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1 Introduction

Quaternions were introduced in the mid-nineteenth century by Hamilton [12] and [13] as an
extension of complex numbers and as a tool for manipulating 3-dimensional vectors. Although
quaternion field of algebra has many applications in quantum physics, geostatics, the figure
and pattern recognition, molecular modeling and the space telemetry (see Liu [17], Wang [21]
and Karney [14]), its statistical applications are not considered well yet. It also should be
noticed that the statistical theory of quaternions is well proposed (see Anderson [1], Kabe
[15], Rautenbach and Roux [20], Dimitriu and Koev [8], Diaz-Garcia and Jaimez [7] and more
recently Loots et al. [18]).
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As potential application of matrix quaternion normal distribution in multivariate analy-
sis, Faraway and Coe [9] formulated a setting for modeling head and hand orientation during
motion. Since there is an increasing criticism on the inappropriate use of the normal dis-
tribution to model, therefore it is often more appropriate to use the elliptical distribution.
The elliptical distribution provides a highly impressive list of heavier/lighter tail alternatives
to the multivariate normal models. Thus the necessity of formulating quaternion elliptical
distribution and the ease of its use highlight here.

In this paper, an unique approach is followed in that we combine the best of both fields
(i.e. the matrix variate quaternion normal distribution and the matrix variate elliptical dis-
tribution), by expanding the matrix variate quaternion elliptical distribution as an integral
of a series of quaternion normal densities, having the same covariance structure to different
scales. Therefore, properties of the matrix variate quaternion elliptical distribution can be
easily explored due to the fact that it can be described in terms of its quaternion normal
components. The different choices for the weight functions for the random variable emphasize
the flexibility of this representation of the matrix variate quaternion elliptical distribution.
Furthermore, a generalised quaternion distribution in terms of integral series of quaternion
Wishart densities is proposed. This result in the derivation of the distributions of the extreme
eigenvalues (i.e. maximum and minimum) of this generalised quaternion distribution with
special focus on the scenario where the choice of the weight function is that of the matrix
variate quaternion t distribution. This methodology provides an uncomplicated approach to
the study of the matrix variate quaternion elliptical distribution and its properties.

The paper is organized as follows: In Section 2 a collection of fundamental mathematical
results are presented for use in later sections. Section 3 is devoted to the matrix quaternion
normal distribution and matrix quaternion elliptical distribution. The key idea is presented
in Section 4, that is the integral representation for the density of a matrix variate quaternion
elliptical distribution; followed by some properties of the distribution, using this alternative
approach. In Section 5 the generalised quaternion distribution formed by integral series of
quaternion Wishart densities is proposed, using this alternative methodology, and we conclude
by presenting the distributions of the extreme eigenvalues as well as the expression for the
density function of Wilks’ statistic in the case of this generalised quaternion matrices.

2 Preliminaries and Notation

A number of useful theorems and other general results that are found in the literature will be
discussed in this section, and will be referred to frequently in subsequent sections.

Let R denote the field of real numbers, and Q the quaternion (Hamiltonion) division
algebra over R, respectively. Hence, every z ∈ Q can be expressed as z = x1 + ix2 + jx3 +kx4,
where i, j, and k satisfy the following relations:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

and where x1, x2, x3 ∈ R. The conjugate of a quaternion element is defined in a similar fashion
to that of a complex number, and is given by: z̄ = x1 − ix2 − jx3 − kx4 and ‖z‖ = (zHz)

1
2 =
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(x2
1 + x2

2 + x2
3 + x2

4)
1
2 . Now let Mn×p(R) and Mn×p(Q) denote the set of all n × p matrices

over R and Q, respectively. In the case of square matrices, say p × p, this will be indicated
by Mp(R) and Mp(Q) instead. Similar to the scalar form above, any Z ∈ Mn×p(Q) may be
rewritten as:

Z = [zij ]n×p = X1 + iX2 + jX3 + kX4,

where zij ∈ Q, and X1, X2, X3, and X4 ∈ Mn×p(R). X1 is the real part of Z, and will be
denoted by ReZ. By setting n = 1, this reduces to the vector form in an obvious way.

We will denote the transpose of a matrix Z
n×p

as Z′ = Z
p×n

. The conjugate transpose of Z

is therefore given by
Z̄′ =

[
z̄′ij

]
p×n

= X′
1 − iX′

2 − jX′
3 − kX′

4

and we say Z is Hermitian if Z̄′ = Z, this is will be denoted by ZH .
The vec operator is frequently used in expressions involving matrices of quaternions, and

is defined as
vecZ =

[
Z ′1, . . . , Z

′
p

]′ ∈ Mnp×1(Q),

where Zα ∈ Mn×1(Q), α = 1, . . . , p are the columns of Z.
The trace operator is frequently used in the simplification of expressions, and although the

multiplication of quaternions are noncommutative, we may go about it as follows, see Zhang
[22].

Let Retr(Z) = tr(ReZ) for Z ∈ Mp(Q), we have

Retr(Z) =
1
2

tr(Z + ZH), Retr(ZY) = Retr(YZ) ∀Z,Y ∈ Mp(Q).

Moreover, if Z = ZH ∈ Mp(Q), i.e. a Hermitian matrix, then Retr(Z) = tr(Z) =
p∑

α=1
λα,

where λ1, . . . , λp are the eigenvalues of Z.
A number of scattered results that will be used in later sections are briefly presented below.

The quaternion multivariate gamma function is defined by (see [11])

QΓp(a) =
∫
Z=ZH>0 |Z|a−2(p−1)−1 etr(−Z)dZ

= πp(p−1)
∏p

i=1 Γ (a− 2(i− 1)) , Re(a) > 2(p− 1).
(2.1)

The quaternion multivariate beta function is given by (see [15])

QBp(a, b) =
∫
0<Z=ZH<Ip

|Z|a−2(p−1)−1|I− Z|b−2(p−1)−1 dZ

=
QΓp(a)QΓp(b)
QΓp(a + b)

= QBp(b, a), Re(a, b) > 2(p− 1)
(2.2)

The quaternion generalized hypergeometric function of one matrix argument is defined by

pQF q(a1, . . . , ap; b1, . . . , bq;Z) =
∞∑

k=0

∑
κ

(a1)κ · · · (ap)κ

(b1)κ · · · (bq)κ

QCκ(Z)
k!

(2.3)

3



where ai, i = 1, . . . , p, bj , j = 1, . . . , q are arbitrary quaternion numbers, Z (p × p) is a
quaternion Hermitian matrix, QCκ(Z) is the zonal polynomial of p× p quaternion Hermitian
matrix Z corresponding to the partition κ = (k1, . . . , km), k1 ≥ · · · ≥ kp ≥ 0, k1 + · · ·+ kp = k
and

∑
κ denotes summation over all partitions κ. The quaternion generalized hypergeometric

coefficient (a)κ used above is defined by (a)κ =
∏m

i=1 (a− 2(i− 1))ki
= QΓp(a,κ)

QΓp(a) where (a)r =
a(a + 1) · · · (a − 2r + 2), r = 1, 2, . . . with (a)0 = 1. Conditions for convergence of the series
in (2.3) are available in the literature.
The quaternion confluent hypergeometric function with matrix argument, 1QF1 (·) , has the
integral representation (see [6])

1QF1(a; b;X) =
1

QBp(a, b− a)

∫

0<Z=ZH<Ip

exp(−Re tr(XZ))|Z|a−2p+1|I− Z|b−a−2p+1dZ,

(2.4)
valid for Re(b) > Re(a) + 2(p− 1) > 4(p− 1)− kp.

3 The Matrix Variate Quaternion Elliptical Distribution

In this section the definitions of the two members that form the basis for the development
of the integral representation are given; followed by defining the matrix variate quaternion
elliptical distribution from the vector variate quaternion elliptical distribution perspective.

Definition 3.1. The quaternion random matrix X
n×p

has a matrix variate quaternion normal

distribution (QND) if it has the following density function

fX(X) =
2pn

π2pn|Σ|2n|Φ|2p
exp

[−2Retr
(
Σ−1(X−M)HΦ−1(X−M)

)]

where M ∈ Mn×p(Q), Σ = AAH ∈ Mp(Q), Φ = BBH ∈ Mn(Q), are both invertible. In this
case we may use the notation X ∼ QNn×p(M,Φ,Σ).

Definition 3.2. The quaternion random matrix X
n×p

has a matrix-variate quaternion elliptical

distribution (QED) if its characteristic function has the form

φX(T) = exp
(
ιRetr(THM)

)
ψ

(
Retr(ΣTHΦT)

)
,

where T,M ∈ Mn×p(Q), Σ = AAH ∈ Mp(Q), Φ = BBH ∈ Mn(Q), are both invertible, ι the
usual imaginary complex unit and ψ : [0,∞) → R is the characteristic generator. In this case
we use the notation X ∼ QEn×p(M,Φ,Σ, ψ).

Then the density function of X can be expressed as

fX(X) = g
[−2Retr

(
Σ−1(X−M)HΦ−1(X−M)

)]
,

where g(.) is the density generator satisfying the conditions under the real case (see [4]). In
this case we may use the notation X ∼ QEn,p(M,Φ,Σ, g).

4



Subsequently, the vector variate quaternion elliptical distribution can be obtained by tak-
ing p = 1. In this case we use the notation X ∼ QEn(µ,Φ, g)

(
µ ≡ M ∈ Mp×1(Q).

)
.

In a similar fashion, using Theorem 9 of Loots et al. [18], we have the following important
result:

Theorem 3.3. Let Zα ∈ Mp×1(Q), α = 1, . . . , n be n probability vectors each having a p-
variate QED. Now suppose that

Z =[Zαβ ], α = 1, . . . , n, β = 1, . . . , p

=




Z11 . . . Z1p
...

. . .
...

Zn1 . . . Znp


 =




Z ′1
...

Z ′n


 =

[
Z(1) . . . Z(p)

]

i.e. the rows of Z are QEp(µα
,Σ) distributed, α = 1, . . . , n with dependence structure given by

Ω ∈ Mn×n(Q). It may be assumed without loss of generality that Ω is real-valued. Similarly,
define M = [µαβ ], α = 1, . . . , n, β = 1, . . . , p. Then

vecZ =




Z(1)
...

Z(n)


 ∼ QEnp(vecM,Σ⊗Ω)

i.e. a matrix-variate QED where

vecM =




µ
(1)
...

µ
(p)


 .

4 Main Results

Chu [5] and Gupta and Varga [10] demonstrated that real elliptical distributions can always
be expanded as an integral of a set of normal densities. The next theorem presents the
representation of the matrix variate quaternion elliptical distribution as an integral of a series
of quaternion normal densities. Due to this form, properties of the matrix variate quaternion
elliptical distribution can be described in terms of its quaternion normal components. In
addition we demonstrate the flexibility of this alternative approach with some examples.

Theorem 4.1. If X
n×p

is a quaternion random matrix following QEn×p(M,Φ,Σ, g), then there

exists a scalar weight function W(·) defined on R+ such that

hX(X) =
∫

R+

W(t)fX(X)dt,
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where fX(.) is the density of QNn×p(M,Φ, t−1Σ) and the weight function W(·) is given by

W(t) = (π/2)2np|Σ|2n|Φ|2pt−2npL−1
{
g

[−2Retr
(
Σ−1(X−M)HΦ−1(X−M)

)]}
.

where L is the Laplace transform operator.

Proof: From the density function of X we have

hX(X) =g
[−2Retr

(
Σ−1(X−M)HΦ−1(X−M)

)]

=L [W(t)(2/π)2np|Σ|−2n|Φ|−2pt2np
]

=
∫

R+

W(t)(2/π)2np|t−1Σ|−2n|Φ|−2p

× exp
[−2t Retr

(
Σ−1(X−M)HΦ−1(X−M)

)]
dt

=
∫

R+

W(t)fX(X)dt ¥

Remark 4.2. (i) In Theorem 4.1 it is stated that f is the density of QNn×p(M,Φ, t−1Σ).
It is realized from the proof that f can be even the density of QNn×p(M, t−1Φ,Σ) or
QNn×p(M, t−

1
2 Φ, t−

1
2 Σ). This fact enables us to adopt each representation whenever is

needed.

(ii) Under the assumptions of Theorem 4.1, sufficient conditions to ensure that the inverse
Laplace transform exists, is to assume that g(s2) is differential when s2 is sufficiently
large, and g(s2) vanishes faster that what s−k, k > 1 as s →∞.

(iii) From Theorem 4.1 and using Fubbini’s Theorem, we have

1 =
∫

Mp×n(Q)

hX(X)dX =
∫

R+

W(t)




∫

Mp×n(Q)

fX(X)dX


 dt =

∫

R+

W(t)dt.

Thus for a non-negative weight function W(·), the function W(·) is a density function
of t. In this case Theorem 4.1 can be interpreted as a representation of a scale mixture
of quaternion normals.

(iv) Similarly as in Theorem 4.1, one can represent the complex matrix variate elliptical
distribution as an integral of series of complex normal densities with possible applications
in the communications systems.

Now we give some examples of the weight function in Theorem 4.1 for some well-known
quaternion elliptical models. These models are the analogous types proposed in Chu [5].
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4.1 Matrix Variate Quaternion Normal Distribution

Based on Definition 3.1 and Theorem 4.1, it can be realized that the weight function W(·) is
given by

W(t) = δ(t− 1),

where δ(·) is the dirac delta or impulse function having the property
∫
R

f(x)δ(x)dx = f(0), for

every Borel-measurable function f(·).

4.2 Matrix Variate ε-Contaminated Quaternion Normal Distribution

We say the quaternion random matrix X
n×p

has the matrix variate ε-contaminated quaternion

normal distribution with the parameters M ∈ Mn×p(Q), Σ = AAH ∈ Mp(Q), Φ = BBH ∈
Mn(Q), are both invertible, σ > 0 and 0 < ε < 1, if it has the following density

fX(X) =
2pn

π2pn|Σ|2n|Φ|2p

{
(1− ε) exp

[−2 Retr
(
Σ−1(X−M)HΦ−1(X−M)

)]

+
ε

σpn
exp

[
− 2

σ2
Retr

(
Σ−1(X−M)HΦ−1(X−M)

)]}
.

Then it can be concluded that the weight function is given by

W(t) = (1− ε)δ(t− 1) + εδ(t− σ2).

4.3 Matrix Variate Quaternion t-Distribution

We say the quaternion random matrix X
n×p

has the matrix variate quaternion t-distribution

with the parameters M ∈ Mn×p(Q), Σ = AAH ∈ Mp(Q), Φ = BBH ∈ Mn(Q), are both
invertible, and ν > 0 denoted by X ∼ QTp×n(M,Σ,Φ, ν), if it has the following density

fX(X) =
ν2pnQΓ (2[pn + ν])

π2pnQpΓ(2ν)

{
1 +

1
ν

Retr
(
Σ−1(X−M)HΦ−1(X−M)

)}−2(pn+ν)

(4.1)

where QΓ (·) is the quaternion gamma function.
By applying Theorem 4.1, the weight function W(·) is then given by

W(t) =
(2tν)2νe−2tν

tQΓ(2ν)
(4.2)

where QΓ(·) is the quaternion gamma function.
The matrix variate quaternion Cauchy distribution is obtained by setting ν = 1 in 4.1.

Theorem 4.3. Suppose that X ∼ QEn×p(M,Φ,Σ, g), then we have
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(i) E(X) = M, and E(XHX) = κ(1)Σ⊗Φ,
where

κ(i) =
∫

R+

(
1
t

)i

W(t)dt.

(ii) The characteristic function of X is isomorph to that of the real case.

(iii) Let C ∈ Mp×q(Q), D ∈ Mn×m(Q) and E ∈ Mq×m(Q) be constant matrices. Further
assume that Y = CHXD + E. Then

Y ∼ QEn×p(CHMD + E,DHΦD, t−1CHΣC, g)

and the density of Y can be represented as

hY(Y) =
∫

R+

W(t)fX(X)dt

where f(·) is the density of QNn×p(CHMD + E,DHΦD, t−1CHΣC).

Proof:

(i) From Theorem 4.1 and Remark 4.2 we get

E(X) =
∫

R+

W(t)E(Z|t)dt

=M
∫

R+

W(t)dt = M, Z|t ∼ QNn×p(M,Φ, t−1Σ), also

E(XXH) =
∫

R+

W(t)E(ZZH |t)dt

=
∫

R+

W(t)t−1Σ⊗Φdt = κ(1)Σ⊗Φ.

(ii) From Theorem 4.1 and Theorem 10 of Loots et al.[18] we have

φX(T) =E
[
exp

ι

2
tr(XHT + THX)

]

=E
[
exp ι Retr(XHT)

]

=
∫

R+

W(t)E
[
exp ι Retr(XHT)|t] dt

=
∫

R+

W(t) exp Retr
(

ιMT− 1
8t

ΣTHΦT
)

dt

= expRetr (ιMT) ψ
(
Retr(ΣTHΦT)

)
, (say).
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(iii) follows from (ii) and Theorem 4.1.

5 Applications

Applications of this proposed method in Theorem 4.1 are:

• a definition of a generalised quaternion distribution as an integral series of quaternion
Wishart densities;

• expressions for the distributions of the extreme eigenvalues of this generalised quaternion
distribution;

• an expression for the density function of Wilks’ statistic for matrices from this gener-
alised quaternion distribution.

5.1 Integral Series of Quaternion Wishart Densities Distribution

If X ∼ QNn×p(0, In,Σ) then W = XHX, has the quaternion Wishart distribution denoted
by QWp(n,Σ) with the following density function

fW(W) =
2np

QΓp(2n)|Σ|2n
exp

[−2Retr
(
Σ−1W

)] |W|2n−2p+1.

where QΓp(·) as defined in (2.1).
In the following result, (see also Diáz- Garciá and Gutieŕrez-Jáımez [7]) we rewrite the

above result for quaternion elliptical models as a direct consequence of Theorem 4.1, that
results from an integral series of quaternion Wishart densities.

Theorem 5.1. Suppose that Y ∼ QEn×p(0, In,Σ). Then the quadratic form S = YHY has
the following density function

fS(S) =
2np|S|2n−2p+1G(S)
QΓp(2n)|Σ|2n

,

where
G(S) =

∫

R+

t2n exp
[−2tRetr

(
Σ−1S

)]W(t)dt.

Under the conditions of Theorem 5.1, S has the integral series of quaternion Wishart
densities distribution, denoted by S ∼ ISQWp(n,Σ,G).

The statistical characteristics of the this distribution can be directly obtained by applying
Theorems 4.3 and 5.1. The non-central form can also be defined similarly as in Theorem 4.1.
The following result follows naturally from Theorem 4.1 in section 4 and Theorem 6.3 of [6].
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Theorem 5.2. Let S ∼ ISQWp(n,Σ,G) and Ω ∈ Mp×p(Q), then

P (S < Ω) =
22npQΓp (2p− 1)
QΓp (2n + 2p− 1)

|Ω|2n

|Σ|2n

×
∫

R+

t2np
1QF1(2n; 2n + 2p− 1;−2tΩΣ−1)W(t)dt

when Re(n) > 4(p− 1)− 2kp. Also if the constant 2n + 2p− 1 is a positive integer, then

P (S > Ω) =
p(2n+2p−1)∑

k=0

∗∑
κ

1
k!

∫

R+

t2npQCκ(2tΩΣ−1) etr(2tΩΣ−1)W(t)dt,

when Re(n) > 4(p−1)+2k1 and
∗∑
κ

denotes summation over those partitions κ = (k1, . . . , kp)

of k with k1 ≤ 2n + 2p− 1.

5.2 Distributions of the Extreme Eigenvalues

Suppose that λmax and λmin are the largest and smallest eigenvalues of S (where S ∼
ISQWp(n,Σ,G)) respectively; then the inequalities λmax < x and λmin > y are equivalent to
S < xIp and S > yIp respectively.and we have the following result:

Corollary 5.3. Let S ∼ ISQWp(n,Σ,G) and x > 0, then

Fλmax(x) =P (λmax < x)

=
22npQΓp (2p− 1)
QΓp (2n + 2p− 1)

x2np

|Σ|2n

×
∫

R+

t2np
1QF1(2n; 2n + 2p− 1;−2txΣ−1)W(t)dt

when Re(n) > 4(p− 1)− 2kp. Also if the constant 2n + 2p− 1 is a positive integer and y > 0,
then

F̄λmin(y) =P (λmin > y)

=
p(2n+2p−1)∑

k=0

∗∑
κ

1
k!

∫

R+

t2npQCκ(2tyΣ−1) etr(2tyΣ−1)W(t)dt,

when Re(n) > 4(p− 1) + 2k1.
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5.2.1 Example

Specifically, we derive a closed form expression for P (λmax < x) of the matrix variate quater-
nion t-Wishart distribution, i.e. we consider the weight function (4.2) . From Corollary 5.3,
(4.2) , (2.4), 0QF0(a; A) = etr(A) and equation (3.29) of [5], we have that

Fλmax(x)
= 2npQΓp(2p−1)x2np

QΓp(2n+2p−1)|Σ|2n

∫
R+ t2np

1QF1

(
2n; 2n + 2p− 1;−2txΣ−1

)
W (t)dt

= 2npQΓp(2p−1)x2np

QΓp(2n+2p−1)QBp(2n,2p−1)|Σ|2n

× ∫
R+ t2np

[∫
0<Y =Y H<I exp

(−2txRe tr
(
Σ−1Y

)) |Y|2n−2p+1 dY
]

(2tν)2νe−2tν

tQΓ(2ν) dt

= 2np(2ν)2νx2np

QΓ(2ν)QΓp(2n)|Σ|2n

∫
R+ t2(np+ν)−1e−2tν

∞∑
k=0

∑
κ

1
k!

∫
0<Y =Y H<I QCκ

(−2txΣ−1Y
) |Y|2n−2p+1 dYdt

=
22(np+ν)ν2νx2npQΓp (2p− 1)

QΓ (2ν)QΓp (2n + 2p− 1) |Σ|2n

∞∑
k=0

∑
κ

(2n)κQCκ

(−2xΣ−1
)

k! (2n + 2p− 1)κ

∫
R+ t2np+2ν+k−1e−2tνdt

=
ν−2npQΓp (2p− 1)x2np

QΓ (2ν)QΓp (2n + 2p− 1) |Σ|2n

∞∑
k=0

∑
κ

1
k!QCκ

(−xΣ−1
) (2n)κQΓ (2np + 2ν + k)

(2n + 2p− 1)κ νk

5.3 Wilks’ Statistic for ISQW Matrices

Another application arises in the context of hypothesis testing of a mean matrix. (The reader
is referred to the valuable contribution of Bhavsar [3] where asymptotic distributions of like-
lihood ratio criteria for two testing problems are considered.)

Let the rows of X ∈ Mn1×p(Q) and Y ∈ Mn2×p(Q) be independently QEp(0,Σ) and
QEp(µ,Σ) distributed, respectively. Then from Theorem 3.3, it is clear that X ∼ QEn1×p(0,Σ⊗
In1) and Y ∼ QEn2×p(M,Σ⊗In2). Now from Theorem 5.1, we get A = XHX ∼ ISQWp(n1,Σ,G).
Further as an extension to the result of Kabe [15], B = YHY ∼ ISQWp(n1,Σ,Ξ,G) (non-
central ISQW distribution), where Ξ = Σ−1MMH . As discussed in Bekker et al. [2], the
Wilks’ statistic

Λ =
|XHX|

|XHX + YHY| =
|A|

|A + B|
can be used as a likelihood ratio criterion for testing whether the matrix mean M is equal to
zero or not. The solution of this problem depends on the derivation of the distribution of Λ.
Using Theorem 4.1 and the result of Loots et al. [18], similar to Bekker et al. [2], one can
directly conclude that

fΛ(λ) =
exp [Retr(−2Ξ)]
QΓp(2n1)

×
∞∑

k=0

∑
κ

QCκ(2Ξ)
QΓp(2(n1 + n2), κ)

k!
Gp,0

p,p

(
λ

∣∣∣∣
a1, . . . , ap

b1, . . . , bp

)

where al = 2(n1 + n2 − l) + kl + 1, and bl = 2n1 − 2l + 1, l = 1, . . . , p, and G(·) is Meijer’s
G-function (see [19], pp 60).
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6 Concluding Remarks

We have derived an integral representation for the density function of the matrix variate
quaternion elliptical distribution. This representation eases theoretical derivations of the
properties of the matrix variate quaternion elliptical distribution, as well as the development
of the generalised quaternion distribution in terms of integral series of quaternion Wishart
densities. It also accommodates different distribution models for different choices of the
weight function. We would like to conclude that the presented model in Theorem 4.1 and in
particular the expressions for the cumulative distribution functions of the extreme eigenvalues,
pave the way for transforming the theory into practice for the user. In this regard, the result
of Li et al. [16] can be extended under a more general setup considering non-normality and
hyper-complex systems.
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