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ABSTRACT

Estimation of errors involved in the numerical prediction of
fluid flow and heat transfer problems is an essential element in
CFD. The errors involved in the numerical simulations can be
categorized into two groups: modeling errors and numerical
errors. For complex flows such as the turbulent flows, models
which are simplified mathematical representation of the flow
are prone to errors in realizing the flow behavior. Numerical
errors are caused by the discretization of the governing
equations and approximations of boundary conditions, non-
convergence of iterative solution procedures, and round-off
errors. It is crucial to minimize the numerical errors and
evaluate the total errors precisely. The main objective of this
paper is provide benchmark values for investigation of new
turbulence models and to investigate the modeling and
numerical errors encountered in the numerical simulation of the
fully developed plane-channel flow using RSM with LRR and
SSG pressure- strain second order turbulence models. Mesh
refinement studies are reported with a fourth-order
extrapolation scheme for flows with Reynolds numbers of
50000, 200000, and 500000. This study exclusively
investigates the performance of staggered and colocated
variable arrangements in providing stronger stress-strain rate
couplings.
The near wall region is overpassed by implementation of the
standard wall-function method. The results obtained are
compared against the Laufer’s experimental data and DS
numerical results which enables evaluation of the accuracy of
the second order turbulence models and grid arrangements as
well as near-wall grid point location quantitatively for turbulent
flows

INTRODUCTION

The crucial role of turbulence in most engineering flows
necessitates the development and employment of methods
which can be used in the simulation of such flows with
acceptable accuracy. Since the mid of 1970's, second-order
closure models have been developed for the calculations of
turbulent flows. In these models, the Reynolds stress transport

equation, where flow history and non-local effects are
accounted for, are being solved for the calculation of turbulent
stresses. These Reynolds Stress Models (RSM) have
successfully overcome many deficiencies of the more popular
k-¢ turbulence models in capturing the important influences of
curvature and body forces on the turbulent stresses [1].
Demuren and Sarkar [2] (denoted DS) made a systematic study
of RSM's in the computation of plane-channel flows. They
investigated three expressions for the turbulent diffusion terms
and five models for the pressure-strain correlations. They
concluded that the Mellor and Herring (1973) [3] denoted MH
model for turbulent diffusion term produced the best agreement
with experimental data; and the proposal of Launder, Reece,
and Rodi [4] (denoted LRR) with wall-proximity treatment, and
that of Speziale, Sarkar, and Gatski [5] (denoted SSG)
pressure-strain models produced the best predictions of the
Reynolds stresses.

Along with the advancements in the turbulence modelling,
efforts have been made to develop numerical techniques for a
more efficient implementation of these models. The stability of
the solution is a vital parameter in CFD: in RSM turbulence
modelling the stability can be enhanced by providing a strong
coupling between the stresses and the associated primary
'driving' strains [1]. Two such measures are: 1) to stagger the
stress locations relative to mean-velocity locations, and 2) to
practice a special discretization method for the Reynolds stress
gradients in momentum equations with collocated storage of all
variables. Both of these methods have been widely used for the
pressure-velocity couplings in fluid flow problems, for instance
[6-7], and their merits and disadvantages for pressure-velocity
couplings have been fully discussed [8]. These methods have
also been implemented for the solution of turbulent flow
problems with RSM's [9-10].

Estimation of errors involved in numerical prediction of
fluid flows is another essential parameter in CFD. As Ferziger
[11] suggested, the errors involved in the numerical simulation
of fluid flows can be categorized into two groups: modelling
errors and numerical errors. Models are usually a simplified
mathematical representation of the physical problem of interest
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and they are prone to errors in realizing the real problem: in
particular for complex phenomenon such as turbulence.
Numerical errors are caused by discretization of the governing
equations and approximation of boundary conditions, non-
convergence of iterative solution procedures, and round-off
errors [5, 12]. It is crucial to delete or minimize the numerical
errors, and in latter case to evaluate these errors accurately. It is
expected that as the mesh is refined, the results would approach
to the exact numerical solution of the modelled flow equations.
Only, then, the modelling errors can be calculated by
comparing the simulation results with experimental results.
Furthermore, unless the numerical errors are smaller than the
tolerable modelling errors, it would be impossible to assess the
latter reliably [11].

The main objective of this paper is to provide benchmark
values for the evaluation of turbulence models, and to
investigate the modelling and numerical errors encountered in
the numerical simulation of the fully developed turbulent plane-
channel flow problem, using different models and numerical
techniques. This problem has been investigated by many
researchers. In a review of duct flow measurements by Klein
[13] different available experimental data are evaluated. The
Laufer's experimental results [14] was used by Demuren and
Sarkar [2] to validate their numerical results.

This problem is solved in a one-dimensional Cartesian
coordinate system. The turbulence is modelled using RSM with
LRR and SSG pressure-strain models. Mesh-refinement studies
are reported with a fourth-order accurate extrapolation scheme
for flows of Reynolds number 50000, 200000, and 500000.

This study exclusively investigates the performance of
staggered and collocated variable arrangements in providing
stronger stress-strain-rate couplings.

In this study, the near wall region is overpassed by
implementation of the standard wall-function method. To
investigate the effect of the near-wall grid point location, the
tests have been done at three nominal y* values of 30, 60, and
120. The results obtained in this study, for the flow with Re =
200000, are compared with the Laufer's experimental and DS
numerical results.

GOVERNING EQUATIONS

The Reynolds-averaged mean-flow equations for
incompressible turbulent low of a Newtonian Fluid can be
written in Cartesian tensor notation as:

Continuity
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In this equation, @ and u'are the mean and fluctuating
velocities, respectively, p is the density, ;is the mean
pressure, and p is the viscosity. To solve these equations, the

Reynolds stresses pu/u; should be calculated as a priory.

k
Reynolds Stress Equations
The Reynolds stress transport equation is derived from the
momentum equation as in the following equation:
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The exact form of the Reynolds stress transport equation is:
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This equation can be cast in the following compact form;
DT :
;u‘ Shid 0, s (4)LHS term is
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the material derivative of Reynolds stresses; the RHS terms are
the production, the diffusion, the pressure strain, and the
dissipation of the Reynolds stresses, respectively. The
production term can be retained exactly and it does not need
any modelling, but the other three terms on the RHS of eq. 4
should be modelled with suitable correlations. Regarding the
DS results, in this paper the following models have been used,

Turbulent Diffusion Term,

MH model:
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where, k and ¢ are the turbulent kinetic energy and its
dissipation rate, respectively, and ¢, = 0.22/3.

Pressure Strain Term
LRR model with wall-proximity treatment
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P is the trace of Py tensor, n is the unit normal vector outward
to the wall, and f' = 225 &d) is the wall reflection term (d is
the distance to the wall). ¢; = 1.8, ¢, = 0.6, ¢y = 0.5, and ¢y, =
0.3 in these expressions.

The values of coefficients are the values proposed by Craft
et al. [15], these are different to the values which are proposed
in the original LRR model [4].

SSG model:
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Where 51; = —(W'l' W) and “’xﬁ = —f(wj'l' W are the
symmetric and anti-symmetric parts of strain- rate tensor,

respectively, and
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is the anisotropy tensor. ¢; = 3.4, ¢ =1.8,¢c,=4.2,¢;=0.8,
c; = 1.3, c4=1.25 and cs = 0.4 in this expression.
Dissipation Term
Kolmogorov model:
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To close these set of equations, the turbulence energy
dissipation rate equation is adopted from the work of Hanjalic
and Launder (1972):
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where, ¢;; = 1.44 and ¢, = 1.83.
These equations are simplified for the fully developed flow
in a channel as follows;
The momentum equation in the axial direction:
_(‘;:+;7|:—pﬁ+/l[g—;]:|=0 6)
regarding the Reynolds stress equations, the LHS terms are
zero and the RHS terms are as shown in table 1.
The ¢ equation simplifies to:
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In general, the governing equations for this problem can be cast

in the following diffusion-type, steady, one-dimensional form:
V.(Vg)+rS=0

Where, o; represents the transported scalar of interest; that is: 1,

turbulent stresses, or €; S involves all terms except the diffusion

term, and ¢ is the diffusion coefficient.

®)

NUMERICAL PROCEDURES

As was mentioned earlier, the Finite Volume Method
(FVM) of Patankar and Spalding [16] has been implemented
for the numerical simulation of fully developed turbulent plane-
channel flow. This is a conduction-type, steady, one-
dimensional problems; there are only the diffusion and the
source terms in governing equations of this problem (eq. 8).
The procedure outlined in [17] is used to discretize and
assemble the discretized equations of dependent variables of
interest.

The final form of discretized equations can be cast in the
following general form

©)
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Discretization of —V.(pu'v’) term in @ equation (eq. 6),
however, should be examined more carefully. If all the
dependent variables are stored on the grid points, and the
discretized form of the axial momentum equation (eq. 6) being
constructed without any special treatment of stress-strain-rate

coupling -- the discretized form of the —V.(pu'v") term will
take the following form for uniform grids.
DV — pis = pu'v'y ;pu’v'P _puv'r ;pu’v’E _ pu'v'y ;pu’v’g
As for pressure-velocity coupling in fluid flow problems
two methods have been proposed; namely, staggering the
Table 1: RSM terms in fully developed plane channel flow
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Table 1: RSM terms in fully developed plane channel flow
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turbulent shear stresses to CV faces, or using a special
treatment of stress-strain-rate couplings in a colocated
approach. In staggered variable arrangement, the location of

turbulent shear stress terms u'v" in channel flow are staggered
to the main grid points and are located at the control volume
faces. For this variable arrangement, the discretized form of

=V.(pu'v") term will be:
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puV' = pu'v'e = pu'v'y — pulv'y
Therefore, the difference in turbulent shear stresses on the
control volume faces is appearing in axial velocity equation.

This approach will detect any oscillatory u'v' field and the
stress-strain-rate coupling is preserved fully.

In the colocated approach the —V.(pu'v’)term in the
momentum equation is replaced by an expression which is
derived from a special treatment of turbulent shear stress
discretized equations.

The discretized u'v" equations can be written as follows:
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o
b’ is the constant term without the contribution of terms
including & and 4V} is the CV volume. This equation can be

o
written as:
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The value of u'v' at interfaces is calculated by the following

special treatment of strain-rate terms o . The value of u' v’ at
[

the east interface is obtained by a linear interpolation of uv'

and du'v’ at nodes j and j+1, and with the linear interpolation of
velocity between these two nodes.
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Integrate the T equation over the control volume j;
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Substitute for interfacial W,v values from eq. 13, and
rearrange;

— \Au — \Au 57 - o
‘:(/1+pdu’v’,)%:| |:(,u+pdu'v’])6l—‘7':| —LAV—[pu'v’,] +[pu’v’]j =0 (14)
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If this equation is compared with the generalized form for
the diffusion-type, steady, one-dimensional problems,

( T) op, v yowd
c=\u+pdu'v'; and S=- ™ AV —| put' | +] pu'v',

o

for the @ equations.
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Extrapolation Procedure

The proposed extrapolation procedure is based on the work
of Richardson [18]. The key idea is to consider the final,
converged, numerical result as itself being an analytic function
of the grid size. The results of these grid tests are fitted to some
appropriate analytic function, which is then used to obtain, or
extrapolate grid-independent result [19].

. If the relative change in ¢ values of all dependent variables

Gy=Dyq| . i
271 s less than 107, then, these

of interest in the two trails

¢, values are the grid-independent values of the dependent
variables; otherwise this procedure is repeated with a finer grid
size until the specified criterion is satisfied.

BOUNDARY CONDITIONS
The equations derived in the previous section are not
applicable for the flow close to the wall. A wall-function
approach is used to overpass this area: it's based on the
assumption of local-equilibrium turbulence and validity of the
logarithmic wall of law in this region. Consistent with this are

the following relations:
k= u; a:ui @x:u’ P =c (15)
e, ky' &y k

u

where « is the Von Karman constant equal to 0.41 and

= J5hy is the friction velocity. The values of Reynolds
stresses in the log-law region are calculated by substituting the
above equations in Reynolds-stress transport eqgs. table 1;

LRR Model:

2

u =1.098k, u =0247k,

2

w = 0.655k, u V' =—0.255k. (16)

SSG Model:
o n _n r
u =1.098k,  u =0247k, w =0.655k, uv'=—-0.255k. 17)

At the channel centre line, the gradient of all variables are set to
zero, except turbulent shear stress terms which take a value of
Zero.

Numerical Details

In this work, the grid-independent extrapolated values have
been obtained for bulk mean velocity i, friction factor £, and i,
k, and ¢ values at the channel centre for these cases:

e Simple, colocated, and staggered variable arrangements

using RSM with LRR pressure-strain model,
e Colocated and staggered variable arrangements using
RSM with SSG pressure-strain model,

for the following Reynolds numbers and y" values;

= Re= 200000, and nominal y" values of 30, 60, and 120.

= Re= 50000 and 500000 with nominal y* values of 30.

These tests provide enough material to investigate the
effects of turbulence modelling, variable arrangements, location
of the near wall grid point on the grid-independent results for
fully-developed turbulent flow in a channel at different
Reynolds numbers. The Demuren-Sarkar results are obtained at
Reynolds number of 200000 (based on the channel hydraulics
diameter and bulk mean velocity) which coincides with the
highest Reynolds number of Laufer's experimental results.
Results produced in this work at Re = 200000 are compared
with Laufer's experimental and DS numerical results.



RESULTS

Grid-Independent Results

Grid-independent results are presented in tables 2 to 7 and
figs. 1 and 2. To display the trend of the converged results, the
values of f, ., i, k./ a2, eH/ iy, (c stands for the channel
center) for converged solutions of fully-developed plane-
channel flow with different variables arrangements and
turbulence modeling for a nominated y* = 30 at Re = 200000
are presented in table 2. These values are tabulated for the final
five grid sizes (n = n; to ns) with the converged results which
have been used to obtain the final extrapolated grid-
independent results, @, and ®,. As it can be seen, in each case,
the converged results are monotonically advancing toward the
grid-independent results; hence, the proposed procedure can be
used to calculate the extrapolated grid-independent values of
the flow parameters [19].

These values are tabulated for i/, k/i,° and e.H/i, at
three nominated y* values for the flow at Re = 200000, table 3.
These values, as reported here, are with seven significant
figures, but they have been calculated with nine significant
figures accuracy.

Table 2: Converged results for Re = 200000, y' = 30

MODEL n 10°f w./u, | 10°k, /72| 105.H T}
601 | 1448916 | 1.096236 | 2.550259 | 7.429512
701 | 1448844 | 1096233 | 2.550151 | 7.428992
801 | 1448798 | 1.096231 | 2.550082 | 7.428654
R(Ssli‘fr;;lljf 9001 | 1448766 | 1.096230 | 2.550033 | 7.428421
1001 | 1448743 | 1096229 | 2.549999 | 7.428254
®, | 1448720 | 1.006224 | 2.549853 | 7427546
@, | 1.448770 | 1.096226 | 2.549853 | 7.427557
401 | 1.449834 | 1.096270 | 2.551774 | 7436411
451 | 1449520 | 1.096258 | 2.551262 | 7.434065
SO1 | 1449312 | 1.096251 | 2.550922 | 7.432506
(léill‘gcﬁﬁ) 601 | 1.449064 | 1.006241 | 2.550517 | 7.430649
701 | 1448930 | 1.096236 | 2.550301 | 7.429651
D, | 1448670 | 1.096232 | 2.549880 | 7427847
@, | 1.448700 | 1.096226 | 2550085 | 7.428261
601 | 1433978 | 1.095832 | 2.523183 | 7.313592
701 | 1436369 | 1.095895 | 2.527545 | 7.332137
801 | 1438102 | 1.005041 | 2530704 | 7345591
(lgfi‘g;ﬁ) 901 | 1439413 | 1.095975 | 2.533092 | 7355773
1001 | 1440439 | 1.096003 | 2.534958 | 7.363735
@, | 1.448620 | 1.096225 | 2.549820 | 7.427403
@, | 1.448650 | 1.096224 | 2549826 | 7427443
501 | 1781343 | 1.093953 | 2.001345 | 6.818693
601 | 1.781474 | 1.093951 | 2.001537 | 6.819523
701 | 1781531 | 1.093049 | 2.001628 | 6.819894
(%ill‘géitse(j) 801 | 1781555 | 1.093947 | 2.001672 | 6.820062
901 | 1781564 | 1.093946 | 2.001695 | 6.820136
®, | 1781430 | 1.093934 | 2.001555 | 6.819256
@, | 1781390 | 1093939 | 2001621 | 6.819594
300 | 1.845901 | 1.095348 | 2.075831 | 7.197474
351 | 1.835682 | 1.095122 | 2.064087 | 7.137117
401 | 1.828183 | 1.094957 | 2.055465 | 7.092934
(I;Sal‘;g'fig) 451 | 1.822462 | 1.004831 | 2.048886 | 7.059291
501 | 1.817964 | 1.094732 | 2.043710 | 7.032871
®, | 1781370 | 1.093935 | 2001521 | 6.819208
@, | 1781500 | 1.093937 | 2.001637 | 6.819767

As expected, among the other variables, the ¢, extrapolated
values satisfied the extrapolation criterion

(M < 10_4) after all the other variables. The &
1
governing equation is more source dominated than i, and &

governing equations -- regarding the assumption that the values
of the source terms components Sc and Sp prevail over the

Fluid flow

corresponding control volumes (first order approximation);
while the diffusion terms are interpolated via a second-order
scheme -- it would require finer grids results to compensate for
its poorer converged results accuracy (closer to first order).

Table-3: Extrapolated values for Re = 200000

MODEL y 10%f U/t | 103k /u? | 10%¢.H/u}
30 | 1448770 | 1.006226 | 2549853 | 7.427557
R(Ssli\fI;Lf:)R 60 | 1408760 | 1.095575 | 2474582 | 7.116900
P 120 | 1403890 | 1.095879 | 2456422 | 7.066679
30 | 1.448700 | 1.096226 | 2550085 | 7.428261
(%ill\gj;g) 60 | 1.408800 | 1.005576 | 2474525 | 7.116752
120 | 1.403870 | 1.095879 | 2456452 | 7.066707
30 | 1448650 | 1096224 | 2549826 | 7.427443
éfi“‘trlzg) 60 | 1.408750 | 1.095575 | 2474550 | 7.116808
ge 120 | 1403870 | 1.095880 | 2456381 | 7.066485
30 | 1781390 | 1093930 | 2001621 | 6.819594
(léi{‘;[jtseg) 60 | 1781710 | 1.093005 | 2004343 | 6.823640
120 | 1.855620 | 1.092089 | 2.096274 | 7.261308
30 | 1781500 | 1.093937 | 2001637 | 6.819767
(lgfaM‘Sig) 60 | 1781930 | 1.093008 | 2004594 | 6.824902
g8 120 | 1.855660 | 1.092085 | 2.096668 | 7.262697

Considering the relative error in the results obtained with a
coarser grid (n = 101) to grid independent values, table 4, it
exposes the importance of selecting the most relevant variable
(or parameter) when the converged numerical-results are
studied for the grid-refinement effects. As it is evident from
table 4, while these relative errors are of order of less than 1%
for #, values, talking of a converged result which will not
change considerably with grid-refinement is fallacy; since the
largest relative errors are encountered in the ¢, values (up to 20
%), this is the most relevant variable for monitoring grid-
independency of the results.

The grid-independent results for three nominated y* values
are shown in table 3 and the relative errors for the results
obtained with a grid size n = 101 are also shown for the
smallest and largest nominated y* values in table 4. It is obvious
that the y~ values have an effect on the final grid-independent
values through their influence on the boundary-conditions
information transmission to the interior of the domain. Also,
regarding the fact that the larger the y* value, the near-wall grid
point will be furtherer from the wall, and, hence, the changes in
variables are more gradual; therefore, the iterative solution
should converge faster. In addition, the extrapolated grid-
independent values are obtained with converged solutions on
the smaller number of grid points for higher y*~ values. This
implies that the relative errors in the converged solution on the
same grid-size be smaller for the solutions with a nominated y"
=120 than the corresponding solution with a nominated y* = 30
as shown in the table 4.

The variable arrangement, as expected, does not have any
impact on the final grid-independent results, table 3; however,
it has a pronounce effect on the number of iterations to achieve
a converged solution to this problem on a particular grid
number, table 5, and the corresponding relative errors to grid-
independent values.

In general, for the RSM's, the co-located variable
arrangement converges to a solution at a higher number of
iterations and the staggered variable arrangement at a lower
number of iterations. The staggered variable arrangement could
not produce any converged results for smaller number of grid
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points (they produce converged solution if the solution by
another approach was introduced as the guess values for the
start of the program).

Table 4: Relative errors in results with a grid size of 101 for
Re = 200000

MODEL | y* f ;‘3 103k, /02 | 105¢.H/u3
b
RSM-LRR 30 0.53 0.03 0.45 0.76
(Simple) 120 0.11 0.00 0.15 0.19

RSM-LRR 30 2.10 0.09 2.01 3.12
(Colocated) 120 0.52 0.02 0.47 0.75
RSM-LRR 30 8.48 0.28 8.90 12.65
(Staggered) 120 7.12 0.18 7.53 10.61
RSM-SSG 30 0.21 0.02 0.37 2.73
(Colocated) 120 0.86 0.02 0.92 1.31
RSM-SSG 30 12.44 | 045 12.70 19.47
(Staggered) 120 8.17 0.22 8.56 12.75

Table S: iteration numbers to achieve converged solution at
Re = 200000
MODEL Y 51 100 [ 151 | 201 251

RSM-LRR | 30 | 2312 [ 4012 | 4303 | 7795 | 2089
(Original) | 120 | 1073 | 1932 | 969 | 1299 | 2503
RSM-LRR 30 2276 | 2126 | 4266 | 7696 2214
(Colocated) 120 2335 | 4342 | 4573 | 7843 2007
RSM-LRR 30 - 1185 | 1539 | 1920 2335
(Staggered) | 120 - 1305 | 1742 | 2216 | 2723
RSM-SSG 30 1719 | 2408 | 3463 | 5856 9462
(Colocated) 120 1528 | 3360 | 7896 | 6695 | 10436
RSM-SSG* 30 - - 2045 | 2303 2582
(Staggered) 120 - - 2469 | 2923 3438

Figs. 1 and 2 show the relative errors of the converged
solutions to grid-independent values of €. on five grid-sizes (51,
101, 151, 201, and 201) for two nominated y* values, 30 and
120. The relative error is changing from one turbulence model
to the other model, and is dependent on the variable
arrangement; nevertheless, in all cases, increasing the grid
numbers decreases the relative error. The staggered variable
arrangement results encounter the highest relative error values:
this could be attributed to the location of the near-wall turbulent
shear-stress term which is on the face of the second control-
volume for other variables. As it was shown earlier, the
location of near-wall points have a relatively considerable
effect on the results; hence, in staggered variable arrangement,
as the mesh is refined and the location of near-wall turbulent
shear stress term changes and gets closer to the wall, the change
in results are more than in other variable arrangements, and
more grid points are needed to acquire the same relative
accuracy (to grid-independent values) as the corresponding
solutions with other variable arrangements. Colocated variable
arrangement results are much closer to their corresponding
grid-independent values on the coarser grids -- in particular
with SSG model -- than other variable arrangements.

The performance of different turbulence models is not the
same for different variable-arrangements. As shown in figs. 1
and 2, the SSG model with colocated variable arrangement
results encounter the lowest relative error levels, and this model
with staggered grid arrangement, also, produced the highest
relative error levels among all the approaches. The LRR model
with simple variable arrangement, the LRR with colocated
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variable-arrangements, and the LRR with staggered variable
arrangement produced converged results with relative errors
from lower to higher levels, respectively, are between these two
extremes.

0 80
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Figure 1: Relative errors to the grid-independent results,
grid sizes 51-251, Re = 200000, y =30

eps_c

Figure 2: Relative errors to the gridmependent results,
grid sizes 51-251, Re = 200000, y' = 120

Flow Profiles

The nondimensional velocity and turbulent kinetic energy
(4 /4, and k/utz) and the anisotropy tensor by, by, b3, and by,
profiles along the channel width are shown in figs. 3 and 4.
These are the same parameters which were also being used by
Demuren and Sarkar [2]; hence, this makes it possible to
compare the results obtained in this work -- in addition to the
Laufer's experimental results [14] -- with the corresponding
results in their work. The results shown in these figs. are
obtained on a 251 uniformly spaced grids and a nominated y* =
30 value -- the corresponding relative errors to grid-
independent values are shown in fig. 1 (maximum 7%). Since,
basically, the results obtained for each turbulence model by
different variable arrangements coincides exactly for this grid
size; hence, only, the results are presented with indication of
the turbulence model used.

The velocity profiles, fig. 3, show a perfect agreement with
DS numerical and Laufer's experimental results for all the
turbulent models. The turbulent kinetic energy profiles are
shown in fig. 3; agreement among results is good except for the
LRR model. The results produced by this model are neither in
agreement with the DS results obtained with this model.

The reasons are two-folds:

1- the values of coefficients used in LRR pressure-strain
model as implemented in this work are taken from a work by
Launder and his co-workers [15], while the DS results are
obtained by using the values presented in the original LRR
paper [4]. It should be noted that in the original LRR paper,
Launder et al. compared the turbulent intensity distributions
with the experimental results of Comte-Bellot [20], and not
with the Laufer's experimental results.

2- the less important reason is in the differences in the
near-wall values of turbulent stresses used in this work and the
DS work. In this work, these values are obtained by inserting



the relations 15 in the Reynolds stresses governing equations
which results in the near-wall values presented in the eq. 16.
This approach is also used by Lien and Leschziner [21] to fix
the near-wall values of turbulent stresses. But, Demuren and
Sarkar used the same near-wall values for all the models that
they tested which is not necessarily the best method to fix these
values.

The agreement between results produced in this work by
SSG pressure-strain model are in good agreement with the
Laufer's experimental results. The anisotropy tensor profiles,
b1, by, baz and by, are shown in fig. 4. The profiles obtained in
this work with the SSG pressure-strain model are in full
agreement with the corresponding results of Demuren and
Sarkar. The results obtained with LRR pressure-strain model do
not match with either experimental or numerical reference
results, except for by; profile which is in good agreement to
Laufer's experimental results close to wall, but overestimates it
in the channel center.

These results can be summarized as follows:

1. The results obtained from the SSG pressure-strain model
are in full agreement with the corresponding DS
numerical results, and show the same behavior against
the Laufer's experimental results.

2. The results obtained with the LRR pressure-strain model
does match neither with the corresponding DS numerical
results, nor with the Laufer's experimental results. These
are because of implementation of most recent and
relevant approaches implemented in this work in
comparison to the older corresponding proposals.

Reynolds Number Effects

To investigate the behavior of different turbulence models
for flows with lower and higher Reynolds numbers, the
problem was also solved for flows of two Reynolds numbers
50000 and 500000. These solution were obtained on staggered
variable arrangement for a nominated y* = 30 which as shown
earlier produced the highest relative error among the other
configurations.

The extrapolated grid-independent values and the
corresponding relative errors encountered in the solutions on a
101 grid size are shown in table 6. As expected, these error are
higher for flows at RE = 500000 and lower for flows at RE =
50000 in comparison to the corresponding relative errors for
flows at Re = 200000. As Reynolds number increases, the rate
of change of flow parameters along the channel width
increases, and, therefore, finer grids are needed to achieve the
results with similar accuracies.

Table 6: Extrapolated values relative errors for Re = 50000
and 500000 at y" = 30 with staggered variable arrangement

Re MODEL 10%f U /i, | 103k /ul 10%¢.H/u}
RSM-LRR 2.002200 1.116611 3.448638 11.85169
Re= Error % 0.50 0.01 0.55 0.74
50000 RSM-SSG 2.484680 1.110909 | 2.760036 11.13435
Error % 5.57 0.18 5.92 8.73
RSM-LRR 1.220580 1.087212 | 2.158412 5.765924
Re= Error % 21.26 0.72 21.99 30.49
500000 | RSM-SSG 1.497990 | 1.085620 | 1.689428 5.270872
Error % 21.53 0.76 21.73 34.20

Fluid flow

Similarly, the converged results to be used for obtaining
extrapolated grid-independent should be obtained on finer grids
as the Reynolds number increases.
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Figure 3: Comparison of results with DS's numerical and
Laufer's experimental results, Re = 200000,y = 30, n = 251

CONCLUSIONS

In this paper benchmark values for investigation of new
turbulence models are presented.. The modeling and numerical
errors encountered in the numerical simulation of the fully
developed plane-channel flow using RSM with LRR and SSG
pressure- strain second order turbulence models are
investigated.. Mesh refinement studies are reported with a
fourth-order extrapolation scheme for flows with Reynolds
numbers of 50000, 200000, and 500000. This study exclusively
investigated the performance of staggered and colocated
variable arrangements in providing stronger stress-strain rate
couplings.
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Figure 4: Comparison of results with DS's numerical and
Laufer's experimental results, Re = 200000, y* = 30, n = 251.
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NOMENCLATURE

Turbulent kinetic energy
Dissipation of the Reynolds stresses
Mean velocity

Fluctuating velocity

Reynolds stresses

:‘
>-:~

Mean pressure
Production

Rl = o8 e =

pecial characters
Friction factor
S Diffusion coefficient

Subscripts

j Node number
i Node number
e East

w West

.



