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ABSTRACT

2D isothermal viscous incompressible fluid flows are presented
from the Navier-Stokes equations in velocity-vorticity
variables. The flows are obtained with a simple numerical
method based on a fixed point iterative process to solve the
nonlinear elliptic system that results after time discretization;
the iterative process leads to the solution of uncoupled, well-
conditioned, symmetric linear elliptic problems for which
efficient solvers exist regardless of the space discretization.
The numerical experiments are given for the Taylor vortex and
the driven cavity problems.

Keywords: velocity-vorticity variables, Reynolds number,
Taylor vortex problem, driven cavity problem, fixed point
iterative process

INTRODUCTION

2D isothermal viscous incompressible flows from the Navier-
Stokes equations in velocity-vorticity variables are presented.
The flows are obtained with a numerical procedure based on a
fixed point iterative process to solve the nonlinear elliptic
system that results once a convenient second order time
discretization is made. The iterative process leads to the
solution of uncoupled, well-conditioned, symmetric linear
elliptic problems for which efficient solvers exist either by
finite differences or finite elements as far as rectangular
domains are considered. On the driven cavity problem
isothermal flows up to Reynolds numbers Re = 3200 are
presented; on the Taylor vortex problem up to Reynolds
numbers Re = 7500.

It appears that with velocity-vorticity variables is more difficult
to solve these flows, at least with a numerical procedure similar
to the one applied in stream function-vorticity variables to solve
an analogous nonlinear elliptic system, [1].

MATHEMATICAL MODEL AND NUMERICAL METHOD

Let Q ¢ RN (N = 2, 3) be the region of the flow of an
unsteady thermal viscous incompressible fluid, and T its
boundary. This kind of flows is governed by the non
dimensional system, in Q x (0,7), 7> 0,

u, — R1—6V2u+Vp+uVu= f (a) 0
Vou=0 (b)

known as the Navier-Stokes equations in primitive variables,
velocity u and pressure p. The dimensionless parameter Re is
the Reynolds number given by Re = %, with v = %
=kinematic viscosity, L and U are the length and the velocity of
reference. The dimensionless velocity u is given by u = u/U,
an the dimensionless position x by x = x/L. The system must
be supplemented with appropriated initial and boundary
conditions.

Taking the curl in (la), the vorticity w equation, in Q x

(0,7), reads

W, ——V0+u-Vo = -Vu+f ©)
where the vorticity vector w is given by

w=VXu 3)

Taking the curl in (3), using the identity VXV xa=
—V2%a + V(V-a) and (1b), a velocity Poisson equation results

Viu=-VXw “)
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Hence, equations (2) and (4), give the Navier-Stokes
equations in velocity-vorticity variables. It can be verified that
the vorticity, scalar, w transport equation in Q x (0,7), Q R’
is given by

wt—ivzw+u-Vw=O; %)
moreover, from the 2D restriction in (3),

=du _ dw
w= ax ay (6)

and, from (4), two Poisson equations for the velocity
components are obtained

ow

(Viu, = > (@)
(7
Vi, =5 ()

Then, the system (2) and (4) is reduced to a scalar system of
three equations in 2D: one given by (5) an two by (7); (5) and
(7) are related through (6) from which the boundary condition
for w in (5) should be obtained from that of u = (u;,u,).

For the time derivate appearing in the vorticity equation (5)
the following well known second-order approximation is used

3fn+1_4fn +fn_1
24t ’

fe(x,(n+ 1AL) = ®)
where x € Q,n > 1,At denotes the time step, and f" =
f(x,rAt), assuming f is smooth enough.
Then, from (5) and (7), the following fully implicit time-
discretization system is obtained, in Q,
2, n+1 _ _ 00"
Veur™ = P

2, n41 _ 0" t! 1 —
Vit = ——, ut e =y, ©)

n+1 2, n+1 n+1 n+l —
aw™t — vV + Uttt Vo =,

wn+1 IF = Wpc

4" -1 46m—gn1
26t fo = 24t
replaced by the kinematic viscosity coefficient v, with U = L =

1; u,,. and w,,. denote the boundary condition for u and w.
Then, at each time level (n + 1)At, a nonlinear system
of elliptic equations of the following type must be solved, in Q,

3 1
where a = —, f,, = , and — has been
288 Re

2
l{V u = ay
{Vzuz ufr = uy (10)
wa —-vw+ u-Vo = f,, ol = Wpe
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Since system (10) is of non-potential type, a fixed point
iterative process may be used.

If we denote

R,(w,u) =aw—vV?w+ u-Vo —f, inQ

system (10) is equivalent, in Q,

a
(Vi = _ﬁ
|
Jw
{ Viu, =0 ulr =y (1
Rw(w,u) =0 wll“ = Wy

Then,(11) is solved, at time level (n + 1), by the fixed point
iterative process:

With w° = w" given, solve until convergence on w, in Q,

2,,m+1 — g™
Vi = =2
y
2,,m+1 _ 00™ m+1| . —
Vo™ =——, um = U (12)
awm+1 =M —
po(al —vV*) 7R, (@™, um 1),
1 —
w™* Ir = Wpe, Po >0,

then take(u"“,uﬁ‘“ n+1) — (u{n+1‘u£n+1'wm+1).
Finally, system (12) is equivalent, in Q, to

dw™

V2u1n+1 - —
dy

— M m+1 —
= o’ W | = Upe (13)
(al = vV aw™! = (al —vV)w™ —
PuRy (@™ um ),
Pw > O' wm+1|F = a)l?z

v2u£n+1

Therefore, at each iteration, of each time level (n + 1)At,
three uncoupled, symmetric, linear elliptic problems associated
with the operator al — vV? and two with V2 have to be solved.
It should be noted that the non-symmetric part for w in (10) has
been taken into the right hand side thanks to the iterative
process. For the spatial discretization of linear elliptic problems
either finite differences or finite elements may be used, as far as
rectangular domains are concerned, in either case very efficient
solvers exist. In the finite element case, variational
formulations have to be chosen and then restrict them to the
finite dimensional finite elements spaces, for instance like those
in References [3-4].

For the specific results in the following section, the second
or fourth order approximation of the Fishpack solver in
Reference [5] has been used, where the algebraic linear systems



are solved through an efficient cyclic reduction iterative
method, [6].

NUMERICAL EXPERIMENTS

The numerical experiments take place in rectangular
cavities Q= (0,a) X (0,b),a,b > 0. In connection with the
driven with the driven cavity problem, the boundary condition
is given by u = (1,0) on the moving wall y = b and u = (0,0)
elsewhere. The initial condition is (u(x,y,0),v(x,y,0)) =
(0,0). Results converging to the asymptotic steady state are
reported.

For the Taylor vortex problem in the square cavity 0 <
x,y < T the exact solution is given by

2t
u(x,y,t) = — cos(x) sinifly)e e

and

v(x,y,t) = sin(x) cosifly)e 7 .

From these expressions and using (6), the exact vorticity is
given by

2t
w(x,y,t) = —2cos(x)cos(y)e ke
Then the initial conditions for u, v and w are given by

u(x,y,0) = —cos(x) sin(y),
v(x,y,0) = sin(x) cos(y),
w(x,v,0) = =2 cos(x) cos(y);

and the periodic boundary condition for w is given by

2t
{w(O,y, t) = —2cos(y) e re = w(2m,y,t),

2t
w(x,0,t) = —2cos(x) e re = w(x, 2m,t),

see also [7]. The periodic boundary conditions for u, v are
given by

2t
{u(O, y,t) = —sin(y) e Re = u(2m,y,t),
v(x,0,t) = 0 = v(x,2m,t).

This problem is a time-dependent problem and we are
showing results for different values of't.

The Reynolds numbers considered for the driven cavity
problem are 400 < Re <3200 an for the Taylor vortex
problem are 100 < Re < 7500 The mesh sizes are denoted by
h, and the time step by At; they will be specified for each case
under study.

Figure 1 pictures the flow for the driven cavity problem, at

steady state, for Re = 400, h = 1(1)—0 and At = 0.01, streamlines

and isovorticity contours (left and right) are shown. Figure 2
pictures the flow for the same driven cavity problem, also at

steady state, for Re = 3200, h = % and At = 0.01. As one
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can see, the number of subvortexes increases as the Reynolds
number increases.We must say that these results were
compared with those in [1] and [8] and they agree well.

Figure 3 shows the streamlines (left) and isovorticity
contours (right) for the Taylor vortex problem, with Re = 100

and h = % at t = 10. Figure 4 shows the stream function and

the vorticity for Re = 100 and t = 1000 (in 3D); the reason
for showing the graph in 3D is because one can see the
difference in scales at different times, and for different values
of Re. Figure 5 and 6 show the graphs for Re = 7500 at
t=10and t = 1000.

Since for this problem we know the exact solution, in Table
1 we are showing the relative error for the vorticity obtained in
the numerical experiments.

Reynolds number | Time Relative error
100 10 3.207252¢-08
100 1000 3.192999¢-08
7500 10 3.166967e-08
7500 1000 3.166967¢-08

Table 1 Relative error for the Taylor vortex problem

Figure 1. Streamlines (left) and isovorticity contours (right) for

Re = 400,At = 0.01and h = —
100

Figure 2. Streamlines (left) and isovorticity contours (right) for

Re = 3200,At = 0.01and h = —
256
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Figure 3. . Streamlines (left) and isovorticity contours (right)
for Re = 100,t = 10and h = -
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Figure 4. Stream function (left) and vorticity (right)

for Re = 100,t = 1000 and h = 1;_8
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Figure 5. Stream function (left) and vorticity (right)
for Re = 7500,t = 10 and h = %

Figure 6. Stream function (left) and vorticity (right)

for Re = 7500,¢ = 1000 and h = 1;—8
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CONCLUSIONS

In this work we have shown numerical experiments for 2
test problems, the driven cavity problem and the Taylor vortex
problem. We have used the velocity-vorticity formulation of
the Navier-Stokes equations in order to solve these problems.
The results for the driven cavity problem agree very well with
those reported in [1] where the stream function-vorticity
formulation was used, and with those reported in [8] also.

For the second problem, the Taylor vortex problem, since
we know the exact solution we were able to calculate the
relative error and the results were very good as it is shown in
Table 1.for the vorticity.
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