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In this article, the preliminary test estimator is considered under the BLINEX loss func-tion. The 
problem under consideration is the estimation of the location parameter from a normal distribution. 
The risk under the null hypothesis for the preliminary test esti-mator, the exact risk function for 
restricted maximum likelihood and approximated risk function for the unrestricted maximum 
likelihood estimator, are derived under BLINEX loss and the different risk structures are compared 
to one another both analytically and computationally. As a motivation on the use of BLINEX rather 
than LINEX, the risk for the preliminary test estimator under BLINEX loss is compared to the risk 
of the pre-liminary test estimator under LINEX loss and it is shown that the LINEX expected loss is 
higher than BLINEX expected loss. Furthermore, two feasible Bayes estimators are derived under 
BLINEX loss, and a feasible Bayes preliminary test estimator is defined and compared to the 
classical preliminary test estimator.

Keywords Preliminary test estimator; LINEX loss function; BLINEX loss function; Feasible 
Bayes estimator; Feasible Bayes preliminary test estimator.

Mathematics Subject Classification 62F15; 62F10.

1. Introduction

In this article, the performance of the preliminary test estimator (PTE), restricted maximum
likelihood estimator (RMLE), and unrestricted maximum likelihood estimator (UMLE) are
all considered under the BLINEX loss function and the risk functions are compared to one
another in order to determine which estimator performs better compared to the rest. At
the end of this article, all three estimators mentioned above are considered under both the
BLINEX and LINEX loss function in order to determine which of the two loss functions
performs the best in the sense of having smaller risk. A number of articles have already
been published on the preliminary test estimators using different proposed loss structures
by Bancroft (1944, 1964), Giles and Giles (1996), Giles (2002), Ohtani et al. (1997),
Kibria and Saleh (1993, 2006), Saleh (2006), and Arashi et al. (2008), to name a few.
Furthermore, two feasible Bayes estimators are derived under BLINEX loss and a feasible
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Bayes preliminary test estimator (FBPTE) is defined and it’s performance is compared to
the performance of the classical preliminary test estimator.

In an article by Wen and Levy (2001), a new parametric family of bounded and
asymmetric loss functions, called the BLINEX loss function, was developed and the math-
ematical properties of the BLINEX loss function were discussed. In Parsian and Kirmani
(2002), Porosiński and Kamińska (2009), Arashi (2010), and Arashi and Tabatabaey (2010),
the properties of the LINEX function, which was first proposed by Varian (1975), was pre-
sented together with results of estimation under LINEX loss for a number of probability
distributions. The BLINEX function is the bounded alternative to the LINEX loss function,
therefore it doesn’t have the same limitations as the LINEX loss function, for example, the
LINEX loss function exhibits a huge increase in expected loss which limits the application
of the loss function in practice. The BLINEX function is therefore both bounded and asym-
metric, which allowed the same flexibility as exhibited by the LINEX loss function but it
also has the added advantage of being bounded. The relationship between the BLINEX and
LINEX loss functions will be considered next.

Assume that τ is an estimator of the unknown parameter θ then the LINEX loss
function is defined as follows:

L∗ (τ, θ ) = d
(
ea(τ−θ) − a (τ − θ ) − 1

)
,

where a is the shape parameter and d is the scale parameter.
The BLINEX loss function is derived from the LINEX loss function; let

L (τ, θ ) = d
(
ea(τ−θ) − a (τ − θ ) − 1

)
1 + λd

(
ea(τ−θ) − a (τ − θ ) − 1

)
= 1

λ

[
1 − 1

1 + b
(
ea(τ−θ) − a (τ − θ ) − 1

)] (1)

with b = λd.

The BLINEX loss function depends on the selected values of three parameters, namely
a, b, and λ, where each of these values plays a significant role in the shape of the loss
function. The bounding parameter, λ, specifies the range of the loss which is bounded
between 0 and 1

λ
. The sign of the constant a will determine the direction of error penalisation,

where negative values will penalise negative errors and a positive value will penalise positive
errors. This constant also influences the flatness of the curve, for small positive values of
a, the curve will be flatter and large positive values will result in a steeper curve. The
constant b is an asymmetry parameter and it can be seen that for smaller values of b the
loss function is more asymmetric and for larger values of b the function is more symmetric.
The influence of the different parameters as discussed above is depicted in Figure 1 for
different parameter values.

The problem under study is to consider the estimation of a location parameter μ from a
normal population with unknown variance in order to evaluate the finite-sample properties
of the preliminary test estimator in terms of it’s risk. Suppose that X1,X2, . . . , Xn is a
random sample from N (μ, σ 2) where both μ ∈ R and σ ∈ R

+ are unknown.
The outcome of a preliminary test on μ will determine which of the estimators will be

used to estimate the population mean μ. The unrestricted maximum likelihood estimator,
X = �Xi

n
, will be regarded as the estimator of μ when nothing is a priori known about the

parameter μ, whereas the restricted maximum likelihood estimator will be chosen when
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Figure 1. BLINEX loss function 1 with (i) — λ = 0.8, a = b = 1, (ii) - - - λ = b = 1, a = −5,
(iii) . . . λ = b = 1, a = 5, and (iv) .-.λ = a = 1, b = 25.

some constraints are imposed to the model as a null hypothesis. The standard t − test for
the population mean will be the appropriate test since the scale parameter σ is unknown.

Now consider the case where we are dealing with the following hypotheses:{
H0 : μ = μ0

HA : μ �= μ0.

Then it is well known that the test statistic is given as t = X−μ0
s√
n

∼ t(n − 1) with X ∼
N (μ, σ 2

n
).

Alternatively, we can use the following statistic t2 = (X−μ0)2

s2
n

= F ∼ F (1, n − 1).

In more general terms, the sampling distribution of the test statistic will be the non
central F variate, F ∼ F (1, n−1, λ∗∗) with λ∗∗ = nδ2

2σ 2 known as the noncentrality parameter
and the estimation error is defined as δ = μ0 −μ. It can easily be seen that when δ = 0, the
sampling distribution under the null hypothesis will be the central F (1, n−1, 0) distribution.
Based on this proposal the unrestricted maximum likelihood estimator (UMLE) is given by
μ1 = X and the restricted maximum likelihood estimator (RMLE) is equal to μ0.

Then the preliminary test estimator of μ is defined as

μp = [IR (F ) × μ1] + [INR (F ) × μ0]

where

IR(F ) = 1 when the null hypothesis is rejected

= 0 otherwise

and

INR(F ) = 1 when the null hypothesis is not rejected

= 0 otherwise.

The null hypothesis will not be rejected when F ≤ cα, where cα is a critical value
defined as Fα,1,n−1,λ∗∗=0, and α is the level of significance.
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The outline of this article is as follows. In Sec. 2, the risk function of the RMLE,
UMLE and PTE are derived under BLINEX loss. These different risk functions will be
computationally compared. In Sec. 3, two feasible Bayes estimators are derived under
BLINEX loss. A feasible Bayes preliminary test estimator (FBPTE) is then defined and the
risk function of the PTE is compared to that of the FBPTE. Section 4 is a discussion of
the results obtained in this article and illustrations are provided for the motivation to use
BLINEX loss rather than LINEX loss functions.

2. Risk Functions

2.1 Risk Function of RMLE

The risk function of RMLE is defined and followed by an illustration of how the risk
function behaves for different choices of the parameters in the function.

The risk function of the RMLE is defined as follows:

� (μ0) = E

[
1

λ

[
1 − 1

1 + b
(
eaδ − aδ − 1

)]]

= 1

λ

[
1 − 1

1 + b
(
eaδ − aδ − 1

)]

with δ = μ0 − μ.

In the case where δ = 0,�(μ0) = 0.

By examining the risk function it can be seen that when both a and δ are negative
values or when both a and δ are positive, with δ either tending to −∞ or ∞, the risk of
RMLE, (�(μ0)) tends to 1

λ
. When δ tends to zero, the term b(eaδ − aδ − 1) tends to zero

and therefore �(μ0) tends to 0.

2.2 Risk Function of UMLE

By definition, the risk function of UMLE can be calculated as below:

� (μ1) =
∫ ∞

−∞

1

λ

[
1 − 1

1 + b
[
ea(μ1−μ) − a (μ1 − μ) − 1

]]p (μ1) dμ1, (2)

where p(μ1) is the density of N
(
μ, σ 2

n

)
.

Therefore, by applying the binomial expansion to (1−Z)−1 where Z = b[a(μ1 −μ)−
ea(μ1−μ) + 1]

� (μ1) = 1

λ
− 1

λ

( n

2πσ 2

) 1
2

∫ ∞

−∞

e
−(μ1−μ)2

(
n

2σ2

)
1 − z

dμ1.

The risk function of UMLE can be expanded to:

= b

λ

[
e

a2σ2

2n − 1
]

+ a2b2σ 2

λn

[
2e

a2σ2
2n − 1

]
+ b2

λ

[
2e

a2σ2
2n − e

2a2σ2
n − 1

]
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+ 3a2b3σ 2

λn

[
e

a2σ2
2n + e

a2σ2
2n

(
a2σ 2

n

)
− 1

]
+ 6a2b3σ 2

λn

[
e

a2σ2
2n − e

2a2σ2
n

]
+ 3b3

λ

[
e

a2σ2
2n − e

2a2σ2
n

]
+ b3

λ

[
e

9a2σ2
2n − 1

]
+ .... (3)

The risk function of the UMLE is not a function of the estimation error, δ, and is therefore
also constant with regard to the non centrality parameter λ∗∗.

2.2.1 Monte Carlo Simulations of Risk of UMLE. The risk function of UMLE was also
evaluated as a function of λ and it was found that the risk function is a decreasing function
of both n and λ. Table 1 gives the simulation results where the function was evaluated for
different values of a, b, σ, and n and using p = 1000 iterations.

The results in the table just confirm some of the expected characteristics of the risk
function, namely that the risk of UMLE is a decreasing function of both λ and n, but the
risk is an increasing function of the variance for a specific choice of parameter.

2.3 Risk of PTE

In this section the null risk (risk under the null hypothesis) of the preliminary test estimator
is derived under BLINEX loss. The following lemma is due to Judge and Bock (1978) and
work done by Clarke (1986).

Lemma 2.1. Let w be a non central chi-square variate with g degrees of freedom and non
centrality parameter θ , let φ(·), be any real-valued function and let n be any real value
such that n >

−g

2 , then

E(wnφ(w)) = 2n

∞∑
m=0

e−θ θm

m!

[
� 1

2 (g + 2n + 2m)
]

�
[

1
2 (g + 2m)

] E
[
φ
(
χ2

(g+2n+2m)

)]
.

Theorem 2.1. Ignoring the terms of order 3, the risk function of the preliminary test
estimator using the BLINEX loss function under H0 is given by

�(μp) = 2ab

λ
(1 + eaδ)

(
2σ 2

n

) 1
2 ∞∑

m=0

e−λ∗∗
λ∗∗m

m!

�
[

1
2 (2 + 2m)

]
�
[

1
2 (1 + 2m)

]P [F1 < c∗
α]

+ 3b

λ

[ ∞∑
r=1

ar

r!

(( 2σ 2

n

) r
2
�
(

r+1
2

)
2π

+ δrP
[
F2 < c∗∗

α

]−
r∑

j=0

(
δj
) (r

j

)[
2σ 2

n

] (r−j )
2

×
∞∑
i=0

e−λ∗∗
λ∗∗i

i!

�
[

1
2 (1 + r − j + 2i)

]
�
[

1
2 (1 + 2i)

] P
[
F3 < c∗∗∗

α

] )]

− a2b

λ

[( 2σ 2

n

)
�
(

3
2

)
2π

+ δP
[
F2 < c∗∗

α

]−
1∑

j=0

δj

[
2σ 2

n

] (1−j )
2

5



Table 1
Risk of UMLE for specific choices of a, b, σ , n and λ = 1

a = 1, b = 0.1, λ = 1 a = 0.1, b = 1, λ = 1 a = 0.1, b = 0.1, λ = 1

Sample size σ = 1 σ = 2 σ = 5 σ = 1 σ = 2 σ = 5 σ = 1 σ = 2 σ = 5

n = 10 0.00469 0.01903 0.10772 0.00046 0.00185 0.01132 0.00005 0.00019 0.00117
n = 30 0.00162 0.00647 0.04009 0.00016 0.00065 0.00401 0.00002 0.00007 0.00041
n = 50 0.00105 0.00421 0.02632 0.00011 0.00042 0.00261 0.00001 0.00004 0.00026
n = 100 0.00051 0.00203 0.01281 0.00005 0.00020 0.00130 0.00000 0.00002 0.00013
n = 1000 0.00005 0.00022 0.00135 0.00001 0.00002 0.00013 0.00000 0.00000 0.00001
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×
∞∑

k=0

e−λ∗∗
λ∗∗k

k!

�
[

1
2 (2 − j + 2k)

]
�
[

1
2 (1 + 2k)

] P
[
F4 < c∗∗∗∗

α

] ]

− b

λ

[ ∞∑
r=1

(2a)r

r!

(( 2σ 2

n

) r
2
�
(

r+1
2

)
2π

+ δrP [F2 < c∗∗
α ]

−
r∑

j=0

(
δj
) (r

j

)[
2σ 2

n

] (r−j )
2 ∞∑

i=0

e−λ∗∗
λ∗∗i

i!

�
[

1
2 (1 + r − j + 2i)

]
�
[

1
2 (1 + 2i)

]
× P

[
F3 < c∗∗∗

α

] )]+ O
(
Z3
)

with F1 = (n−1)χ2
(2+2m,λ∗∗ )

(2+2m)χ2
(n−1)

, F2 = (n−1)χ2
(1,,λ∗∗ )

χ2
(n−1)

, F3 = (n−1)χ2
(1+r−j+2i,λ∗∗ )

(1+r−j+2i)χ2
(n−1)

and F4 = (n−1)χ2
(2−j+2k,λ∗∗ )

(2−j+2k)χ2
(n−1)

.

Proof. By applying the binomial expansion for Z = b[a(μp − μ) − ea(μp−μ) + 1] the risk
function is given by

�(μp) = E[L(μp,μ)] (4)

≈ −1

λ

[
E (Z) + E

(
Z2
)+ O

(
Z3
)]

where

E (Z) = −b

∞∑
r=2

arE
(
μp − μ

)r
r!

.

Using the fact that(
μp − μ

)r = (μ1 − μ)r IR (F ) − δrINR (F )

= (μ1 − μ)r + [
δr − (μ1 − μ)r

]
INR (F ) f or r = 1, 2, 3, . . .

= (μ1 − μ)r +
⎡⎣δr −

r∑
j=0

(
δj
) (r

j

)
(μ1 − μ0)r−j

⎤⎦ INR (F )

= (μ1 − μ)r +
⎡⎣δr −

r∑
j=0

(
δj
) (r

j

)[
σ 2χ2

(1,λ∗∗)

n

] (r−j )
2

⎤⎦ INR (F ) ,

where χ2
(1,λ∗∗) is a non central Chi-squared variate with 1 degree of freedom and a non

centrality parameter λ∗∗ = nδ2

2σ 2 .

Thus,

E
(
μp − μ

)r = E
[
(μ1 − μ)r

]+ δrE [INR (F )] −
r∑

j=0

(
δj
) (r

j

)[
σ 2

n

] (r−j )
2

× E

[
INR (F )

(
χ2

(1,λ∗∗)

) (r−j )
2

]
.
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Using Lemma 2.1, we have:

E

[
INR (F )

(
χ2

(1,λ∗∗)

) (r−j )
2

]
=

r∑
j=0

(
δj
) (r

j

)[
2σ 2

n

] (r−j )
2 ∞∑

i=0

e−λ∗∗
λ∗∗i

i!

× �
[

1
2 (1 + r − j + 2i)

]
�
[

1
2 (1 + 2i)

] P
[
F3 < c∗∗∗

α

]

E (Z) = −b

[ ∞∑
r=2

ar

r!

(
E
[
(μ1 − μ)r

]+ δrP
[
F2 < c∗∗

α

]−
r∑

j=0

(
δj
) (r

j

)[
2σ 2

n

] (r−j )
2

×
∞∑
i=0

e−λ∗∗
λ∗∗i

i!

�
[

1
2 (1 + r − j + 2i)

]
�
[

1
2 (1 + 2i)

] P
[
F3 < c∗∗∗

α

] )]
.

Consider the following expressions (see Zellner, 1971, pp. 364-365):

E (μ1 − μ)2r =
(

2σ 2

n

)r

�
(
r + 1

2

)
2π

for r = 1, 2, 3, . . .

E (μ1 − μ)2r−1 = 0 for r = 1, 2, 3, . . . .

We finally get

E(Z) = −b

[ ∞∑
r=2

ar

r!

(( 2σ 2

n

) r
2
�
(

r+1
2

)
2π

+ δrP
[
F2 < c∗∗

α

]−
r∑

j=0

(
δj
) (r

j

)[
2σ 2

n

] (r−j )
2

×
∞∑
i=0

e−λ∗∗
λ∗∗i

i!

�
[

1
2 (1 + r − j + 2i)

]
�
[

1
2 (1 + 2i)

] P
[
F3 < c∗∗∗

α

] )]
. (5)

Furthermore, we have

E
(
Z2) = a2bE

(
μp − μ

)2 + 2abE
(
μp − μ

)− 2abE
[(

μp − μ
)
ea(μp−μ)

]
−2E

[
ea(μp−μ)

]
+ bE

[
e2a(μp−μ)

]
+ b.

Since (
μp − μ

) = (μ1 − μ) IR (F ) + (μ0 − μ) INR (F )

= (μ1 − μ) + [δ − (μ1 − μ)] INR (F )

= (μ1 − μ) + (μ1 − μ0) INR (F )

= (μ1 − μ) −
(

σ 2

n

) 1
2 (

χ2
1,λ∗∗

) 1
2 INR(F )
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and under H0 we find

E
[(

μp − μ
)
ea(μp−μ)

]
= E (μ1 − μ) −

(
σ 2

n

) 1
2

E
[(

χ2
1,λ∗∗

) 1
2 INR (F ) ea(μp−μ)

]
= −

(
σ 2

n

) 1
2

E
[(

χ2
1,λ∗∗

) 1
2 INR (F ) ea(μ1−μ)IR(F )+a(μ0−μ)INR (F )

]
= −

(
σ 2

n

) 1
2

ea(μ0−μ)E
[(

χ2
1,λ∗∗

) 1
2 INR (F )

]
= −

(
2σ 2

n

) 1
2

ea(δ)
m=0∑
∞

e−λ∗∗
λ∗∗m

m!

�
[

1
2 (2 + 2m)

]
�
[

1
2 (1 + 2m)

]P [F1<c∗
α

]
,

otherwise

E
[(

μp − μ
)
ea(μp−μ)

]
= 0.

We then find E
(
Z2
)

under H0:

E
(
Z2
) = a2b

[( 2σ 2

n

)
�
(

3
2

)
2π

+ δP
(
F2 < c∗∗

α

)
−

1∑
j=0

δj

(
2σ 2

n

) 1−j

2 ∞∑
k=0

e−λ∗∗
λ∗∗k

k!

�
[

1
2 (2 − j + 2k)

]
�
[

1
2 (1 + 2k)

] P
[
F4<c∗∗∗∗

α

]]

− 2ab

(
2σ 2

n

) 1
2 ∞∑

m=0

e−λ∗∗
λ∗∗m

m!

�
[

1
2 (2 + 2m)

]
�
[

1
2 (1 + 2m)

]P [F1 < c∗
α

]

+ 2ab
(
eaδ
) (2σ 2

n

) 1
2 ∞∑

m=0

e−λ∗∗
λ∗∗m

m!

�
[

1
2 (2 + 2m)

]
�
[

1
2 (1 + 2m)

]P [F1 < c∗
α

]

− 2b

[ ∞∑
r=1

ar

r!

(( 2σ 2

n

) r
2
�
(

r+1
2

)
2π

+ δrP
[
F2 < c∗∗

α

]−
r∑

j=0

(
δj
) (r

j

)

×
[

2σ 2

n

] (r−j )
2 ∞∑

i=0

e−λ∗∗
λ∗∗i

i!

�
[

1
2 (1 + r − j + 2i)

]
�
[

1
2 (1 + 2i)

] P

[
F3 < c∗∗∗∗

α

])]

+ b

[ ∞∑
r=1

(2a)r

r!

(( 2σ 2

n

) r
2
�
(

r+1
2

)
2π

+ δrP
[
F2 < c∗∗

α

]−
r∑

j=0

(
δj
) (r

j

)

×
[

2σ 2

n

] (r−j )
2 ∞∑

i=0

e−λ∗∗
λ∗∗i

i!

�
[

1
2 (1 + r − j + 2i)

]
�
[

1
2 (1 + 2i)

] P
[
F3 < c∗∗∗

α

] )]
. (6)

Substituting (5) and (6) into (4) the result follows. �
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2.4 Comparison Results

The risk of UMLE and PTE are analytically compared to one another and result is given in
the following theorem.

Theorem 2.2. The PTE performs better than the UMLE in the sense of having smaller risk
if the following inequality holds:

δ ≤ 1

a
ln

⎡⎣⎛⎝ 1
b
E
[
1 − 1

xμ1

]
+ aE

(
μp − μ

)+ 1

E
[
ea(μ1−μ)IR[F ]

] − P (F > c)

⎞⎠ /P (F < c)

⎤⎦ .

Proof. It is enough to show that �(μp) ≤ �(μ1). Therefore, we should have E[1− 1
xμp

] ≤
E[1 − 1

xμ1
]., where xμp

= 1 + b[ea(μp−μ) − a(μp − μ) − 1] and xμ1 = 1 + b[ea(μ1−μ) −
a(μ1 − μ) − 1], knowing that E[1 − 1

xμ1
] is not a function of δ.

Applying the inequality, 1 − 1
x

≤ x − 1, ∀ x > 0 to the LHS of the above expression it is
sufficient to prove that E[xμp

− 1] ≤ E[1 − 1
xμ1

].
Simplifying the relevant term it yields

E
[
ea(μp−μ)

]
≤ 1

b
E

[
1 − 1

xμ1

]
+ aE

(
μp − μ

)+ 1.

Setting 1
b
E[1 − 1

xμ1
] + aE(μp − μ) + 1 = Q we then have

E
[
ea(μp−μ)

]
≤ Q. (7)

The LHS of the above inquality can be written as

E
[
ea(μp−μ)

]
= E

[
ea(μ1−μ)IR [F ]eaδINR [F ]

]
. (8)

By applying the Cauchy-Schwarz inequality and using (7) and (8), we obtain

E
[
ea(μ1−μ)IR[F ]eaδINR [F ]

] ≤ E
[
ea(μ1−μ)IR[F ]

]
E
[
eaδINR [F ]

]
.

Then, it is enough to show that E
[
ea(μ1−μ)IR[F ]

]
E
[
eaδINR [F ]

] ≤ Q .
From the fact that E

[
ea(μ1−μ)IR [F ]

]
> 0, we have

E
[
eaδINR [F ]

] ≤ Q

E
[
ea(μ1−μ)IR [F ]

] . (9)

However, the LHS of the above inequality can be written as

E
[
eaδINR [F ]

] = E

[ ∞∑
k=0

(aδ)k

k!
INR [F ]

]

= P (F > c) + P (F < c)

[ ∞∑
k=0

(aδ)k

k!

]
= P (F > c) + P (F < c) eaδ (10)
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Figure 2. a = b = λ = 1, σ = 1, n = 10.

By making use of the expression in (9) and (10) we have

P (F > c) + P (F < c) eaδ ≤ Q

E
[
ea(μ1−μ)IR[F ]

] .
By simplifying and taking logs on both sides of the inequality the result follows. �

The risk of RMLE, UMLE, and PTE calculated under BLINEX loss are computa-
tionally compared to one another in order to determine the performance of the estimators
relative to one another. The sketches (see Figs. 2-10) in this section will be discussed in two
ways, first by keeping σ constant and allowing the sample size, n, to increase and secondly
by keeping n constant and allowing σ to increase.

Figure 3. a = b = λ = 1, σ = 2, n = 10.
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Figure 4. a = b = λ = 1, σ = 5, n = 10.

For the case where σ = 1, it can be seen that as the sample size increases for this choice
of σ , the risk of PTE tends towards the risk of UMLE as δ → ±∞. It is well known that X

(UMLE) is the most efficient estimator as the sample size increases, since V ar
(
X
) = σ 2

n
.

It is clear that as the sample size increases the V ar
(
X
)

will tend to zero. Therefore as
the sample size increases, PTE becomes just as efficient as the UMLE. Similar results are
obtained for different values of σ.

When σ increases for a specific sample size, it can be seen that in the interval near the
origin, the domination interval of PTE relative to the UMLE becomes larger. Therefore,
when working with a specific sample size and if the variance of the sample is relatively
high, the PTE is a more efficient estimator compared to the UMLE.

Figure 5. a = b = λ = 1, σ = 1, n = 30.
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Figure 6. a = b = λ = 1, σ = 2, n = 30.

Figure 7. a = b = λ = 1, σ = 5, n = 30.

Figure 8. a = b = λ = 1, σ = 1, n = 100.
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Figure 9. a = b = λ = 1, σ = 2, n = 100.

3. Bayesian Estimation under the BLINEX Loss Function

3.1 Feasible Bayes Estimator

The Bayes estimator under BLINEX loss is derived in this section and due to the complex
nature of BLINEX loss function it was necessary to make use of alternative methods in
order to propose feasible estimators.

Suppose that X1,X2, ..., Xn is a sample from N (μ, σ 2) where μ ∈ R and σ ∈ R
+ is

assumed to be known. For the case of σ unknown, one may look at the work of Arashi
(2010), the results obtained in his paper are very complex. It is wellknown that the conjugate
prior for the unknown parameter μ is N

(
μ′, σ ′2) and the posterior of μ|x is N

(
μ′′, σ ′′2)

where μ′′ = (nμ1σ
′2+μ′(σ 2))

nσ ′2+σ 2 and σ
′′2 = σ ′2σ 2

nσ ′2+σ 2 .

Figure 10. a = b = λ = 1, σ = 5, n = 100.
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To derive the Bayes estimator, the expected loss is equal to

EL =
∫ ∞

−∞
L (μB,μ) p (μ|x) dμ

where x = (x1, x2, ...., xn)
Then under the pre-specified assumptions we have

EL(μB) = 1

λ
− 1

λ
E

[
1

1 + b
(
ea(μB−μ) − a(μB − μ) − 1

)] . (11)

Then the Bayes estimator of μ denoted by μ̂B is the one that minimises the posterior
expectation of the loss function, i.e.,

μ̂B = arg min
μB

EL(μB).

Note that

∂EL(μB)

∂μB

= b

λ
E

[
aea(μB−μ) − a[

1 + b
(
ea(μB−μ) − a(μB − μ) − 1

)]2

]
= 0.

Take fa (μB − μ) = aea(μB−μ) −a. It can be seen that fa (μB − μ) ≥ 0 when μB ≥ μ and
fa (μB − μ) < 0 when μB < μ. Also note that for a random variable X ≥ 0 , E (X) = 0
implies X = 0 a.e. Therefore, subject to the constraint μB ≥ μ the Bayes estimator is equal
to

μ̂B = μ. (12)

Now under the restriction μB < μ, consider the following optimisation problem

arg max
μB

EL(μB)

arg max
μB

E

[
1

1 + b
(
ea(μB−μ) − a(μB − μ) − 1

)] . (13)

Consider that g(μB −μ) = [ 1
1+b(ea(μB −μ)−a(μB−μ)−1) ] is an increasing function since g′(μB −

μ) > 0 when μB < μ. Also from the fact that ea(μB−μ) > a(μB − μ) + 1 when μB < μ,
it can be seen that g(μB − μ) > 0. There is no unique solution for (13), therefore (12) is a
valid result.

The problem with the above solution (12) is that μ̂B is not a valid estimator, because
μ is unknown. In this case a feasible estimator, denoted by μ̂FB , can be obtained by
substituting a proper estimator of μ into the solution to get

μ̂
(1)
FB = μ′.

Another possible solution is to use two sets of available information contained in the prior
distribution, for the unknown parameter μ and the density function .X|μ, which contains
the information of the original sample.
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In this case, define

λ ≡ L
(
μ, σ 2) .p (μ)

∝ e
− 1

2σ2 �(xi−μ)2−
(

μ−μ
′)2

2σ
′2 .

Then taking the derivative with respect to μ, equating to zero and substituting the final
result into (12) we obtain the feasible estimator

μ̂
(2)
FB =

(
�n

i=1xi + μ′σ 2

σ ′2

)
(

σ 2

σ ′2 + n
) . (14)

Note that λ is just a way to produce an estimator of μ and it totally independent of the loss
function. The result of λ was substituted into (11), that was initiated from BLINEX loss
and the sketches were generated using simulation exercises based on (11). This feasible
Bayes estimator is exactly the same as the Bayes estimator under squared error loss.

The properties of μ̂
(2)
FB are given below:

E
[
μ̂

(2)
FB

]
=

nμ + μ′
(

σ 2

σ ′2

)
σ 2

σ ′2 + n
;

if μ = μ′ then E
[
μ̂

(2)
FB

]
=

(
σ2

σ ′2 +n
)
μ

σ2

σ ′2 +n
= μ, therefore under these circumstances μ̂

(2)
FB is an

unbiased estimator of μ;

V ar
[
μ̂

(2)
FB

]
= nσ 2(

σ 2

σ ′2 + n
)2 = nσ 2σ ′2(

σ 2 + nσ ′2)2 ;

if σ 2 = σ ′2 then V ar
[
μ̂

(2)
FB

]
=
[

n

(n+1)2

]
σ 2, it can therefore be seen that when n → ∞,

V ar
[
μ̂

(2)
FB

]
→ 0.

3.2 A Feasible Bayes Preliminary Test estimator

Facing the same problem as in the introduction and using μ̂
(2)
FB as the unrestricted estimator,

the feasible Bayes preliminary test estimator is defined by

μFBP =
[
IR (F ) × μ̂

(2)
FB

]
+ [INR (F ) × μ0] .

The performance of FBPTE will be explored under BLINEX loss in the following section.

3.2.1 Comparing PTE with FBPTE under BLINEX loss function. The risk functions for
the PTE and FBPTE were calculated for specific choices of the parameters involved and are
compared to one another. In all the sketches the risk function of the PTE is presented by the
dashed line curve and the risk function of the FBPTE is given by the solid line curve. Both
risk functions of the estimators are functions of δ, where −1 ≤ δ ≤ 1. In the calculation
of the FBPTE only a fixed value for the prior mean, μ′ = 13 and prior standard deviation,
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Figure 11. Comparison of PTE and FBPTE for different parameter values.

σ ′ = 1, were considered and the performance of the estimators must still be evaluated for
different choices of parameters. For these choices it can be seen that depending on the value
of δ, σ and n, the one estimator outperforms the other one.

4. Discussion

In this article, the PTE and its exact risk function is derived under BLINEX loss, It is then
compared in terms of it’s risk function, to the risk of the RMLE and UMLE. For specific
choices of parameters and sample sizes it can be seen that the PTE is just as efficient as
UMLE, these results were obtained when δ → ±∞ as the sample size increases and by
keeping σ constant. When the sample size remains constant and σ increases, the interval
where PTE dominates UMLE increases. In other words, when σ increases we rather prefer
to use the PTE in our problems.

The FBPTE was also defined in Sec. 3.2 and the PTE was computationally compared
to the FBPTE. For specific choices of parameters and sample sizes it can be seen that
both estimators perform well under specific conditions and for specific values of δ. Since
the feasible Bayes estimator, given by (14), is nothing more than the Bayes estimator
under squared error loss, we can not expect that the risk of FBPTE has a special form. It
is still unclear how one can find a Bayes estimator under BLINEX loss with stable risk
performance, which leaves this problem open for further research. By examining the results
obtained, we found that the PTE performs better than FBPTE for some specific parameter
choices and vice versa.

The BLINEX and LINEX risk functions are illustrated in the following sketches (see
Figs. 12a–c) for specific values of the bounding parameter, λ, the asymmetry parameter b,
and the shape parameter a which influences the direction of the penalisation of the delta.
In addition to these parameters, different samples sizes were selected and the population
variance was also adjusted to determine the effect on the risk functions. In each sketch the
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Figure 12. a. Risk functions under BLINEX and LINEX loss for different choices of the scale
parameter and n = 10. b. Risk functions under BLINEX and LINEX loss for different choices of the
scale parameter and n = 30. c. Risk functions under BLINEX and LINEX loss fordifferent choices
of the scale parameter and n = 100.
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Figure 12. (continued)

corresponding risk functions for BLINEX and LINEX loss are compared to one another.
The BLINEX risk function is represented by the dashed line curve and the LINEX risk
function is represented by the solid line curve. All the risk functions are represented as a
function of δ, where −1 ≤ δ ≤ 1. In the first column of the panel the risk functions of the
PTE under BLINEX and LINEX loss are given. In the second column the risk functions
of the RMLE under BLINEX and LINEX loss are given and in the last column the risk
functions of the UMLE under BLINEX and LINEX loss are given.

Even though only specific choices of the parameters a, b, λ, σ , and n were investigated,
it can clearly be seen that the BLINEX risk functions represent lower risk than that of the
corresponding LINEX risk function across all estimators. These results can be used to
motivate why the BLINEX loss function should be used, rather than the LINEX loss
function. The risk functions of RMLE remain the same for all choices of σ and n, since
the risk function is not a function of these two parameters. The risk functions of UMLE
are not a function of δ, therefore the risk is constant over the domain of δ. As shown in
Wen and Levy (2001), the BLINEX loss function has the same flexibility as the LINEX,
together with the added advantage of being a bounded function, now it is also shown that
under BLINEX loss all the estimators performs better when compared to LINEX loss.

All the simulations in this article were done in SAS 9.2.
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