such that M (B) = [, dm is a scalar quantity
associated with B, the mass of B, whose dynamic signif-
icance has to be determined. If the measure dm over B
is absolutely continuous with respect to volume measure
dV over D; then M(B) = [,(Om/dV)dV = [, pdV, if
Vi(B) = [, dV is the body volume. The Radon-Nikodym
derivative p(x,t) = Om/0V; is found to be thermody-
namic in nature. A result (see Moulden [7]) can be noted:

Lemma I: d/dt commutes with [,(-) dm iff

dp/dt + p div(v) =0 with p=0m/OV

PROOF: Let the non—zero smooth, scalar val-
ued function, ¢, be integrable over body B and
consider the transport theorem:

_/¢ m_i/p¢dv
o

provided that p = Om/0V € R exists and is con-
tinuous over arbitrary Volume D. This requires:

/gbdm / dm iff —+pdw()_0
as requested. ]
The above lemma is equivalent to the condition of mass
invariance. Thus, provided that the above constraint
holds at all point in D;:

% +div(pv) =0 = / [ + div( pv)] dav =0

d

= o p dv = dt dm dtM(B) 0
and M(B), an 1nvar1ant of the body motion, identifies
with the body mass, whose invariance has, since at least
the ancient Greeks, been recognized empirically. This
constraint of mass invariance emerges from the Galilean
invariance of the total energy equation and does not re-
quire a separate axiom. This finding is little more than a
consistency requirement since the energy equation is writ-
ten for body B as a closed thermomechanical system. See
Green and Rivlin [1]. While a Lagrangian formulation is
not the present interest it can be noted that Scholle [13]
shows mass invariance to be a consequence of a symmetry
analysis of the Lagrangian.

THERMODYNAMIC BACKGROUND

Introduce the total energy of material body B:
Eiot(B) = [sdE + [z (v,v)/2dm = [zle + (v,v)/2]dm
as the sum of the internal and kinetic energies; a form
found by empirical observation. Here e = 0F/0Om is the
specific internal energy as a Radon-Nikodym derivative
assuming that the internal energy is absolutely continu-
ous with respect to mass. The internal energy is specified
by thermodynamic constitutive statements. It is assumed
that the body force is frame indifferent under G,.

Axiom III First principle of thermomechanics

The total energy equation:

Etot (B)(T) — B0t (B)(0) = A(T)

must hold. |

The causal structure of the theory is evident in that the

action A(T fo [P(B) + Q(B)] dt (which vanishes for
cyclic processes) is resp0n51ble for the change of E;y:(B):

dEor(B)/dt = P(B) + Q(B) (4)
Quantities in the action are measurable by the observer

o € O p. The mechanical P(B) and thermal Q(B) work-
ings are defined below. This action is potential provided



that it is conservative and vanishes on all cyclic processes
(see Coleman and Owen [14]). Silhavy [15] starts with
A(T) = O for a cyclic process and shows that an en-
ergy exists but cannot determine its structure, as the
sum E(B) + K(B), by appeal to Galilean covariance. De-
termination of the structure requires Euclidean covari-
ance: using either MFI or RBM see Silhavy [10]. The
first principle of thermomechanics can be taken in the
form of equation (4) without requiring cyclic processes.
So find the equation:

d[Eiot(B)]/dt = fB[de/dt + (a,v)]dm = P(B) + Q(B)
when the above lemma is included. These deliberations
are in frame Ag. Hence (as a = dv/dt) it is found that:

a). under Galilean boosts (v — v + Vr):
B (8) + K (8)] = L E(B) + K(B)] + fyla, Vi)

b). under constant rotation (v — Qv):

d . . d
[E(B) + K" (B)] = = [E(B) + K(B)]

as the internal energy is frame indifferent. This statement
is another aspect of the classical dichotomy: e(x,t) is a
frame indifferent scalar quantity under E,,.
The inertial force has been introduced above by the

identity f; = [, f/*dm with:

fi = — [gadm = — [gdv/dtdm = —d[[zvdm]/dt (5)
by lemma I. Note that [sadm = a,M(B) = —f; to
relate f; to the quantity M (B): a,, being the center of
mass acceleration. Hence the term ‘inertial force’is just a
name for the material rate of change of linear momentum.
Then the integral:

fB (a, Vr)dm = — fB (£7*, Vr)dm = — fD (7, Vr)dv

represents a virtual contribution to dE;.(B)/dt due to
the boost given by the arbitrary translation velocity V.

P(B) = [ pl(E5, v) + (& 1) dV + [op [(t, V) + (¢, m)] dA
is the mechanical working due to the body and surface
forces and couples (the latter not being considered in
Green and Rivlin [1]). The body moment 1. and surface

couple m, are assumed to be frame indifferent under E,,
(since the metric d(x,y) has such invariance).

Q(B) = — [y div(q) dV + [;qsdV

is the thermal working due to Fourier heat conduction and
a frame indifferent heat source, qs(x,t), over B. Note that
the Joule constant is not displayed directly in the ther-
mal working so that dimensional consistency is assumed.
Other forms of thermal working can be added if needed.

a).  Under Galilean boosts:

P*(B) = P(B) + [ppl£5, Vr)dV + [, (t, V) dA
b).  Under constant rotations:

P*(B) = P(B)
Q(B)* = Q(B) under G,. For the final energy equation
there is, with the above, the residual R defined such that:
a).  Under Galilean boosts:

dEf,(B)/dt* — [P* + Q"] = dE;y(B)/dt — [P+ Q] — Rp
b).  Under constant rotations:

dE;, (B)/dt* — [P* + Q"] = dEyot(B)/dt — [P+ Q] — Rg
If the energy equation is to retain Galilean covariance in

conformity with axiom II above, the residual terms in
these equations, Rg and R, must vanish identically:

RB = fD<VT,[pf?+pf§]>dV+faD<VT,t> dA=0
and:
RR =0

This expression for Rg would not hold under SE,. The
scalars Rp and R have arisen solely from the Galilean
transformations with V. an arbitrary constant linear mo-
tion of some observer and Q an arbitrary constant ori-
entation change of that same observer. For this reason,
the transformation is transparent to the couple stresses,
and body moments (which are both assumed to be frame
indifferent under E, and hence under G,).

Only the action of the boost component of the
Galilean group has produced a non—trivial residual Rp.
The terms in Rp arose from the kinetic energy and the
mechanical working components of the energy equation;
the thermal content playing no part in the development.
The thermal working does not enter into the form for
the residual as the heat flux vector is frame indifferent.
The inertial force is only frame indifferent if the mass is
invariant:

Proposition I: f; is frame indifferent under G

iff dM(B)/dt = 0.

PROOF: By equation (5): f; = —d[[; v dm]/dt

which only equals — [zadm = —a,,M(B) if

lemma I holds (since V is constant). 1
Thus under E ,,, equation (2a) gives:

x* = Q(t)x +d(t) —a* = Qa+2Qv + Qx +d
so that:

fi = — [;adm — Qf;

only if E,, reduces to G, with Q constant and d(¢) linear
in t. Proposition I, does of course, depend upon the result
in lemma I.

Invariance is non-trivial, under boosts, because
Rp # 0. As the boost velocity Vr is an arbitrary con-
stant vector, it may be extracted from the integrals to
give the scalar valued condition:

(Vo [[p(pff* + pf ) dV + [t dA])
=(Vp,(fr+fp+1£s)) =0

for the constraint Rg = 0. The term (V 7, 3f) represents
the virtual working of the sum of forces, Xf, due to the
arbitrary constant relative velocity, Vr, of the observer.
This inner product can only vanish if the condition ¥f =
0 holds. As a consequence:

Lemma II: Balance of forces
Axiom II implies the balance of forces.



PROOF: As Vr is an arbitrary constant vector,
the inner product above only vanishes if:

Jpplf* +f5]dV + [,,tdA =0 ©)

= f[ + fB + fs
Which is the basic global balance equation of the
continuum and identifies the inertial force from
equation (4) with the one referred to by Newton
in his axiom II. It is covariant under G,. ]

Hence the mass M (B) has the meaning defined by New-
ton and is a property of the body B. The acceleration
is defined by the motion of B while the forces are speci-
fied by the interaction of B with its exterior. The body
force is specified outside of continuum mechanics. Body
moments and surface couple stresses do not enter into
equation (6) but they are part of the angular momentum
equation (9). The result in equation (6) is a consequence
of vanishing working by the arbitrary boost velocity. By
its derivation, it is frame indifferent under G,.

The Cauchy theory of stress comes directly from
equation (6) as shown in texts on continuum mechanics.
That p is a thermodynamic variable is shown from ex-
periment (usually in the form of a specific volume). The
inertial force component of equation (6) arose from the
material rate of change of the total energy while the body
and surface forces are present in the mechanical working
P(B). Hence the causal structure contained in the total
energy equation carries over to the balance of forces in
the second axiom of Newton. The ontological content of
the force balance theory is changed, however.

The Cauchy theory of stress takes equation (6) and
finds that t = Tn provided that there is sufficient conti-
nuity of t as a function of the normal, n, over the bound-
ary OB. This places restrictions in the boundary geom-
etry. Some of these restrictions on the Cauchy stress
theory are relaxed in Gurtin et al. [16].

Subtract equation (6) from equation (4) to find the
thermal energy equation:

/ {p% + div(q) — trace(LTT) — ¢, — p(¢, lc>]dV
D
= fap<<v m.) dA (7)

which Green and Rivlin [1] require to be covariant un-
der RBM (covariance under G, has already been estab-
lished). Equation (7) is a relation between certain consti-
tutive quantities (e, q, T), kinematic quantities and the
applied couples. The present formulation is an extension
since surface couples and body moments are included in
equation (7). Under SE,: ¢+ Q(t)¢ + 2r where Zr = 0
defines the axial vector, r, of the coordinate spin, while
e— e, qs — qs and q — Qq (as it does for the Fourier
theory) then div(q) — div(q) and L — QLQ? +Z under
E,. Place T =TT +T~ with T* € M3, and T~ € M3,.
Since T is frame indifferent under E ,, so are T* and T~.
Hence trace(LTT) — trace(LTT) — trace(T~Z*) since
the transformations:
trace(DTT) +— trace(DTT)

trace(WT™) +— trace(WT™) + trace(T~Z*)

hold under E,. Now trace(T~Z*) = —2(s, Q”r) where
s is the axial vector of T~ (that is T™s = 0).

p¢1e) = p(¢ L) + 2p(le, QTr>
faD (¢, m.)dA Hfap (¢, m.)dA+2 faD (m, QTr> dA
If m, is replaced by Mn as in Stokes [17] then:

fap(mc, Q'r)dA EfaD<Mn, Q'r)dA :fDdiU(M)QTr dv

by the divergence theorem. Covariance of the thermal
energy equation (7) under E,, then requires that:

case a). m. = 0; 1. =0 when:
trace(Z*T~)=0 = T~ =0 = T e M, (8)
as Z* = QTZQ is arbitrary.
case b). m,#0; 1. #0:
[ ((div(M) + pl. —s),QTr)dV =0

Since the quantity Q”r is a function of time, ¢, only, it
may be extracted from the integral:

([p(div(M) + pl. —s)dV,QTr) =0
and then, due to the arbitrariness of the rigid body rota-
tion Q(t) (and the axial vector r(t) of Z(t)), there is:

Jp [div(M) + pl, — s]dV =0 9)
which is the angular momentum equation in the presence
of body and surface couples. Equation (9) reduces to a
weak version of (8) when 1. = 0 and m. = 0. Stokes [17]
explores equation (9) for a viscous fluid with a specific M.
The axiom of universal dissipation completes the theory:

Axiom III Second axiom of thermomechanics

The entropy of the universal body 00 cannot de-
crease. 0

and yields the classical evolution equation for entropy.
As in the rest of the paper, attention is only directed
at a single constituent material with no phase changes.
The existence and uniqueness of solutions to the field
equations is a separate issue that can only be addressed
after a constitute theory is settled upon.

DEVELOPMENT

Green and Rivlin [1] show that invariance of the ther-
mal energy equation under rigid body rotation implies (in
the absence of surface couple stresses) that the Cauchy
stress tensor be symmetric. However, this is not a re-
quirement that follows from axiom I of Newton since the
group ordering G, C SE, C E, identifies rigid body
rotation as intermediate between G, and E,. A new
interpretation is needed and this involves the dichotomy
mentioned above: material response demands the group
E .. The Cauchy stress tensor, after all, represents part of
that response. It is found that axiom I defines the invari-
ance group for the second axiom of Newtonian mechanics
(here written as equation (6) and being a corollary of ax-
iom IT above) but not for constitutive theory.

While Newton understood heat as an internal vibra-
tion within a material, the need for its inclusion into me-



chanics was not. Thermomechanics was not developed for
another century after the third edition of the ‘Principia’
was published.

CONSTITUTIVE THEORY

As is well known, continuum mechanics has nothing
to say about the structure of the Cauchy stress tensor
beyond its definition in terms of the surface stress vector.
Basic empirical evidence, known since antiquity, demands
that the structure of T be invariant under the group E,,
(usually referred to as the principle of material frame
indifference — Truesdell and Noll [5]). This goes far be-
yond the confines of Newtonian mechanics and presents a
fundamental dichotomy in the theory. It has also gener-
ated controversy; which still obtains if the group SE,, is
adopted for covariance under RBM. For example of MFI:
the linear viscous fluid wherein the Cauchy stress tensor
is a function of the velocity gradient L: T = T(L, p).

Proposition II: Under E,; T = T(D, p) only

PROOF: If T = T(L,p) then T is not frame

indifferent under E , since L — Q(#)TQ7 (t)+Z

under E,. However, D, the symmetric part of

L transforms as D — Q(¢*)DQ7(¢) under E,

and the form T(D, p) is frame indifferent. 1

To illustrate the dichotomy note that:

Corollary II: T = T(L, p) under G,.

(since L — QLQT under G,,). 1
Stokes [9], on a heuristic argument, required the pressure
to be independent of rotation so that the stress tensor
must be based upon D. G, invariance is not enough.
Svendsen and Bertram [18] discuss the issue of frame in-
difference in constitutive theory.

KINETIC THEORY INTERPRETATION

When material frame indifference was first postu-
lated as a principle for placing constraints upon constitu-
tive equations, (see Truesdell and Noll [5], for example)
there was considerable controversy concerning its valid-
ity. Cauchy [19] had already introduced such concepts
into the theory of stress but they were long forgotten.
The main criticism of MFI came from kinetic theory ar-
guments but, following Speziale [20], note that the molec-
ular velocity ¢ contains fluctuations ¢’ which are frame
indifferent under SE,. Hence, for example, the Cauchy
stress tensor, which is given by T x &£(¢’ ® ¢’), trans-
forms as T — QTQ” under both E, and SE, and is
quite consistent with the continuum theory argument.

FINAL REMARKS

Classical continuum mechanics is found to rest upon
the first axiom of Newton, the first principle of thermo-
mechanics and the restraint that constitutive theory be
invariant under SE,, (that is, under rigid body motion).
The balance of forces, the angular momentum principle
and the conservation of mass (rather than the simple con-
cept of mass) emerge as consistency constraints on the
theory and do not require separate specification.
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