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ABSTRACT

We propose a simple diffusion model of a PEM fuel cell and
perform its thermodynamic analysis. Our description is based
on a set of two mass balance equations involving water and
proton transport through the membrane coupled with two reac-
tion equations describing the electrochemical reactions at the
electrodes. Equations for the water and proton flux densities are
constructed in a linearized form suitable for the analysis from
the point of view of irreversible thermodynamics. In terms of
our simplified model, relations for the characteristic thickness
of a PEM membrane is derived, and the maximum efficiency
of a fuel cell is evaluated, both as functions of the transport
properties of the PEM material.

INTRODUCTION

Fuel cells and hydrogen technology in general are receiving an
increasing attention nowadays, and not only from the scientific
community and power industry, because the vision of clean, safe,
and independent energy source can certainly help to win some
political points as well. Although the basic principles of the
fuel cell operation were discovered more than 150 years ago,
there are still many open questions to be answered in this field.
Our contribution presented in this article tries to apply the gen-
eral irreversible-thermodynamics [3] treatment to the transport
processes inside an operating fuel cell. We therefore create a
simplified thermodynamic model of the fuel cell operation and
perform its thorough analysis.

We tried to balance out the complexity of our model with its
accuracy. The model was constructed so that it is easily (analyti-
cally) solvable, yet it is relevant to the transport processes inside
the fuel cell. The crucial simplification lies in the fact that we
treat the whole membrane-electrodes assembly (MEA) of the
fuel cell as a single homogeneous one-dimensional electrochem-
ical reactor, which has the transport properties (water diffusivity,
proton conductivity) of a polymer-electrolyte membrane (PEM),
usually NafionTM, and also has the catalytic capabilities of both
the anode and cathode layer of an ordinary fuel cell. This way
our model becomes analytically solvable, and the general rela-
tions coming from irreversible thermodynamics can be applied.

There are more elaborate models of the fuel cell operation
available in the literature that perform a thorough 3D modelling
of a fuel cell, and which we do not intend to compete with,
see e.g. [1, 2, 5, 8, 10], or a comprehensive review [13]. We
hope that our contribution will help to understand what are the
important factors of a successful fuel cell operation.

NOMENCLATURE

c [mol/m3] molar concentration
D [m2/s] diffusion coefficient
F [C/mol] Faraday constant (96485.3383)
i [A/m2] electric current density
j [mol/m2s] molar flux density
k [m−1] perturbation wave number
k± [m3i/molis] forward/backward reaction rate, i ∈ {0, 1, 3

2}
l [m] characteristic length
Lij [mol2/msJ] phenomenological coefficients
nd electroosmotic drag coefficient
q degree of coupling
R [J/molK] universal gas constant (8.31447215)
t [s] time variable
T [K] temperature
w [mol/m3s] reaction rate
x spatial coordinate (proton flow direction)
z ion number

Greek symbols

η efficiency
λ water content
µ [J/mol] chemical potential
σ [S/m] proton conductivity
φ [V] electrical potential
ω [s−1] perturbation wave frequency

MODEL

Our simple model of the fuel cell operation is presented in this
section. The model fulfills two requirements, being analyti-



cally solvable on one hand, and suitable for the application of
the irreversible-thermodynamic treatment [3] on the other hand.
The whole MEA, as already mentioned, is modelled as a ho-
mogeneous 1D electrochemical reactor into which hydrogen
and oxygen are fed and where water and electric energy are
produced. We allow the following two chemical reactions to
take place within the reactor

H2

k+
a−−⇀↽−−

k−a

2 H+ + 2 e− (1)

1
2 O2 + 2 H+ + 2 e−

k+
c−−⇀↽−−

k−c

H2O (2)

where the subscripts a and c might imply that we describe the
anode and cathode reaction of an ordinary hydrogen fuel cell.
In our description, however, these two reactions take place over
the whole reactor area. The corresponding reaction rates can be
written according to the mass action law as

wa = k+
a cH2

− k−a c2
H+ (3)

wc = k+
c c

1
2
O2

c2
H+ − k−c cH2O

(4)

where, to further simplify the description, the backward reaction
rates k−a and k−c are taken as zero.

The concentrations of hydrogen and oxygen are kept constant
throughout the reactor cell, cH2

= cH2
, cO2

= cO2
. The con-

centrations of water cH2O
and concentration of protons cH+ are

allowed to vary across the reactor due to the chemical reactions
(1, 2) and diffusion. We can write down the respective mass
balance equations for water molecules and protons within the
reactor

∂cH2O

∂t
= wc −∇ · jH2O

(5)

∂cH+

∂t
= 2wa − 2wc −∇ · jH+ (6)

where jH2O
and jH+ are the fluxes of water molecules and pro-

tons. To be able to account for the thermodynamic coupling
between the transport of water and protons within the reactor
cell, we write the fluxes in the form

jH2O
= −DH2O

∇cH2O
− L1∇φ (7)

jH+ = −L2∇cH2O
− σ

F
∇φ (8)

where DH2O
is the diffusion coefficient of water diffusing

through the membrane, σ is the membrane proton conductivity,
and F is the Faraday number. In the case we take L1 = 0, Eq.
(7) simplifies to the Fick’s law of diffusion of water molecules.
By setting L2 = 0, Eq. (8) gives the Ohm’s law for protons. The
reason for including the additional parameters L1 6= 0∧L2 6= 0
is the possibility to take into account the coupling between the
diffusion process and the electroosmotic drag of water and pro-
tons.

A measurable property that describes the above-introduced
coupling phenomena is the electroosmotic drag coefficient nd

[12], [7], [6] which gives us the number of water molecules
that are dragged along with one proton as it travels through the

Figure 1: Three different trial functions of the electroosmotic
drag coefficient nd that are used in our subsequent calculations
(Figs. 2, 3) to illustrate the effect of varying nd.

reactor cell. A direct consequence of this definition is that the
cross-coefficient L1 takes the form

L1 =
σ

F
nd (9)

describing the transport of water molecules due to the coupling
with proton flow caused by the electric field ∇φ. The inverse
effect of dragging protons along with the diffusion of water in
its concentration-gradient field is introduced by taking

L2 =
DH2O

λ
nd (10)

where the parameter λ =
cH2O

cH+
is usually called the water con-

tent in the literature. This definition of the water content is not
very handy in our case as it does not give a constant value over
the whole reactor area. The concentration of protons cH+ is in
our model constant, but the water concentration on the contrary
is not constant as we will see later. A more suitable definition of
the water content is given later in the text by Eq. (30).

The experimental data of the drag coefficient nd available in
the literature are somewhat ambiguous. Constant values around
unity independent of λ were reported [7]. A linear dependency
of nd on λ (for λ > 9) was reported as well [12]. A slightly
different definition of the drag coefficient [6] gives even negative
values of nd. We therefore refrain from using particular experi-
mental data of nd and create a set of simple trial functions for
use in our subsequent calculations. These trial functions depend
linearly on λ, they differ in the slope of the linear dependency,
and are plotted in Fig. 1.

Dependencies of the water diffusion coefficient DH2O
and the

proton specific conductivity σ are taken from [12].

CHARACTERISTIC LENGTH

Let us turn our attention to the solution of the model presented in
the preceding section and to its stability. The initial step towards
a solution is recalling the charge conservation law which can be
written as ∇ · jH+ = 0 and which assures the continuity of the
proton current. Using Eq. (8) we find that

∆φ = −FL2

σ
∆cH2O

(11)



Eqs. (5, 6) now possess a stationary solution (i.e.
∂cH2O

∂t = 0

and
∂cH+

∂t = 0) which takes the form

cH2O
= −

k+
a cH2

2DH2O

(
1− n2

d

λ

)x2 + C1x + C2 (12)

cH+ =

√√√√k+
a cH2

k+
c c

1
2
O2

(13)

We see that the stationary proton concentration cH+ is constant
throughout the reactor cell, being a function of the reaction rates
and the reactant concentrations (which are constant as well). The
water concentration in the stationary case cH2O

is a polynomial
function of x which is the spatial coordinate spanning from the
anode side of the reactor (x = 0) to the cathode side (x = l).
The integration constants C1, C2 can be evaluated according to
the boundary conditions cH2O

|x=0 = ca
H2O

, cH2O
|x=l = cc

H2O

which give

C1 =
cc
H2O

− ca
H2O

l
+

k+
a cH2

l

2DH2O

(
1− n2

d

λ

) (14)

C2 = ca
H2O

(15)

Let us now investigate the stability of the above presented
stationary solution. We introduce small perturbations into the
stationary solution, i.e. we write the solution in the form

cH2O
= cH2O

+ c0
H2O

exp(kx− ωt) (16)

cH+ = cH+ + c0
H+ exp(kx− ωt) (17)

where c0
H2O

and c0
H+ are the amplitudes of the perturbations,

x, t are the spatial and temporal variable. The unknown wave
number k and frequency ω will be investigated further.

The perturbed concentrations can be installed into Eqs. (5, 6),
whose form simplifies thereafter to

0 =
(

DH2O
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d

λ

)
k2 + ω

)
c0
H2O

+ (18)
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)

c0
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A non-trivial solution c0
H2O

, c0
H+ of Eqs. (18, 19), i.e. non-zero

perturbations, can be achieved only when the following two
conditions are satisfied

ω = 4

√
k+

a k+
c c

1
2
O2

cH2
(20)

k = ±i
√

ω

DH2O

(
1− n2

d

λ

) (21)

As a result, we see that the perturbations of our stationary solu-
tion decay with time (as ω > 0) and they oscillate in space, and
they do not, therefore, destroy the stability of the fuel cell op-
eration. To evaluate the decay frequency ω (20) the knowledge
of the concentrations of reactant gases and the reaction rates
is required. As these are not specified in our model let us just

Figure 2: Characteristic length l of polymer-electrolyte mem-
brane (22) as a function of the membrane water content λ evalu-
ated for three different trial functions of the electroosmotic drag
coefficient nd (according to Fig. 1) and three different values of
the perturbation decay frequency ω = (0.001, 0.01, 0.1) s−1.

shortly elucidate the nature of ω instead of exactly evaluating it.
The frequency ω is inversely proportional to the damping time
τ , i.e. τ = 1/ω, which gives us the time period after which the
initial perturbation is damped to 1/e of its initial value. This
way we can find out (or, on the other hand, prescribe) on what
time scale are the perturbations in our reactor damped.

It is the wave length 4l of the perturbation oscillation which
can be given an interesting physical meaning. The wave length is
inversely proportional to the imaginary part of the wave number
k, i.e. Im(k) = 2π

4l , that by using Eqs. (20, 21) gives

l =
π

2

√√√√DH2O

(
1− n2

d

λ

)
ω

(22)

which we shall call the characteristic length of the reactor cell.
The reason for defining the characteristic length as one fourth

of the perturbation wave length is obvious as a perturbation
reaches zero after travelling one fourth of its wave length. By
setting the reactor size to its characteristic length we assure that,
for example, a perturbation in the water pressure on the cathode
will not be transfered through the membrane to the cathode, but,
on the contrary, such a perturbation will be effectively damped.
The characteristic length of the membrane is shown in Fig. 2



as a function of the electroosmotic drag coefficient nd and the
decay frequency ω.

COUPLING AND EFFICIENCY

A second step in our thermodynamic treatment concerns the
coupling between the transport phenomena inside the reactor
cell. We therefore consider the entropy production due to the
transport processes under consideration, i.e. diffusion flows and
electric currents

σ(s) = −
∑

k

(
jD,k · ∇

(µk

T

)
+

ik
F
· ∇
(

zkFφ

T

))
(23)

which has the general form of a product of generalized fluxes(
jD,k, ik

F

)
and generalized forces

(
∇
(

µk

T

)
,∇
(

zkFφ
T

))
. Ac-

cording to the standard irreversible-thermodynamics procedure
[11] we construct a set of linearized equations for the mass
fluxes (phenomenological relations)

jH2O
= −L11∇µH2O

− L12∇(Fφ) (24)
jH+ = −L21∇µH2O

− L22∇(Fφ) (25)

where the phenomenological coefficients Lij need to be further
specified. Considering the chemical potential in the form µi =
µi0 + RT ln ci and comparing Eqs. (24, 25) with Eqs. (7, 8) we
find that the phenomenological coefficients take the form

L11 =
DH2O

cH2O

RT
L12 = σ

F 2 nd (26)

L21 =
DH2O

cH+

RT
nd L22 = σ

F 2 (27)

Moreover, the cross-coefficients L12 and L21 have to obey
the reciprocity relation L12 = L21 which results into

cH+ =
RT

F 2

σ

DH2O
(28)

giving us the proton concentration in the membrane as a function
of the transport properties of the PEM membrane, as opposed to
Eq. (13) which expresses the proton concentration in terms of
the reactant concentration and the catalyst efficiency.

Now we are able to evaluate the degree of coupling q, a prop-
erty that characterizes the thermodynamic coupling between the
transport phenomena in our model. A general definition of the
degree of coupling is [11]

q =
L21√

L11L22

(29)

A non-zero coupling is a necessary requirement for the con-
version of energy of one process into another and, therefore, a
condition for a successful fuel cell operation in our case. If we
define the water content, introduced in Eq. (10), as

λ =
L11

L21
nd (30)

then the degree of coupling takes the simple form

q =
nd√
λ

(31)

Figure 3: Degree of coupling q (31) as a function of the mem-
brane water content λ (top graph) for three different trial func-
tions of the electroosmotic coefficient nd (see Fig. 1). Maximum
efficiency ηmax of the fuel cell operation (35) as a function of
the membrane water content λ (bottom graph).

The definition of the water content λ (30) is correct from the
theoretical point of view as it involves phenomenological coef-
ficients (and the drag coefficient) that are constant throughout
the reactor cell. All these coefficients depend on λ, and Eq. (30)
therefore defines the water content in an implicit manner.

At this point, we are able to draw some conclusions about the
efficiency η of a fuel cell operation as modeled by our simplified
approach. The usual formula for the fuel cell efficiency1 reads
η = W

∆G , where the electric work W the fuel cell is able to
perform is compared to the Gibbs energy ∆G destroyed during
the electrochemical reaction within the cell. Such a relation
can be written in terms of the above-presented thermodynamic
treatment as

η =
jH+ · F∇φ

−jH2O
· ∇µH2O

(32)

where the numerator accounts for the electric work our reactor
cell performs per unit length, and the denominator stands for
the chemical energy that is spent per unit length of our reactor
cell. By introducing the property y = F∇φ

∇µH2O
, Eq. (32) takes

the form

η = −L21y + L22y
2

L11 + L12y
(33)

and we are able to evaluate the maximum value of the efficiency
by solving dη

dy = 0. The choice of y is now obvious as it frees us
from dealing with the actual values of the cell voltage and the
Gibbs energy of reaction, and enables us to handle the efficiency
as a function of the phenomenological coefficients Lij only. The

1Ususally denoted as the second law efficiency, or the voltage efficiency in
the literature [4].



extremal values of η(y) are found for

y1,2 = −L11

L21

(
1±

√
1− q2

)
(34)

from which the greater one is the maximum we searched
for. We can now evaluate the maximum efficiency ηmax =
η(y)|

y=−L11
L21

“
1−
√

1−q2
” which gives

ηmax =

(
1−

√
1− q2

q

)2

(35)

and we find that it is a simple function of the degree of coupling
q only. The dependency of the maximum efficiency is shown
in Fig. 3 as a function of the water content λ. Our calculated
maximum efficiency ηmax is somewhat lower than the maxi-
mum theoretical efficiency of a PEM fuel cell (e.g. ηth ∼ 0.8
at 80 ◦C [4]) which is, however, not equivalent to our defini-
tion of efficiency. The maximum theoretical efficiency (also
known as the thermodynamic efficiency [9]) expresses the the-
oretical maximum electric work a fuel cell is able to provide
divided by the formation enthalpy of water or, in other words,
the maximum fraction of heat (that would be gained by burning
the reactants) that can be converted to electrical work by the
fuel cell. This efficiency was constructed in order to provide
a comparison between fuel cells efficiency and Carnot cycle
efficiency. However, the definition of efficiency we use above in
Eq. (32) gives us the fraction of the real electrical work the fuel
cell (as described by our simplified model) is able to provide
and the maximum theoretical electrical work of the fuel cell that
is given by the Gibbs free energy of formation of the product
water. The real electrical work is influenced by the transport
processes (and their coupling) inside the fuel cell that our model
accounts for, i.e. the diffusion of water through the membrane,
the membrane proton conductivity, and the drag coefficient. Pre-
cise experimental data of these thermodynamic properties and
an experimentally measured efficiency of a working fuel cell
are necessary to confirm that our simplified model is accurate
enough in terms of efficiency, and they will be, therefore, subject
of our future investigation.

CONCLUSION

The results of our thermodynamic analysis based on a simplified
model revealed some interesting aspects of a PEM fuel cell
operation. First, our characteristic length (22), that theoretically
assures a stable fuel cell operation, roughly coincides with the
thickness of commonly-used polymer electrolyte membranes
used in fuel cells. Second, we found the importance of the water
content λ. This parameter, defined by Eq. (30), is a function of
the transport properties of the membrane, and it was shown that
it is related to the two parameters of the fuel cell operation – the
degree of coupling q, and the maximum efficiency ηmax. This
way the empirical knowledge, that the fuel cell membrane has
to be well-hydrated in order to obtain reasonable performance,
is theoretically confirmed.
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