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ABSTRACT

Supereritical fluid technologies are applied on a large industrial
scale, e.g. for extractions and reactions. They are used in the
food industry, pharmaceuticals and in the cosmetics domain.
Carbon dioxide is the most widely used supercritical fluid
because of its relatively low critical temperature (31 °C) and
pressure (74 bar). In particular, its low critical temperaturc
makes it highly suitable for processing heat-sensitive materials.
The control of heat and mass transfer in the supercritical carbon
dioxide requires knowledge of these thermodynamic properties.
The Altunin and Gadetskii EoS was given to describe the
thermodynamic properties of the pure carbon dioxide. The
supercritical, the liquid and the gas states of carbon dioxide are
represented accurately. The original equation proposed by
Altunin and Gadetskii and its tremendous importance in
describing the carbon dioxide behavior are analyzed.

INTRODUCTION

A supercritical fluid is any substance at a temperature and
pressure above its critical point. It can diffuse through solids
like a gas, and dissolve matcerials like a liquid. In addition, close
to the critical point, small changes in pressure or temperature
result in large changes in density.Therefore a solute can be
extracted at supercritical condition of the solvent, and separated
from it by reducing pressure or temperature below the critical
parameters of the solvent, yielding a solvent-free extract. By
using supercritical solvents having low critical temperatures as
carbon dioxide, it is possible to extract thermally labile
compounds, specially pharmaceutical and food products.
Carbon dioxide is the most widely used supercritical fluid
because of its relatively low critical temperature (31 °C) and
pressure (74 bar). The control of heat and mass transfer in the
supercritical carbon dioxide requires knowledge of these
thermodynamic properties.

At present, even in the critical region, thermodynamic
behaviour of pure components are most frequently modelled by
classical equations of state, including commonly used cubic
equations, such as the Redlich-Kwong and Peng—Robinson
equations of state. Some non-classical models with theoretical
or effective critical exponents are available, such as Bender
model and related models that incorporate crossover functions
to connect the critical and non-critical regions. Such models are
currently used in a correlative rather than a predictive mode,
since, in general, they require the critical locus as input as well
as a number of adjustable parameters that can be determined
only when extensive experimental data are available.

The development of equations of state (EoS) and their
application to the correlation and the prediction of phase
equilibrium properties is a wide research field. The Altunin and
Gadetskii EoS was given to describe the thermodynamic
properties of the pure carbon dioxide under its supercritical,
liquid and gaseous states.

Whereas, at the vicinity of the critical point, which is
characterised principally by the divergence of compressibility,
the Altunin and Gadetskii EoS needs other corrective terms to
stabilise fitting of the state and calculate accurately
thermodynamic functions as the specific heat at constant
volume or pressure and the sound celerity.

This work is followed by a numerical estimation of different
thermodynamic functions as C,, at the vicinity of the critical
point, using limited development techniques. The domain of
validation is showed when comparing results of the calculation
and those determined experimentally and given by several
authors.
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GOVERNING EQUATIONS
Altunin and Gadetskii EoS

To calculate the thermodynamic parameters of the carbon
dioxide, we used an cquation of statc suggested by Altunin and
Gadetskii (1971).

This polynomial equation (of degree 6 in 1/T and degree 9

in P was proposed to represent with a good fidelity the
experimental results of the TUPAC in particular in the
supercritical region.
It is indeed significant to be able to determine with precision,
the specific heats, the speed of sound and the derivative of
pressurc (compared to the thermodynamic quantities) useful for
computational fluid dynamics. Traditional equations of state
(Van Der Waals, Peng-Robinson, Redlich-Kwong, for
cxample) provide relatively accurate evolutions of the pressure,
temperature and density up to the critical point. Nevertheless,
in the supercritical field, these evolutions diverge in a
significant way of the experimental results (figure IL.5).
According to Altunin and Gadetskii, the factor of
compressibility 7 is written:

Z:—71+prZZb“ (x-1)'(p, 1)
PR

i-0 -0

Where p,=p/p,, 7=T/T and b;; are constants related to CO,
and tabulated by ITUPAC.
The Altunin and Gadetski EoS can easily express the
thermodynamic quantities as a function of temperature and
density necessary for any computer code.
A separate EoS was needed for the critical region within about
+ 5 K of the critical temperature. The equation of Schofield et
al [3] was chosen for use. This equation is in terms of two
variables, r and 8, which may be regarded as polar coor
centred on the u‘ltlbdl point dl’ld are related to the density dﬂd
the temperature by the set of equations:

AT = (TT—T) r(1-b%0?)

= =rPgl
P.
They are related to the pressure by the following parametric
equation:
|P B(n-v-l) B3 3
AP = q(6) + cAT +ar"6(1-07)
P

c
Where q is a function of 6, given as follows:
a(8) =36.98893 — 82 079682 + 56.660530°

q(0) =36.98893 32.07969
The complete EoS is formed by combining equatlons in such a
way that one of the other is predominant in its appropriate
region using a switching function f{(r).

P={(r)P, +[1-f(n)]P,

Where f(r) is expressed by:

£(r)=1-[1—exp(=0,01/1)")][1 - exp(—0,05/r)")]

A and S indices notice respectively the analytic and the critical
expressions of the pressure.
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Figure 1 Comparison between different EoS

Heat capacities and sound celerity

Isochoric heat capacity is one of the important thermodynamic
characteristics of fluids and fluid mixtures. The EoS does not
sufficiently correctly reproduce the values and behaviour of C,.
The role of calorimetric measurements to develop an EoS is
very important, especially near the critical and phase transition
points. Isochoric heat capacity data contain direct information

on sccond temperature derivatives of prcssurc(az%Tz) . For
P

example, heat capacity at constant volume C, is related to the
EoS by:

c.- {M
aT

v

U is the internal energy.

o T(8*P
:CVO—LF[aTZJ dp

Where Cyyis the ideal gas heat capacity written as: Cyp=Cpg-R

That gives: C;,

and Cpo=R >y,

i=0
Where ©=T/T,. and v, are tabulated constants in the IUPAC.

The heat capacity at constant pressure, C, is related to C, as

follows:

&l
. rler),

C,=C, +

P v pz (aPJ
op )

The sound velocity is a key item in the numerical simulation of
any flow of a compressible fluid as we've seen before. This
speed is defined as the partial derivative of pressure versus
density at constant entropy. The sound velocity C of a pure
component can be expressed by the relation:

[
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And as a function of heat capacities we write:

CQEE(OPJ
C,\ ),

Taking into account the equation Altunin, we can write:
C, =R(-7’t,+t,-1)

T+4pnt. —0t

C =C +R *EEYs Y .

C 12
C=[61RTU+2Qg+pﬁJ}
The coefficients t3, t4, t5, t6 and t7 are given by:
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B; and v; are constants rclated to CO- and tabulated by IUPAC.

RESULTS AND DISCUSSIONS

The isochoric C, of pure carbon dioxide is nearly independent
of pressure in the high pressure region, indicating that the
intermolecular interaction is not sensitive to pressure as the
fluid is far from the critical region. In other words, the
properties of the fluid far from the critical points do not vary
with pressure considerably, which is similar to conventional
liquids. The dependence of C, in the critical region on
temperature is more complex. The analytic equation cannot
produce the experimental data of Beck et al [12] at this region.
Therefore, there exists a maximum in C, versus temperature
curve for CO,.

As the temperature and the pressure approached the critical
point, the compressibility is larger, and the clustering is more
pronounced. The heat capacity results from the fact that the
fluid absorbs energy as temperature rises. If clusters exist in the
fluids, the degree of clustering should be decreased as
temperature rises, i.e., some of the members in the clusters
enter the bulk, which needs some additional energy. The results
near the critical point arc not sufficiently close to it using the
analytic equation of Altunin. Whereas, the complete
formulation of the pressure cannot gives accurate calculation of
the second derivatives as mentioned. A longstanding,
interesting question is whether the singular behaviour of C, is
related to that of the second derivative of pressure. Future
corrections will conserve the good agreement obtained of the
pressure estimation in the critical region and will gives an
accurate calculation of the second derivative of pressure.
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Figure 2 Isochoric heat capacity at different pressure

Figure 3 Isochoric heat capacity at different temperature
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When the isochoric heat capacity is determined, the isobaric
capacity can be deduced by calculating first derivatives of
pressure. From figure (4), we conclude that C, is nearly
independent of density in both low and high density regions.
When the reduced density (p/p.) tends to 1, C, exceeds high
values and numerical calculation diverges.

The sound celerity C is an important parameter in fluid
dynamics simulation where its accurate estimation is a
necessary step in calculation.

Therefore, many researchers have studied fluid dynamics at
high density using different expressions of C [13] and [14].

Their results show that shock wave canture 1in !ngh

uuuuuuu SHOW uldl 10CK wave  Capiul

compressible regions, which is often referred to an important
increasing of both Cv and Cp, creates numerical problems and
the divergence of calculations. Therefore, figure 6 shows the
behaviour of the sound celerity at the critical region and the
abrupt discontinuities when the pressure is close to that of the
critical point.

Here, the complete equation as presented by Altunin et al. [1]
cannot offer accurate value of the parameter C and the variation
of derivatives of pressure versus temperature is so perturbed
and gives an erroneous function.

2033



2 'Topics

500000
400000
— 305K
) — 305,5K
= 300000 306 K
i
o 308 K
:‘/ FAVL YY)
S
100000+ X
0+ —— Y R
200 300 400 500 600 700
Density (Kg.m™)
Figure 4 Isobaric heat capacity at different temperature
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Figure 5 Isobaric heat capacity at different pressure
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Figure 6 Sound celerity at different temperature
CONCLUSION

In this contribution, we have considered the integration of heat
capacities and sound celerity from the equation of Altunin in
the supercritical domain and also at the critical region. The
numerical integration evaluates derivatives of the pressure
using different high order finite difference techniques. The
obtained results showed a good agreement of calculations with
the analytic EoS. In contrast, calculation of derivatives of
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pressure using the complete equation of state diverges.
Therefore, estimation of coefficients of this equation will be
undertaken by fitting experimental data of heat capacities at the
critical region of carbon dioxide.
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