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ABSTRACT

A mathematical formulation of the oscillating motion of
three interconnected liquid columns open to the atmosphere is
presented in this study. It is solved by Runga-Kutta method and
compared with the experimental data. The results of the
numerical solution are in good agreement with the experimental
data. In order to obtain a mathematical statement of the natural
frequencies depending on the geometrical parameters of this
autonomous dynamic system, the mathematical formulation is
obtained by control volume approach. In this way, the variation
of the natural frequencies versus the distances between the
columns and versus the cross-section areas of the columns is

investigated.

INTRODUCTION

The oscillation of liquid columns can be experienced in the
pipe networks and interconnected liquid tanks. In this study,
the problem of the oscillation of three interconnected liquid
columns open to the atmosphere is analyzed in order to
investigate the dependency of the oscillation frequencies on the
geometrical dimensions of a fluidyne heat machine. In such a
machine which pumps water by means of the phase lag
between evaporation and condensation processes the oscillation
frequencies of the system depend only on the geometrical
dimensions, when the amplitude of the vapor pressure variation
in the adiabatic section of the fluidyne heat machine is
negligible. The columns z; and z, shown in Figure.l are
connected on the upper sides with an adiabatic section in a
Fluidyne heat machine. This adiabatic section has water vapor
inside. When the column z; is heated and the column z, is
cooled, a phase lag occurred between the amount of the
evaporated and condensed masses. And the columns begin to
oscillate by means of this phase lag.

NOMENCLATURE

A; [m?] Cross sectional area of the vertical columns
A, Ay [mz] Cross sectional areas of the horizontal tubes
d; [m] Diameters of the columns

d, d; [m] Diameters of the horizontal tubes

F [N] External forces in Equation (2)

F [N] Friction forces

f Friction coefficient

g [m/s?] Gravitational acceleration

hi, [m] Initial heights of the columns

K [-] Minor loss coefficient (= AP/(pt?/2))

lo [m]
Lot [m]

Length of the horizontal tube shown in Fig.1
Length between the columns z; and z, shown in Fig.1

1y [m] Length of the horizontal tube shown in Fig.1

L [m] Length between the columns z; and z; shown in Fig.1

n Normal vector

P [N/m?] Pressure

P, [N/m?] Pressure at the entrance of the control volume, z,4,

P, [N/mz] Pressure at the entrance of the control volume, z,4,+1,4,
P, [N/mz] Pressure at the entrance of the control volume, z34;+/,4,
P, [N/m?] Atmospheric pressure on the liquid columns

M Mass entrance or exit surfaces

[s] Time
Velocity vector

\'A [m/s] Velocity at the entrance or exit surface

Vii [m/s] Liquid velocities at liquid-air interfaces

Vi [m/s] Inlet liquid velocities of the control volumes
"4 Control volume

Vv Volume

w Work done by the control volume

Wy Work done by the friction forces

z; Column heights

Zo Oscillations axis of liquid columns

2 Liquid column velocities

Z; Dimensionless heights (=z/z,)

Special characters

H [Pa.s] Dynamic viscosity

p [kg/m®] density

® [rad/s] frequency

Subscripts

0 Initial value

i 1,2 and 3 show the labels of columns as shown in Fig.1
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Elrod [1], Stammers [2] and Geissow [3] developed linear
models and analyzed the dependency of the frequencies on the
geometrical parameters of the system by assuming small
oscillations in the liquid columns. Ozdemir and Ozgiic [4]
proposed a simple mathematical model in order to analyze
fluidyne heat machine both thermodynamically and
hydrodynamically. The results of their model were in good
agreement with the experimental data. When their model is run
for the case of the interconnected liquid columns open to the
atmosphere, the oscillation behavior of such a system looks like
the oscillation of the fluidyne heat machine. Therefore, in this
study, the free oscillation of three interconnected liquid
columns open to the atmosphere is examined instead of a
fluidyne heat machine. Consequently, the relation between
frequencies and system geometry is obtained. On the other
hand, by constructing two experimental setups, the free
oscillation of the three interconnected water columns is
observed, and then experimental and theoretical frequencies are
compared.

FORMULATIONS

The system of the interconnected three liquid columns is
shown in Figure 1. Integral forms of mass, momentum and
energy conservation equations for a control volume having
deformable boundaries are given as,
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respectively [4]. The thermodynamic state of the system does
not change so that the energy equation reduces to the
conservation of the mechanical energy. The following
assumptions can be applied for simplicity.

e There is no mass diffusion at the interfaces between
the liquid and air.

e The presence of air on the interfaces does not affect
the motion of the liquid columns.

e Surface tension and wall adhesion forces are
negligible at the interfaces at three columns.
Liquid is an incompressible Newtonian fluid.
Fluid velocities of the liquid columns are uniform.

The system shown in Figure 1 can be divided into three control
volumes as zyA4,, z,A,+Il;A4, and z34;+1 A,, and their

o“7o
intersection region in order to apply the above conservation
equations. After the mass conservation equations are written
under the above assumptions and integrated over these control
volumes, we obtain

Vi =V =2y, Ayvyy = Apzy = A, A3vyy = Azzy = A,v;3(4)

easily. It is clear that the velocities of material points just on
the interfaces are equal to the velocity of the moving boundary.

The conservation of mechanical energy over these control
volumes can be written as follows.
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The first and second terms on the right side of above
equations are work done at the moving boundary of the control
volumes and work done by the friction forces, respectively. By
integrating the energy equations (5 to 7) over those control
volumes, it is easily shown that

P.=pzyv; +pgz + P+ F /4 (®)
4, . P 2 Az

P, =pll,—+ += 1-—
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P 4, 33TV Af (10)
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Here, the last terms on the right hand side of these equations
represent the friction forces as

At the intersection region of the columns, we can write
mass, momentum and energy conservation equation as :

Ay + Ay +A3v,3=0 (11
pl3—v3)=p. P, (12)
2 P2 2
A ﬁ+v—1 + A,y B + A,vy £+V—3
_ W
P

Here, Wﬁ, represents the work done by the friction forces at

the intersection region. If P, P, and P, are eliminated from
these equations, we can rearrange them as follows.
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The major and minor loss terms are defined as
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by assuming laminar fluid flow with the friction coefficient

f=16/Re. Here, we must consider the dynamic pressure as

pv|v|/ 2 for oscillating flow in order to account for the sign of
the velocity vector. v;; and z; in equations (14) and (15) are
not independent variables. v;; can be easily eliminated by
using Equation (11). z; can also be eliminated by using the
conservation of total mass in the system.

A4, (

4,
2y ==~y ) =22y —hyy) 4B 2
3 ) 1 =y) A3( 2 —hy) + I3 (22)

where hy, hyo and h; are the initial liquid column heights.
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Two equations are then obtained for v;; and v,, in the form of

VL1=ﬁ(21’22>VL1sVLz)
‘>L2=f2(ZI’ZZ’VLl7VL2)

Otherwise, if it is recalled that z;, =v;; and Z, =v;,, then the

set of four equations can be solved by the fourth-order Runge-
Kutta method. The 4™ order Runga-Kutta method is widely
used since it is fairly accurate, stable and easy to program. The
calculations are carried out using a time step of 0.001 s for all
cases.

EXPERIMENTAL STUDY

Experimental setup consists of three interconnected glass
tubes. Plastic tubes and fittings make the connections between
these tubes as shown schematically in Figure 1. Each tube is
open to the atmosphere. Two different setups are constructed,
according to distance between the tubes. The geometrical
dimensions are given in Table 1.

Table 1. Geometrical dimensions of each experimental set-up

Setup-I Setup-I1
di=dy=ds 15.3 mm 15.3 mm
d, 13 mm 13 mm
0, 1465 mm 1465 mm
ly 200 mm 200 mm
£, 200 mm 400 mm

The system is filled with water to a certain level and the
water columns in the tubes are at equal level initially. One of
the water columns is raised to a certain level by applying
vacuum partially on that column. The system of three
interconnected water columns, which has gained a potential
energy, is motionless at the beginning by means of a valve at
the end of that column. The valve is opened suddenly and the
damped free oscillation of the system is observed. The system
oscillates during a certain time interval due to potential energy
difference between the initial and the equilibrium conditions.
Then, it is damped by the minor and major friction forces. A
digital camera connected to a computer records the variation of
the heights of the water columns with time. The recording
period is 10 seconds and the time step is 0.04 seconds. The
heights of the columns are read on the monitor frame by frame.

An error of approximately £ 2 mm is expected in the
readings of the column heights. The summation of the column
heights at any time must be constant to satisfy the conservation
of mass. But we observed that the error on the total mass was
higher than that of the column heights. It was analyzed that the
maximum error on the total mass was less than 10 percent.
This error varies sinusoidally with time following the motion of
the column raised. We estimate that this error is caused by the
fact that the water near the walls cannot follow the water in the
bulk region exactly.
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RESULTS AND DISCUSSION

The experimental results and the solutions of Equations (14)
and (15) by Runga-Kutta method are shown in Figures 2, 3 and
4 for the free oscillation of three interconnected water columns.
The minor and major loss coefficients that are required for the
numerical solution of the theoretical model are modified
according to the experimental studies and these coefficients are
not changed during all numerical -calculations for an
experimental setup. As shown in the figures 2, 3 and 4, there is
a good agreement between the numerical solutions of the
mathematical model and the experimental results.
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Figure.2 Dimensionless column heights versus time for
Setup-I. (z,=70 cm, h3;=90.5 cm, h;(=h=597.5 cm. ( ---- R-K
solution, 0 A ¢ experiment)
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Figure.3 Dimensionless column heights versus time for
Setup-1. z,=70 cm, h3=85 cm, h;(=h,;=62.5 cm. ( ----- R-K
solution, 0 A ¢ experiment)

However, at time range where vibration starts and where its
dampening speeds up, this agreement fails. The reason of this
divergence in the results is thought to be emanating from the
fact that the loss expressions are determined according to
laminar regime assumption. When loss expressions and loss
coefficients are altered, accordance in results is attained in the
aforementioned region. But then one starts encountering
accordance problems in other regions. The turbulent flow at
the beginning gradually becomes laminar first and then; after
the 8" second, it starts resembling to creeping flow.
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Figure.4 Dimensionless column heights versus time for
Setup-II Z(,=70 cm, h10=95 cm, h20=h3()=57.5 cm. ( ---- R-K
solution, 0 A ¢ experiment)

The mathematical solutions may be obtained easily by using
the Mathematica software. In this way, the variation of the free
oscillation frequencies of three interconnected liquid columns
open to atmosphere is obtained mathematically depending on
the water mass and the geometry of the system.
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Figure 5 Variation of the natural frequencies versus the
lengths between the columns. 4;/49=1.385 (i=1,2 and 3),

zZ0 =0.7 m. ( W) 5 connnns @ )

In the first order and the un-dampened solution of the
mathematical model of this system, two natural frequencies are
found as Equations (23) and (25). The evolution of these
natural frequencies according to the distance between the
columns is shown in Fig. 5. This figure has a symmetry at the
point /;/l,=1. I; goes to infinity on the right side of the

symmetry line while /, is constant. On the left side 7, goes to
infinity and /; is constant. As seen in the figure, one of the

outer columns is taken away from the other two columns, the
frequency w,, approaches to zero. The other frequency wyq

approaches to the frequency of a U-tube.

Fluid flow

For 1, >~ as the frequency given by Eq. (24) approaches

to zero, the frequency given by Eq. (26) matches with the
frequency of a U-tube having different diameters.

A
1+22
g( AR

(l+ﬁ)z Ay &
474,
and when /, - » the frequency are obtained:
2
o =[5 (24)
2z, +1,
Similarly for /; - :
| s
o = Lim 7= = | —— (25)
eV 2 Ve By By
Al Ao
and @y frequency easily finds that
2g
Wy = 26
072z, +1, €%

In this way, it is shown that the frequency statements given
by Equations (23) and (25) match with the natural frequency of
a U-tube for limit conditions of /, and /.
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Figure 6 Variation of the natural frequencies versus the
cross-section areas of the columns. 1/, /1, =1, 43/49=1,

The variation of the natural frequencies versus the column
areas A, and A, is shown in Figure 6. When 4;/4, goes to
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zero, it is seen that ;) approaches to the frequency of a
column connected to an infinite pool (= \/E ), and that wyq
approaches to the frequency of a U-tube. The character of o,
and w, is same as the previous situation for any value of
A,/ 4, different from zero, if the value of 4, /4, goes to zero.
any approaches to zero value and o, approaches to the
frequency of a U-tube, if the value of 4,/4, goes to infinity.
On the other hand, the frequencies of @, and @, approach to
the same value, when 4, /4, increases and 4, /4, equalsto 1.

Such first order solutions approximate the behavior of this
non-linear dynamic system having two degrees of freedom.
From the fluidyne point of view, in order to increase the work
output, the oscillation frequencies must be increased.
Consequently, the number of cycles in unit time will increase.
The most appropriate fluidyne geometry may be obtained
solving the problem of connected case of 1 and 2 columns
upper side.

CONCLUSION

In this study, free oscillation experiments are conducted for
two different setups of three interconnected liquid columns and
the proposed mathematical formulation is solved numerically.
The results of the numerical solution are in good agreement
with the experimental data. The frequency equations are
obtained by solving the mathematical model. These equations
give a relation between the frequencies and the geometry of the
system. Then, one can optimize the frequency values versus
the geometrical parameters. This study contributes to the
understanding of the oscillation analysis of three armed liquid
columns and Fluidyne systems.
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