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ABSTRACT

The prediction of the aerodynamic drag coefficient of
airfoils is essential in the design of wings and blades of wind
turbines. The evaluation of the drag coefficient of a NACA
0012 airfoil at zero degrees angle of attack relies on the Finite
Volumes Method adopted by the commercial software Star-
CD, being the RANS equations solved at selected Reynolds
numbers. The discrete domain consists of polyhedral cells,
which minimizes the number of faces per unit volume as
compared to hexahedral and tetrahedral meshes. The present
work investigates the steady state regime for selected
Reynolds numbers, comparing the results to the experimental
ones available in literature. The airflow is incompressible over
the airfoil’s adiabatic walls where the non-slip condition is
enforced. The molecular viscosity is constant and the
turbulence model adopted is the k-omega/SST/Low Reynolds
with hybrid wall function. The calculation of the flow field
runs the SIMPLE algorithm. The differencing schemes are
LUD for momenta, UD for kinetic turbulent. Constructive
aspects of the polyhedral mesh that influences the
computational effort, the choice of the turbulence model and
the number of wall cells required to achieve acceptable values
for y* and c, are presented and discussed.

INTRODUCTION

The prediction of the aerodynamic drag coefficient of
airfoils is of essence in the design of wings and blades of wind
turbines for power generation, being the lift-to-drag
coefficients ratio (C;/Cp) an important performance parameter
(figure of merit) of such applications.

The lift acting on an airfoil can be calculated assuming
inviscid flow in conjunction with the Kutta condition at the
trailing edge. This same approach yields zero drag when used

to predict drag and experimental or numerical methods are
therefore in place. Experiments may not completely reproduce
the physical model due to interference or measurement
difficulties. Numerical methods were limited to potential flow
solvers for evaluating the induced drag in attached flow
conditions.

Advances in computing performance have led to
widespread use of RANS (Reynolds-averaged Navier-Stokes)
equations solvers. The error margin of these solutions is an
issue [1] and three major aspects that may compromise the
results can be outlined: the need to have a very closely spaced
grid in the vicinity of the walls in order to obtain suitable
numerical values for the velocity gradient at the wall (ou/dy),,
from which z,, (wall shear stress) is obtained; the uncertainty in
the accuracy of turbulence models when a turbulent flow is
being calculated and the lack of ability of most turbulence
models to predict transition from laminar to turbulent flow.
The fore mentioned aspects are here approached by
investigating the results when a polyhedral mesh is adopted in
conjunction with the low Reynolds variant of the k-
omega/SST turbulence model [2] with hybrid wall boundary
condition.

In order to obtain the lift-to-drag ratio L/D for
aerodynamic bodies like a finite wing, both C; (lift
coefficient) and Cp (drag coefficient) must be known. The lift
distribution is obtained from the Kutta-Joukowski theorem and
its integration over the wing’s span allows calculating C;.
Prandtl’s classical lifting line theory [1], ultimately expressed
by Eq. (1), may then be used to estimate Cp as follows:
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In Eq. (1), C, is the lift coefficient, AR:bz/Smf is the

wing aspect ratio where b is the wing span and S, @
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reference area, “me” is the 7 constant multiplied by the
Oswald’s span efficiency factor “e” and ¢, is the airfoil drag
coefficient per unit span. This article focuses on numerically
evaluating ¢, for a NACA 0012 airfoil at zero degrees angle of
attack for the steady state regime, submitted to subsonic flows.
The evaluation relies on the Finite Volumes Method adopted
by the commercial software Star-CD, being the RANS
equations solved at selected Reynolds numbers. The discrete
domain consists of polyhedral and near wall prismatic cells.
The results are compared to wind tunnel data available in
literature [3].

Constructive aspects of the polyhedral mesh (like the
polyhedra growth rate) that influence the computational effort,
the choice of the turbulence model and the number of wall
cells required to achieve acceptable values for y* and ¢, are
presented and discussed here.

PHYSICAL MODEL AND BOUNDARY CONDITIONS

The physical model is the NACA 0012 airfoil at zero angle
of attack. The airfoil’s coordinates are given in per cent of the
chord and were obtained after computational procedures [4]
which have updated and improved in precision the original
coordinates values [5].

The ideal gas airflow is treated as incompressible for Mach
number M < 0.3 over the airfoil’s adiabatic and impermeable
walls where non-slip condition is imposed. The molecular
viscosity p = 1.81E-5 Pa.s is constant. The reference density is
Prer = 1.205 kg/m3 and the reference temperature is Tr = 288
K.

The model’s domain is built around the airfoil’s geometry
as a rectangular box of 0.1 m width, extending 1.8 m upstream
the leading edge and 3.6 m downstream the trailing edge. The
domain’s upper (N) and lower (S) faces are located at 2.28 m
each from the airfoil’s chord line. The airfoil’s chord, 0.6 m,
and the model’s height-to-chord ratio (A/c), 7.6, have been
chosen in order to keep the simulated Reynolds and Mach
numbers within the range of the “Group 1” summary of wind
tunnel test results [3], where the 4/c values ranged from 1.9 to
15. The distance from the airfoil’s leading and trailing edges
to the bounding walls, three and six times respectively the
airfoil’s chord length, were determined after preliminary trials
in such a way that the ¢, results became independent of the
clearance between the model’s edges and its boundaries.
Although the //c value used followed wind tunnel settings, the
choice of the model’s domain dimensions aimed to mimic free
stream conditions and to compare the numerical results to the
ones obtained in wind tunnel experiments.

Boundary conditions are required for all the conservation
equations. The airfoil’s walls are adiabatic where the non-slip
and impermeability conditions are imposed. The airfoil’s
containing box has its upper, lower and side faces set as
symmetry planes in order to simulate the free stream
conditions applied to an infinite wing, therefore turning the
numerical model bi-dimensional as the wind tunnel settings
[3]. The front face is the model’s inlet region where velocity is
prescribed in accordance to the Reynolds number at the
airfoil’s chord as presented in Tab. 1. The piezometric
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pressure boundary condition is applied on the rear face and
referenced to the atmospheric pressure of 101325 Pa.

Table 1. Boundary conditions at the inlet region.

U (m/s) M Re
25,03 0,07 1,0E+06
50,07 0,15 2,0E+06
75,10 0,22 3,0E+06

The turbulence mixing length of the airflow at the inlet
region, 1E-3 m, is set to an order of magnitude smaller than
the turbulent boundary layer thickness at the trailing edge of a
flat plate of length 0.6 m and Reynolds number Re=3E6,
calculated as 1.12E-2 m. The turbulence intensity was set very
low (1E-4) in order to simulate experimental wind tunnel inlet
conditions and to minimize the changes in the pressure and
shear distributions over the airfoil’s walls that could influence
the airfoil’s drag coefficient value [6]. At the pressure
boundary, the values for the turbulence parameters are
calculated by the code on the assumption of zero gradients
along the streamlines intersecting the boundary surface. Figure
1 depicts the physical model and its polyhedral mesh.

Figure 1. The physical model and the polyhedral mesh.

MATHEMATICAL MODEL

The governing equations describing the airflow over the
airfoil’s walls are the Navier-Stokes equations and the closure
equations corresponding to the turbulence model.

All the equations are solved concurrently and the pressure-
velocity coupling is made by the SIMPLE algorithm [7].

The mass and momentum equations are, in Cartesian
notation [8], Eq. (2) and Eq. (3) respectively:
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57+§§Um9:”’ )
dpu, 0 ap

T*’a(ﬂ“,ﬂf —l,»)Z—a—xi"'Si (3)



In the equations above, ¢ is a time variable, x; a cartesian
coordinate and p the piezometric pressure.

For turbulent flows, u;, p and other dependant variables,
including t; , assume their ensemble averaged values giving

Eq. (4)

2 du, -
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In Eq. (4), p is the molecular viscosity and J; the
Kronecker’s delta. The u’ fluctuations about the ensemble
velocity and the over bar denote the ensemble averaging
process. The rightmost term in Eq. (4) represents the
additional Reynolds stresses due to the turbulent motion.
These are linked to the mean velocity via the turbulence
model.

The k-omega/SST/Low Reynolds turbulence model has
been selected as the closure model since it takes into account
pressure gradients and therefore provides more accurate
results in terms of wall shear forces.

Defining the specific dissipation rate ¢ = ¢ / C k (where €

is the turbulence dissipation rate, k is the turbulent kinetic
energy and C, is an empirical coefficient), the governing
equations for this model are the turbulence kinetic energy
equation, Eq. (5), and the specific dissipation rate equation,

Eq. (6):
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Although turbulence is a three-dimensional phenomenon,
the conservation equations above allow considering the effects
of turbulence in a time-average sense. In these equations, g, is
the calculated turbulent viscosity and the coefficients a, B, B*,
P, Py, C,» Cyy» 0F and S, are either empirically defined or

calculated for the SST variant of the k-omega turbulence
model [2].

The hybrid wall treatment boundary condition was selected
since the normalized parameter y* was unknown and large
variations of this value were expected, thus creating
uncertainties as to whether a low Reynolds number boundary
treatment or a wall function would be appropriate.

The y* independency of the hybrid wall condition is
achieved by Star-CD using either an asymptotic expression
valid for 0.1 < »" < 100 or by blending low-Reynolds and
high-Reynolds number expressions for shear stress. In this
approach [9], the blending factor £, given by Eq. (7), is based
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on a value of y~ estimated using Eq. (8), a fourth-order
asymptotic expansion:

{=(1-emy ™
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In Eq. (8), u" =u/u, where the frictional velocity is
u, = /TW/ P K is the von Karman’s constant and £ an

empirical coefficient.

After performing the simulation, Eq. (9) is used to obtain
the drag coefficient ¢; (defined as the ratio between the
summation of the computed shear and pressure forces and the
dynamic pressure):
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In Eq. (9), Y is the summation over cell faces covering the
wall area. The total force is given by F = F + FP. The shear

force is given by :T“_SI7 /|17|. The pressure force is given
by FF = p-S-ii- In the previous equations, S is a wall cell face

area, 7, is the shear stress acting on the cell face and V is the
velocity component parallel to the wall at the centre of a near

wall cell. 7 is the outward pointing unit vector normal to the

wall and p the pressure in the cell face, being d the unit
vector in the direction of airflow. p,.sis the reference density,
U is the free stream velocity and S, is the reference area,
calculated as the product of the airfoil’s chord and the model’s
span.

NUMERICAL METHODOLOGY

The model’s surface triangulation has been performed
using Star-CD’s pro-STAR/surf module and the unstructured
polyhedral mesh was generated by Star-CD’s Automesh
feature.

Different triangle length scales (“TLS”) were applied to
the model’s fluid and wall cells in order to achieve several cell
densities for grid resolution studies. Typical values for TLS
ranged from 80 to 60 mm for the fluid domain and from 6 to 1
mm for the airfoil’s walls (approximately 1/200™ of the
model’s characteristic length, i.e., the airfoil’s chord). The
triangle growth rate was set to 10% at the walls and 20% for
the fluid domain.

The polyhedral meshing process requires several
parameters to be observed, namely the volume growth rate (set
to 1.0), the volume mesh density (also set to 1.0) and the
prismatic layer settings. The former ones control the
expansion rate and the number of volumes generated by the
meshing process, while the number of near-wall volumes is
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controlled by the wall’s number of triangles. The symmetry
between the numbers of volumes generated above and bellows
the airfoil’s chord line and away from the walls could not be
controlled. Prismatic layers were required in order to control
the »" values at the near wall region. Following Star-CD’s
User’s Guide recommendation [10], 20 prismatic layers were
used. The stretch factor, defined as the ratio of a prismatic
layer thickness to its neighboring (nearer to the wall) layer
thickness, was set to 1.2. The total prism layer thickness, 6
mm, produced acceptable y* values and was selected after
preliminary computations. In Fig. 2, the prismatic layers are
visible adjacent to the airfoil’s walls. Figure 3 presents a
close-up view of the model near the airfoil’s leading edge.

Figure 2. The polyhedral mesh and the prismatic layers.

Figure 3. Close up view of the near wall region

Grid resolution studies were carried out at Reynolds
number 3E6 in order to determine the mesh polyhedra density
and the number of wall cells required to achieve converged
results for c¢;. A large number of wall cells were needed in
order to be reached the grid independency of the drag
coefficient ¢, once y* values stabilize within the turbulence
model’s limits. The number of wall cells is approximately the
same for all Reynolds numbers [11]. Table 2 summarizes the
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results of the grid resolution studies and shows that over
40.000 wall cells were required to achieve stable values for c,.
The y* values, surface averaged, were kept near 3 at the walls,
triggering the low Reynolds wall boundary treatment of the k-
omega/SST/Low Reynolds model. The maximum residual
value is 1E-5 for mass, momentum and turbulent kinetic
energy.

Table 2. Grid resolution test results.

Model Total Wall . yt
No. cells cells Re cd (wall)
1 140.507 | 5.936 | 3,0E+06 [ 0,0110217] 2,69
2 165.401 | 7.100 | 3,0E+06]0,0110835{ 2,70
3 255.671 | 11.133 | 3,0E+06 | 0,0107085| 2,66
4 344.771 | 15.029 | 3,0E+06 [ 0,0105755] 2,68
5 421.741 | 17.888 | 3,0E+06 | 0,0096047| 2,70
6 579.430 [ 25.106 | 3,0E+06 | 0,0096548] 2,70
7 949.569 | 41.299 | 3,0E+06 [ 0,0095945] 2,70
8 1.332.290| 58.017 | 3,0E+06 | 0,0094929| 2,72
9 2.020.566 | 87.080 | 3,0E+06 ) 0,0094288| 2,73

Momentum, pressure, turbulent kinetic energy and omega
were under-relaxed by 0.7, 0.3 and 0.7 respectively. The
differencing scheme adopted for momentum was the linear
upwind (LUD) with blending factor 1, suited for non-
structured meshes in accordance to Star-CD’s Methodology
book [12]. The upwind (UD) differencing scheme was used
for the turbulent kinetic energy and omega [13]. All
computations were performed in double precision.

The numerical result’s uncertainty has been evaluated by
applying to the Models No. 7, No. 8 and No. 9 (from Tab. 2)
the generalized Richardson’s extrapolation method [14]. Eq.
(10) is used to estimate an exact solution where 7, and z, are
the finer and the coarser solutions respectively, r is the
effective refinement ratio and p is the observed spatial
discretization order.

fl_
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Joxaer = J1+ (10)
The effective refinement ratio r is estimated by Eq. (11),
where y and n, are the number of grid points in the finest

and the coarser meshes respectively and D is the model’s
dimensionality, i.e., D = 3:

1/D
e = [i] (1

N,

The observed spatial discretization order is obtained by
solving Eq. (12) iteratively for p:
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The stencils “17, “2” and “3” refer to the fine (Model No.
9), intermediate (Model No. 8) and coarse (Model No. 7)




grids, respectively. e, == 1 and & == f
are the relative solution errors.

The extrapolated result’s error band is evaluated by the
Grid Convergence Index or GCI [15]. For the fine grid, the
GCl is given by Eq. (13):

GC112=FS% (13)

In Eq. (13), the safety factor f, =125 is adopted as

recommended for convergence studies with a minimum of
three grids [16].

RESULTS

A critical assessment of wind tunnel results for the NACA
0012 airfoil has been performed correlating a large quantity of
experimental results obtained in more than 40 wind tunnels
[3]. These results were summarized in four groups where the
wind-tunnel characteristics (like the tunnel’s aspect ratio), the
Reynolds and Mach numbers range, the use of a boundary-
layer trip to induce transition to turbulent conditions and the
side-walls effects have been used as a measure of the quality
and accuracy of those experiments. The “Group 17 set of
experiments stands out as having been conducted with the
utmost care by nearly eliminating the important sources of
wind-tunnel errors. Figure 4 presents the experimental results
obtained for “Group 1” and “Group 2” for the drag coefficient
¢y at zero angle of attack, plotted against the Reynolds
numbers.
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Figure 4. Drag coefficient at zero lift vs. Reynolds
number. Source: McCroskey, W.J., 1987 [3].

In Fig. (4), the data from Group 1 with a boundary layer
trip (crossed circles) and therefore having turbulent airflow
over the airfoil’s walls is approximated with an overall
precision of + 0.0002 by Eq. (14).

¢, =0.0017+0.91/ (logRe)*** (14)
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The turbulence mixing length and the turbulence intensity
prescribed at the model’s inlet region intended to simulate the
effect of a physical boundary layer trip which would induce
transition to a fully turbulent boundary layer over the airfoil’s
walls from its leading edge. Preliminary trials using coarser
grids showed that the simulated values for the drag coefficient
could no longer be influenced by choosing turbulence
intensity and length scale values smaller than the ones
selected. Therefore, the simulated conditions are closer to the
experiments of Group 1 where the boundary layer is fully
turbulent and approximated by Eq. (14).

Table 3 compares the numerical results obtained with Star-
CD and Model no. 9 (from Tab. 2) to the experimental ones
adjusted by Eq. (14). In Tab. 3, the Reynolds numbers ranged
from 1E6 to 3E6 (corresponding to free stream Mach numbers
0.07>M>0.22).

Table 3. Numerical results compared to Eq. (14).

U (m/s) M Re Eq.(14) | kw v+ A%
25,03 0,07 1,0E+06 | 0010642 | 0011080 0,99 4,12
50,07 0.15__| 2,0E+06 | 0,009581 | 0,009970] 1,84 4,06
75,10 022 | 3,0E+06 | 0,009040 | 0,009429] 2,73 431

It can be observed from Tab. 3 that the numerical results
are nearly 4% higher than the experimental ones [3], where the
free stream Mach number ranged from 0.08 <M < 0.16 and
the Reynolds number calculated at the airfoil’s trailing edge
varied from 1.4E6 to 3E6 accordingly [17].

In Fig. 5, the values given by Eq. (14) and the numerical
results are plotted against the Reynolds numbers.

0.0
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Figure 5. Comparison between Eq. (14) and the numerical
results vs. Reynolds number.

Table 4 shows that the numerical value obtained with
Model No. 9 for Re = 3E6, fexaet = 0.0092231, is 2.23 % higher
than the extrapolated value obtained for the same model. The
extrapolated value’s error band, 0.26 %, is given by the GCI},
estimate. Also, the observed order of the spatial discretization
method is p = 1.95 while the theory predicts p = 2.

The absolute difference between the numerical and the
extrapolated value, expressed in terms of drag counts (where
one drag count equals 1E-4) is approximately 2. For a
subsonic transport aircraft, this difference is equivalent to plus
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or minus two passengers [18], a fact that emphasizes the
importance of pursuing modelling and numerical accuracy.

Table 4. Extrapolated result for Model. No. 9, Re = 3E6

p [ri2]r23] 23 12 1l Iz B
1.95 1.15 [ 1.12] 0.0107027] 0.0067983 | 0.0094288 [ 0.0094929 | 0.0095945

fexact | GCII2(%) |Model #9 | A%
0.0092231] 0.26480151 | 0.0094288| 2.23

CONCLUSIONS

The numerical evaluation of an airfoil’s drag coefficient
can be used as a tool in the process of assessing aerodynamic
figures of merit like the lift-to-drag ratio C;/Cp of finite wings.

Prescribed velocity, pressure and symmetry planes are
used as boundary conditions. The airflow is treated as
incompressible and the airflow is fully turbulent from the
airfoil’s leading edge.

The meshing process was performed in two phases —
surface triangulation and volume (polyhedra) generation. The
number of wall cells is determined by the number of triangles.
The number of fluid domain volumes can be modified by
changing the volume mesh density and the volume growth rate
parameters. A prismatic layer is required in order to keep y*
within limits. The resolution studies showed that grid
independence is reached for ¢, for a large number of wall
cells.

The numerical results for ¢; were compared to the
experimental results available in literature. In particular, the
experiment where the airflow over the airfoil’s walls is fully
turbulent, the numerical values are approximately 4% higher
than the experimental ones.

The extrapolated value for = 3E6, fi. = 0.0092231, has
an error band of 0.26 % and the numerical result obtained by
simulating Model no. 9 is 2.23% higher than that value.
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