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ABSTRACT

An explicit scheme based on a weighted mass matrix, for
solving time-dependent convection-diffusion problems is
studied. Convenient bounds for the time step, in terms of both
the weights and the mesh step size, ensure its stability in the
maximum norm, in both space and time, for piecewise linear
finite element discretizations in any space dimension.
Convergence results in the same sense also hold under certain
conditions. The scheme is exploited numerically in order to
illustrate its performance.

INTRODUCTION

This work deals with an explicit scheme introduced in [4],
for the numerical time integration of the convection-diffusion
equations, discretized in space by techniques based on
variational formulations such as the finite element method. In
this framework, since the mid-eighties, the most widespread
manner to deal with dominant convection has been the use of
stabilizing procedures based on the space mesh parameter,
among which the streamline upwind Petrov-Galerkin (SUPG)
technique introduced by Hughes and Brooks (cf. [1]) is one of
the most popular.

The first and third authors together with Trales studied in [5]
a contribution in this direction, based on a standard Galerkin
approach, and a space discretization of the convection-diffusion
equations with piecewise linear finite elements, combined with
a non standard explicit forward Euler scheme for the time
integration. The main theoretical result in that work, states that
the numerical solution is stable in the maximum norm in both
space and time, and even convergent with order & | [n & | where
h is the space mesh parameter, if the mesh is of the acute type
(cf. [8]), provided that roughly the time step is bounded by A°
multiplied by a mesh-independent constant that we specify.
Actually, in this paper the authors further study this scheme in
the sense specified in the next section. As it should be clarified,
the scheme under consideration follows similar principles to the
one long exploited by Kawahara and collaborators, for
simulating convection dominated phenomena (see e.g. [3],

among several other papers published by them before and later
on). The originality of this contribution relies on the fact that it
not only introduces a reliable scheme for any space dimension,
but also exhibits rigorous conditions for it to provide
converging sequences of approximations in the sense of the
maximum norm. In this work, besides addressing relevant
implementation aspects pertaining to the determination of the
weighted mass matrix, new numerical examples are given in
order to illustrate the adequacy of this approach.

An outine of the paper is as follows: In Section 2 we recall the
problem to solve. In Section 3 we describe the type of
discretization corresponding to the new method, and more
specially the weighted manner to deal with the mass matrices
on both sizes of the discrete equations. In Section 4 we recall
the stability results that hold for the method being considered,
in the sense of the space and time maximum norm, together
with the conditions to be fulfilled by the scheme parameters in
order to ensure convergence. Finally in Section 5 we study in
detail a particular choice of the weights associated with the
scheme, satisfying the conditions leading to both stability and
convergence. Numerical results to be shown in the conference's
presentation illustrate the good performance of the new scheme.

NOMENCLATURE

u unknown field or temperature
a convective velocity

t time variable

X space variable

v gradient operator

A laplacian operator

v diffusion cocfficient or conductivity

o flow domain

w weight lower bound

Hysin minimum element height

max, maximum

min minimum

sup supremum

vz euclidean inner product of two vectors y and z
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PROBLEM STATEMENT
Let us consider a time-dependent convection-diffusion
problem described as follows:

Find a scalar valued function u(x, t) defined inﬁx[(),oc), 0

being a bounded open subset of K" with boundary 042, N =
1,2 or 3, such that,

u, +a-Vuvau:fin.Q><(O,30)
u=g ond2x(0,) (1)
u=1u" inQforr=0

where u, represents the first order derivative of u with respect
to £, v is a diffusivity constant and a is a given solenoidal
convective velocity at every time ¢, assumed to be uniformly

bounded in2x(0,00). The data f and g are respectively, a
given forcing function bounded in £2x (0,0), and a prescribed

value bounded on 802 x(0,00). We further assume that u’ s
bounded in £2 and that for every x < £2 g(x,-) is of bounded

variation in (0,).

For a normalized velocity a, v represents the inverse of the
Péclet number, and the convective dominant case corresponds
to a low value of v. Whenever v is not so small, the diffusion
will influence the phenomenon being modelled practically
everywhere in the domain, and convection will not be
dominant.

SPACE AND TIME DISCRETIZATIONS

In all the sequel, for the sake of simplicity, and without loss of
essential aspects, we assume that (2 is an interval if N =/, a
polygon if N = 2 or a polyhedron if N=3. In so doing we next

consider a partition J, of £2 into N-simplices, with maximum
edge length equal to 4. We assume that Sh satisfies the usual

compatibility conditions for finite element meshes, and that it
belongs to a quasi-uniform family of partitions. We further
define a second mesh parameter #,,;, as the minimum height of

all the elements of Sh if N = 2 or 3 and the minimum length of
KeJ,if N=1

Let N, be the number of nodes (i.e. vertices) of 3,1 , denoted
by P;, j=1,2,..,N;. We assume that these arc numbered in
such a manner that the first 7, nodes are located in the interior
of (2 and the remaining N, —/;, nodes are located on 02 .
u’; eR is the value of uj at P;. Now for every K € T, we

denote by Pi(K) the space of polynomials of degree less than
or equal to one defined in K. In so doing we introduce the
following spaces or manifolds associated with 3, :
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Vh.':{v‘ve CO(E)and v|K e P(K)VK € 3, }
V,U.'={V‘VEV,1 and v, =0}

We further introduce for any function ¢ defined in C 0(6(2)

4l L

A | P P S Ui iy I [ o 7 S
UIC TULIOWIIE HIdIIOI UL o

Vi:={ve Vh] v(Pj): go(Pj) V vertex P, of 3, on 002}

e

Now let uZ be the field of th(‘ﬂ} satisfying ug(P_/-):un(Pj )
for every vertex P; of Sh, and A/>0 be a given time step.
Defining g”on 62 by g"()=g(-,nd), [ "ind2 by
" O=f(-,nAt) and a"in2 by a"()=a(-,nAt) for n =12,
..., idealistically we wish to determine approximations u (-) of

uy, (-, nAt) for n=1,2,.., by solving the following finite element

discrete problem described below, corresponding to a
modification of the first order forward Euler scheme.

For n successively equal to 1.2, ..., we wish to determine

n

n g

up €V, of the form
N

n I

Up = 2 UjQ;
=t

where ¢; is the canonical basis function of 7, associated with
the j-th node of J,. ie.P;, ui € R being the value of

uZat P;. We denote by S; the support of ¢; and by 11 its

measure,

The unknowns uf for n=1,2, ...., are recursively determined by
the following expressions:

Ny

L W -1 -1 N .

mh u}’=2[m;j —Aral) ]u"/’ Arh! fori=1,...1I, )
=

where, sctting  al(-):=a"P)and f'(-)e=f"(B), the

cocfficients @j; and bi are given by:
a; :J.Q[(a;’.V)(ajw‘. +vVe, ~Vg0,] (3)

o =[ /e



Coefficient mf{(-) is the well-known lumped mass diagonal
matrix [7] given by 77;/N+I. The mass matrix coefficients
mg/ on the right hand side of (2) in turn are defined by a

weighted quadraturc formula described as follows.

Let M; be the number of nodes different from P; lying in the

closure of S;, i.e.g,-, and P;‘/be such nodes for j=1.2,...M;

with 1<k;<N;. Let also W; be the measure fractions
associated with 7, given by:
~ measure(S;, NS, )
A — (4)
N+1

and a)} be corresponding strictly positive weights satisfying,

M;

zw;Wf":L 5)
= (N+I)(N+2)

Notice that since each N-simplex in §; appears in exactly N

measure fractions W} , we necessarily have:

M;

- i ]7;' .
Swi-X~ (©)
S WD

Now sciecting the nodes 7, in §; different from /7, we

define,

W Ponin i

my., =——=—ao; W; fori #k; (7)
V+ Apin
together with
W v 7 Aimin C
M = my; + i (3)
hmin +v hmin +v

where mgis the i-#h diagonal coefficient of the standard
consistent mass matrix [7] given by (277;)/[(N+I)}N+2)] .

Naturally enough, by definition, mE-V =0 it F; does not lie in

Si.

Typically we may choose a)} =1/(N+2) for every j and for

every node P , thereby generating a weighted combination of
the lumped mass and the consistent mass matrix ( cf. [7] ) on
the right hand side of (2), with weights equal to
V(i +V) A0 By /(i +) , respectively. However, except
for the case of uniform meshes, in principle this is not the
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choice to make, if one wishes to reach the best results in terms
of accuracy, as seen in the next Section.

STABILITY AND CONVERGENCE OF SCHEME

In this Section we show that, provided A is chosen
conveniently small with respect to the space mesh parameter,
the scheme (2) is stable in the sense of the maximum norm.
Moreover we specify a condition under which it converges in
both space and time in the same sense, as £ and A¢ go to zero.

First we have to define the following quantities:

A= max ‘ai(t)‘

Sup
[E(O’w)lizﬁlh
W= min min a)j

I<iiy 1< <M,

The following theorem proved in [5] states the stability result
that holds for scheme (2).

Theorem 1: If A¢ fulfills the condition

3
wh nin

A< 9
(V+h1nf)1 )[A hmr’n +(N+1) V] ( )

then the finite element solution sequence {MZ }” given by
Ni

z;Z:Zu;(p_, generated by (2) for n = 1,2, ...

=1

satisfies the

following stability result for every me X, whereby |F|_ ,
denotes the maximum norm of a function F defined in an open

set D of R", and BV/G] represents the standard norm of a
function G(¥) having bounded variation for re(0,) :

0,2~

Hu;’f” < H z,zallwlg+max{zls% BV [g(P)] ,Ali_f"lm;g} (10)

n=/

The above stability result can be refined as follows, in the
particular case where the partition 3, is of the acute type (see
e.g. [8]). In the two-dimensional case this means that no angle

of the triangles of §,
ol the triangles of 4,

1

‘“

o

is obti

Theorem 2: (cf. [5] ) Assume that the partition 3,} is of the
acute type (cf. [8]). Then if Ar satisfies the condition

-

Af<——min__in 9’% (11)
(+h) |4 v(N+1)(N+2) ‘

min

the finite element solution sequence {uZ }" given by
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N
upy =Zu;’¢j generated by (2) for » = 1,2, ... satisfies the
=1

stability condition (10).

In [5] we give error estimates for the approximations of the
solution of (1) generated by (2) under condition (9), provided

tha family of meachea e 1e anaginniform 1 and tha
e lamiy o1 mesacs i usc 18 quasiunuorm |Z;, and uic

weights W," are chosen in such a manner that they satisfy
condition (5) together with condition (12) specified in Lemma
1 below, and moreover @ is bounded below by a strictly
positive constant independent of the mesh step size 4. Actually
it is also proven in the same paper that scheme (2) provides
quasi-first order convergent approximations in the space-time
maximum norm, as both # and At go to zero, under the
assumption (11) of Theorem 2.

The crucial condition for all those results to hold is a suitable
consistency result, which together with the stability result given
in Theorem 2 leads to convergence. Actually the consistency
of our scheme is a consequence of the following lemma:

Lemma 1: (cf. [5] ) Let P be a node of J,, for

b

ie{l,2,..,/4}, and li]. be the vector leading from P, to its
neighbor Fy , that is, the j-th node belonging to Ej s J=1,2,

., M ;. Then there exists strictly positive weights (u} satisfying
(5) such that

A CONSISTENT CHOICE OF THE WEIGHTS

In this section we describe a coherent strategy to determine
asetof M; strictly positive weights, for each mesh inner node
P, that can be proven to be bounded below by a strictly
positive constant independent of the mesh parameter /.
Let us first consider the one-dimensional case. From (12) and
(5) it is trivially seen that the pair of weights ((uj,(oé)
associated with inner node F is uniquely defined by the
equations:

’—()"’ ’li);+()i /If\?—{)\
”(1 12(2]{”, (13)

[fUJ li+as |
where l; and /5 are the lengths of the intervals of JI , having
P, as the right and left end, respectively. This yields
o) =1%/31} and w}=11/30% .

Next we switch to the case N > /. In principle for N =2 or N =

3 there are infinitely many solutions, except for the case of the
least possible value of AM;, ie. M;=N-+/, in which the
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=0 (i2)

solution is necessarily unique. The construction described as
follows allows for the unique determination of a set of weights
satistying (12) and (5), and incidentally it applies even to the
particular case where this sct is unique.

: VM
Let then E; = {e’]} 11 be the set of wunit vectors
J=

. ) i N T i
corresponding to the vectors lj , that is, e = 1! /l‘! , where /;
i M
AN

Let us first consider the case where £, = E'. Then for every

is the modulus of l;. ,and B =

jie{l,....M;} there is necessarily another j,e{/,..,M;} such
that e;.L + e[/.2 = 0. This implies in particular that Af; must be
an even number. Hence we may choose the weights in pairs,

i

say (e i ,ei[.j ), in the same way as in the one-dimensional case
(cf. (13)). More specifically, we number the vectors in Ef in

such a manner that the first A;/2ones form a subset of

E ; whose vectors do not have any vector opposite to it in this
subset, and from (M; / 2Y+1 up to M; the vectors in the

complementary subset consisting of corresponding opposite
vectors. In so doing the weights satisfy:

i i bogiomed _
{_(")J} Z.f{ W.iJ +@, ij W i> =0
i i
Wj, +Wj2
N+2

. o (14)
i i i i
1&]]‘, W/I +60j2 Wj} =

for all pairs (j;, ;)€ (Lo M; /2y {M; 2+ 1,...M;}, such
that e;( + e;J = (). Notice that the set of weights determined
by solving (14) trivially satisfy both (12) and (5).

Next we assume the general case where £, #FE, .
Distinguishing eventually coincident vectors in £, and E:,
we put together all the vectors in both sets, thereby forming a

set of exactly2M; vectors not necessarily distinct, say

\12M,
{e’j } L where the first A, vectors are those of Ei+ and the
I

i P i N
last M, vectors are €y, =€ Jorj=1, ..., M;.

Now let the se
half straight line with origin at P, and oriented in thc sense and
direction of ei, for k>M;, Qi, being necessarily a point of the
boundary of ;. It follows that PQk either coincides with an
edge PP, , where P, is a vertex of S, or is contained in
either a single N-simplex of S; for N=2o0or N =3 oryetina
common face of exactly two neighboring tetrahedra for N = 3.
In any case, the vector leading from P to Q}L , for

k=M;+1,., 2M;, still denoted by li, is a non trivial



convex combination of at most N edge vectors li. with
1< j<M; pertaining to the same N-simplex of S;. Let J be the
number of such edge vectors, i.c., J=I if Q;i coincides with a
given vertex of S, J=2 for N=3 only if Q,rf is contained in a

common face of two neighboring tetrahedra of §;, or J=N for
N=2 or N=3 otherwise. Let P, for [=1,...,J with

I <m<M;, be the vertices of S; whose convex

2M;. Let li denote

i

combination yields l; for k=M;+1,...,

the modulus of li ,for k=M, +1,..., 2 M too. In so doing,

Za/k my? k=Mf +17 ’2Mi (15)

where the ak ’s for [=1,...,J are coefficients of a non trivial

convex combination, that is, 0<alk<1, I=1,..,J, and

J
2M,;, with Zalk =]

k=M,+1..,

i=1
Now we assign to each point Q,i k=M, +1,., 2M, the
measure  fraction W ]\’ -w' . and the weight

k=M,
Lﬁi = (li_M /l; )E);_M , where (D; are provisional weights
respectively associated with the vertices Py, of §; different

LT
from P satisfying @, + @,
i 4 o K K

. = 1/(N+2). Then similarly

i

to the case of (14), one can easily check the validity of

20,
sof e 18

o, W1, =0 (16)

]

i=
together with

2M; . ]VH
Z' U (N+I)N+2) a7

Now we replace in (16) the lf;( 'sfor k=M, +1,.., 2M,, with

the expression given by (15). Then rearranging the terms in the
resulting expression, we establish that relation (12) holds for

weights a}’] defined in the following manner:

@) =Ci((5}+5}l forj =1,..,M, (18)

In (18) C; is a normalizing constant allowing (5) to hold.

Notice that, provided the weight increments & ; are all non-

negative, the value of C; is strictly positive. The values of 5;
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in turn, simply account for the sum of the contributions of li.
for a given j € M, to the vectors lj‘,’ for k> M, expressed by

(15), respectively multiplied by 52 , and the corresponding
convex combination coefficient. More specifically we have,

Zﬂ" 2 (19)

k=M +1

where IB;f =0 if Qjdoes not belong to S S, and
o J

k k o o :
B; =a; for the pertammg convex combination coefficients

in (15), that is, all the at , 's such that nr = j. In view of this

definition of ﬁ ; it is readily seen from (19) that all the weight

i

increments o , are non-negative. Furthermore by construction

(5) holds for the weights o)j, defined by (18)-(19).

As one can easily infer from the construction of the set of
weights described in this Section, this choice gives rise to a
straightforward implementation of the method.

Remark 1: A second consistent choice of weights was
proposed in [6]. For both such a choice and the present one a
lower bound for @ independent of /1 can be determined.
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