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ABSTRACT

A capacitive void fraction sensor was developed to study
the objectivity in flow pattern mapping of horizontal refrigerant
two-phase flow in macro-scale tubes. Sensor signals were
gathered with R410A and R134a in an 8mm I.D. smooth tube at
a saturation temperature of 15°C in the mass velocity range of
200 to 500 kg/m?s and vapour quality range from 0 to 1 in steps
of 0.025. A visual classification based on high speed camera
images is made for comparison reasons. A statistical analysis of
the sensor signals shows that the average, the variance and a
high frequency contribution parameter are suitable for flow
regime classification into slug flow, intermittent flow and
annular flow by using a the fuzzy c-means clustering algorithm.
This soft clustering algorithm perfectly predicts the
slug/intermittent flow transition compared to our visual
observations. The intermittent/annular flow transition is found
at slightly higher vapour qualities for R410A compared to the
prediction of [Barbieri et al., 2008, Flow patterns in convective
boiling of refrigerant R-134a in smooth tubes of several
diameters, Sth European Thermal-Sciences Conference, The
Netherlands]. An excellent agreement was obtained with
R134a. This intermittent/annular flow transition is very gradual.
A probability approach can therefore better describe such a
transition. The membership grades of the cluster algorithm can
be interpreted as flow regime probabilities. Probabilistic flow
pattern maps are presented for R410A and R134a in an 8mm
LI.D. tube.

NOMENCLATURE

AVG Average

CPSD Cumulative power spectral distribution
D [m] Inner tube diameter

Fr [-] Froude number

G [kg/m’s]  Mass velocity

¢ [J/kgK] Specific heat capacity

H [T/kgK] Enthalpy

m [kg/s] Mass flow rate

M2 Variance

M3 Skewness

M4 Kurtosis

P Flow regime probability

PDE Probability density estimation
PSD Power spectral density

T [K] Temperature

14 [V] Voltage signal

x [-] Vapour quality

X [-] Lockhart-Martinelli parameter
Greek symbols

A Difference

c Standard deviation

Sub- and Superscripts

A Annular flow
1 Intermittent flow
L Liquid

PH Preheater

R Refrigerant

N Slug flow

sat Saturation

Vv Vapour

2PH Two-phase

* Dimensionless
INTRODUCTION

Complex two-phase flow phenomena occur during the
phase change of refrigerant from liquid to vapour and vice
versa. To accurately predict the heat transfer and pressure drop,
these flow phenomena should be incorporated in the design
models for in-tube evaporators used in refrigeration and air-
conditioning [1]. Traditionally, this is achieved by classifying
two-phase flows into flow regimes and presenting them in flow
pattern maps. Recently, Cheng et al. [2] published a
comprehensive review on flow regimes and flow pattern maps.
Most of the two-phase flow classifications are based on
visualizations (with or without use of high speed cameras). But
visual-only methods are inherently subjective. Cheng et al. [2]
assign this as the main reason why flow pattern data from
different researchers are often inconsistent for similar test
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conditions. Objective methods can therefore contribute to more
accurate flow pattern data.

Rather than purely classifying a flow into mutually
exclusive regimes, the classification problem can also be
approached by describing the flow as a combination of different
flow regimes each with a certain probability. Nino et al. [3]
introduced the probabilistic approach in  multiport
microchannels. Jassim et al. [4] obtained probabilistic two-
phase flow data of R134a and R410A in single horizontal
smooth, adiabatic tubes (diameters ranging from 1.74mm to
8mm 1.D.) by using an automated image recognition technique.
Jassim [5] also developed curve fits for this time fraction data,
which were used by Jassim et al. [6] for void fraction modeling
and by Jassim et al. [7] for heat transfer modeling during
condensation. However, so far it is not known how general
such time fraction curve fits are [2].

This study aims to find more objectivity in flow pattern
mapping. Therefore a capacitance probe was developed [8,9] as
well as a transducer suitable for use with low dielectric fluids
such as refrigerants [10]. The use of a signal clustering
technique was previously investigated for air-water flows [11]
and is now further studied for use with evaporating refrigerant
flows to objectively and probabilistically describe flow regime
transitions.

EXPERIMENTAL FACILITY

Refrigerant test facility

In Figure 1, a schematic of the refrigerant test facility is
shown. A pump provides subcooled refrigerant to the preheater.
This preheater consist of six tube-in-tube heat exchangers with
a total length of 15m. The length of the preheater can be altered
between Im and 15m in steps of 1m. The refrigerant in the
central tube is heated and evaporated to the desired vapour
quality x, by hot water flowing in the annuli. A boiler system
heats a 2m* tank to provide hot water at a stable temperature
during the experiments. The conditioned vapour-liquid mixture
is fed into the test sections after which it is condensed back to
liquid in a plate condenser. The condenser transfers the heat
from the refrigerant to a water/glycol (30%) flow and provides
subcooled liquid to the pump. The water/glycol mixture is
supplied from a 1m? tank which is cooled by a chiller system.
In contrast with a traditional compressor loop, there is only one
working pressure. The pump only bridges the pressure losses.
By controlling the frequency of the pump the mass velocity G,
in the refrigerant loop is set. The loop is connected to a
reservoir which is submerged in a water bath. By changing the
bath temperature, the saturation pressure in the loop can be
altered.

The mass flow rate of the refrigerant as well as the mass
flow rate of the water in the preheater, are measured using
coriolis type flow meters with an accuracy of +0.2% (of
reading). Temperature measurements are performed using
thermocouples (type K) which are insitu calibrated with an
uncertainty of +0.05°C. From these measurements, the heat
balance of the preheater is determined (Eq. (1)). The
uncertainty in this heat balance is monitored online. The vapour
quality at the inlet of the test section is calculated using Eqs. (1)
and (2).
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Figure 1 Schematic of refrigerant test facility

Adiabatic test section

A horizontal adiabatic test section is used for flow
visualization and characterization purposes. It consists of a
sight glass with a camera, the capacitive void fraction sensor
and a second sight glass. To eliminate disturbances from bends
or valves, a minimum entrance and exit length of 60D was
ensured upstream and downstream of the test section. In that
case, the flow in the test section is fully developed. A constant
tube diameter is assured over the full length of the test section
with as little disturbances as possible. To capture images of the
refrigerant flow, a monochromatic high speed camera was used
which could capture images at 250 frames per second.

Capacitive void fraction sensor

A capacitance probe with a concave electrode configuration
was developed for dynamic two-phase flow void fraction
measurements [8,12]. Capacitance probes use the difference in
dielectric constant between the liquid phase and the vapour
phase. The output of the probe is a voltage signal proportional
to the capacitance of the two-phase mixture between the
electrodes. To acquire (quasi)-local two-phase flow data, the
electrode width is equal to the diameter of the tube.

The electronic transducer measures the capacitance between
the electrodes at 2MHz and is based on the charge-discharge
principle [10,12]. The electric current that flows because of this
charging and discharging is converted to a voltage signal.
These voltage signals are gathered at a sample frequency of
1kHz by the DAQ system and are made dimensionless
according to Eq. (3). V7 and ¥V} are the voltage levels of liquid
only and vapour only flowing in the tube.

-V,
= Varn =¥y 3)
VL - VV

The sensitivity of the transducer is 1.16V/pF. At 15°C, the
difference between V; and V), was measured AV=1.32V for



R410A and AV=1.31V for R134a. The difference in electric
capacitance between liquid flow and vapour flow is thus 1.14pF
and 1.13pF respectively. The noise level of both liquid only and
vapour only flow is 10mV (peak to peak). The corresponding
uncertainty evaluated as 2o is £4mV or £0.3% of AV, resulting
in signal-to-noise ratios SNR higher than 300. The step
response of the transducer to a change in capacitance of 1pF
was faster than the sample frequency (1kHz).

EXPERIMENTAL RESULTS
Dataset and visual classification
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Figure 2 Wojtan-Ursenbacher-Thome flow pattern map
(— — G=200 kg/m’s, — G=500 kg/m’s) under adiabatic
conditions, Barbieri et al. I/A transition (-*-) with our visual
classification (LI slug flow, x intermittent flow, o annular flow)

Capacitance sensor signals are gathered for R410A at
T,.~15°C. Four data series at mass velocities ranging from
G=200 to 500 kg/m’s are obtained with vapour qualities
ranging from 0 to 1 in steps of 0.025. A similar set was
gathered with R134a. But the G=400 kg/m?s and G=500 kg/m?s
series are not complete up to x=1. Because of the larger
pressure drop of R134a, the saturation temperature could not be

Two phase flow

kept constant at 15°C. In Figure 2, the dataset with our visual
classification is shown in a Wojtan-Ursenbacher-Thome
flowmap [13] under adiabatic conditions. Additionally the
intermittent/annular flow transition of Barbieri et al. [14] is
depicted as well (Eq. (4)).

1= x)016 512 024
G2, =3.75gD%p+)8 L/ )
x= pPr - \Hy

Using the high speed camera images, the observed two-
phase flows were classified into slug flow, intermittent flow
and annular flow. The liquid slugs have to fill the entire tube
but can be aerated to be classified as slug flow. In annular flow,
the motion of the liquid flowing at the top of the tube should be
comparable to the motion of liquid flowing at the bottom.
Intermittent flow groups the remaining two-phase flows.

The slug flow/intermittent flow transition lines have the
same trend but do not fully agree with our visual classification.
This discrepancy can be partially due to the classification
criterion.

In the flow pattern map of Wojtan et al. [13] the
intermittent-annular flow transition is defined at a constant
value of the Lockhart-Martinelli parameter X,=0.34. Thus, only
density and viscosity are taken into account, resulting in a
transition line at constant vapour quality. However, Barbieri et
al. [14] concluded from their visual observations that this
transition is also affected by tube diameter, mass velocity and
vapour quality. They proposed a transition line as a function of
the liquid Froude number and X, based on observations of
R134a two-phase flows in smooth tubes with internal diameters
varyin% from 6.2mm to 12.6 mm at 7,,=5°C, namely Fr; =
3.75X,%*. Their transition line in G-x format (Eq. (4)) is set out
in dash-dot in Figure 3 and agrees much better with our visual
observations compared to the transition of Wojtan et al. [13].
The Barbieri et al. [14] criterion for intermittent-annular flow
transition is found to be valid for the conditions at 7T,~15°C
and for use with R410A.

Capacitive void fraction signals

Three typical sensor signals are shown in Figure 3, i.e. a
slug flow, an intermittent flow and an annular flow signal
obtained with R410A at 7,,~15°C. At low vapour qualities
slugs frequently fill the entire cross section with liquid. Each
liquid slug causes a peak in the voltage signal that approaches
V* =1. This results in a high variance in the signal values. The
slug frequencies dominate the frequency spectrum. The average
signal values of slug flows are high due to the large liquid
content. At transition from slug flow to intermittent flow, the
vapour content in the slugs is that high, that the liquid bridges
break up. The interfacial waves are more turbulent in the
intermittent flow regime, causing liquid droplets to swing into
the vapour phase and vapour bubbles to appear into the liquid
phase. The two-phase flow becomes fully chaotic. This results
in a higher frequency spectrum content at frequencies higher
than 5Hz. The tube perimeter remains fully wetted. The
amplitude of the wave patterns diminishes and the liquid
content in the upper film increases gradually.
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Figure 3 Capacitive void fraction signals of R410A at 7, = 15°C slug flow (b) intermittent flow (c) annular flow

A further increase in vapour quality results in the
development of an annular film. The thickness of the film
always remains larger at the bottom of the tube. The transition
from intermittent to annular flow is very gradual. In fully
developed annular flow, the interface between the liquid
annulus and the vapour core is disturbed by small amplitude
waves. Droplets may be dispersed in the vapour core but these
are hard to notice due to the limited visual access. The annular
film thickness gradually diminishes with increasing x. The
average signal values are low because of the high vapour
content, the variance of the signal values is low as well, but the
frequency content at high frequencies is high instead.

STATISTICAL ANALYSIS

From each signal of the dataset, several statistical features
are mined which are investigated for their ability of flow
regime classification. A first group consists of the statistical
moments of the sensor signal, i.e. the average value (AVG), the
variance (M2), the skewness (M3) and the kurtosis (M4). These
features determine the shape of the probability density
estimation (PDE) of a signal and represent information of the
signal in the amplitude domain. A second group consists of
features in the frequency domain, called F#-parameters. First,
the power spectral density (PSD) was calculated using the fast
Fourier algorithm. Then the cumulative distribution (CPSD)
was taken of the PSD contributions between 0 and 100Hz. The
features are then the frequencies corresponding to a certain
percentile of this cumulative distribution. For example F50 is
the frequency corresponding to the 50% percentile of the
CPSD. This means that 50% of the power spectrum
contribution (between 0-100Hz) is present in the frequencies
lower than F50. The frequency range for vapour-liquid interface
phenomena is typically smaller than 100Hz [15]. Therefore,
only contributions of frequencies lower than 100Hz are
considered. The purpose of the F#-parameters is to incorporate
the effect of PSD contributions moving to higher frequencies
and so track the intermittent-annular flow transition.

Several statistical tools were used to find the most suitable
features for flow pattern detection. Fisher Criterion tests [16]
as well as a Principle component Analysis (PCA) [17] were
performed to the datasets of R410A and R134a. From this, the
variance was found to have the highest potential in separating
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slug flows from non-slug flows. The AVG and F95 are most
suitable for tracking the intermittent/annular flow transition.
But in contrast with M2, AVG decreases smoothly and F95
increases smoothly with increasing vapour quality. No sudden
change in the trend appears in the transition zone from
intermittent flow to annular flow. The feature space of AVG,
M2 and F95 is shown in Figure 4. From this plot, it is also clear
that finding the slug/intermittent flow transition will be feasible
by using M2. But the intermittent/annular flow transition is
rather arbitrary due to the smoothness of this transition.

The choice of the features can be related to the two-phase
flows as follows: AVG is a matter for void fraction, M2 is
directly related to the presence of liquid slugs and F95
parameter can track the power spectrum contribution shift
towards higher frequencies in the intermittent-annular flow
transition.

Fo5 [

AVG []
Figure 4 Feature space with our visual classification for R410A
(0 slug flow - o intermittent flow - | annular flow)

FUZZY C-MEANS CLUSTERING

Clustering algorithms [18] are unsupervised learning
methods. The goal of such a method is to deduce properties
from a dataset, without the help of a supervisor providing
correct answers for each observation. It can be applied for two-
phase flow classification, without any visual decisions.
Clustering analysis tries to group a collection of objects into
subsets or clusters such that those within each cluster are more
closely related to one another than objects assigned to different
clusters. An object is a selection of input features deduced from



a sensor signal. The choice of these input features is
fundamental to the clustering technique. The choice of a
dissimilarity measure between two objects, the distance
function, is a second important factor. By far the most common
choice of the distance function is the squared or Euclidian
distance.

Each object is iteratively assigned to one cluster based on
the minimization of an objective function. Each of the weight
parameters can be chosen to set the relative importance of the
features upon the degree of similarity of the objects. Variables
that are more relevant in separating the clusters should of
course be assigned a higher influence in defining object
dissimilarity.

The fuzzy c-means clustering algorithm is a soft-clustering
algorithm. This means that each data point is assigned to a
cluster to some degree that is specified by a membership grade
MG. This allows for describing the boundaries between clusters
in a smooth way. Since the aim of the clustering of our datasets
is also finding a probabilistic description of flow regime
boundaries, this soft-clustering algorithm is the preferred
choice amongst other clustering algorithms.

The fuzzy c-means clustering algorithm is applied to the
refrigerant flow signal data using a combination of input
features which can track both the slug flow/intermittent flow
and the intermittent flow/annular flow transition: i.e. the feature
input matrix I = w-[AVG M2, F95]. w,=1/(2var}) represents the
weight parameters listed in Table 1. By using these values
every feature equally contributes to the clustering [18].

Table 1 Variances and weight parameters by feature
(after normalization)

R410A R134a
Feature k vary Wy vary Wi
AVG 0.214 2.33 0.269 1.86
M2 0.216 2.31 0.168 2.98
F95 0.415 1.21 0412 1.21
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Figure 5 Cluster classification with I = w- [AVG, M2, F95]
(symbols are clusters) in a Wojtan-Ursenbacher-Thome flow
pattern map [13] (—) and Barbieri et al. [14] intermittent-
annular flow transition (---)

Two phase flow

The result of using these features to cluster the dataset into
three clusters is shown in Figure 5 for R134a. (The results for
R410A are very similar). The clustering groups the data points
in perfectly separable areas in the flow map. Compared to our
visual classification (Figure 2) an excellent agreement is found.
The corresponding membership grades are depicted in Figure 6.
The membership grades are consistent with the probabilistic
flow regime approach and can be interpreted as flow regime
probabilities P.

%[
Figure 6 Membership grades (MG) of the cluster algorithm
R410A (x slug flow — [ | intermittent flow — V annular flow)

PROBABILISTIC FLOW PATTERN MAPPING
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Figure 7 Probabilistic flow pattern maps with our visual
classification (x slug flow, [ | intermittent flow, V annular flow)
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In Figure 7, the probabilistic flow maps are presented for
adiabatic flow of R410A and R134a at T,,= 15°C in a
horizontal smooth tube of 8mm L.D. at mass velocities ranging
from 200 to 500 kg/m’s and vapour qualities from 0 to 1. The
flow regime probabilities P are shown as contour lines in the
flow map. The 50% probabilities are drawn in black.

It is very clear that the slug flow/intermittent flow
transition is a narrow transition zone in the flow pattern map.
This is now quantified in terms of the probabilities. The contour
lines indicate a width of approximately 4x=0.05. The
intermittent/annular flow transition instead is very gradual with
a width of over A4x=0.25.

These flow regime probabilities are solely based on the
capacitive void fraction signals. The void fraction variations of
the two-phase flows are therefore explicitly used in these
probabilistic flow pattern maps. Using these flow regime
probabilities will assure a proper weighing of the flow
phenomena and result in smooth transitions. This can be used
for probabilistic heat transfer modelling for evaporating flows.

CONCLUSIONS

A capacitance probe and transducer was developed for use
with HFC refrigerants. Sensor signals are gathered with R410A
and R134a in an 8mm I.D. smooth tube in the mass velocity
range of 200 to 500kg/m?s and vapour quality range from 0 to 1
in steps of 0.025. A visual classification based on high speed
camera images is made for comparison reasons. This visual
classification confirmed the new intermittent/annular flow
transition criterion of Barbieri et al. [14] for use with R410A
and T,,~15°C.

The signal average, the variance and a frequency
contribution parameter are found suitable for flow regime
classification into slug flow, intermittent flow and annular flow.
The use of the c-means fuzzy clustering algorithm is
investigated for objective flow regime classification purposes.
The clustering in feature space groups the data points in clearly
separable areas in a flow pattern map. The slug flows could be
easily separated from non-slug flows by using the variance of
the sensor signal. The AVG and the F95 parameter were found
most suitable for separating intermittent flows from annular
flows. But, because of the gradual nature of this transition, the
choice of this parameter is rather arbitrary.

The soft-clustering algorithm assigns a membership grade
to each data point which can be interpreted as a flow regime
probability. After regression of these membership grades, flow
regimes probability functions were given and probabilistic flow
pattern maps were presented for the HFC data. These maps
clearly quantify the width of the transition zones and can be
applied for probabilistic heat transfer and/or pressure drop
modeling.
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