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ABSTRACT

In two-phase flow, almost every constitutive relation is
flow regime dependent because physical mechanisms that
control heat transfer and pressure drop vary with the flow
regime. Thus, the identification of flow pattern is an important
issue to properly design, and operate two-phase flow systems.
In recent years, emphasis has been put on the characteristics of
two-phase flow and heat transfer in small and microscale flow
passages due to the rapid development of microscale devices,
but yet, no general accepted flow-pattern map for microscale
channels is available. In this paper, a three-layer, feedforward
neural network was designed. Mass velocity, vapor quality and
fluid temperature were adopted as input data. The artificial
neural network (ANN) was developed based on two-phase flow
data for refrigerant R134a in a microscale channel. The validity
of the adopted neural network was evaluated by cross
validation. The results show that the neural network can
provide good flow pattern predictions.

INTRODUCTION

Gas-liquid two-phase flows at both adiabatic and diabatic
conditions are very complex physical processes since they
combine the characteristics of deformable interface, channel
shape, flow direction, and, in some cases, the compressibility of
one of the phases [1]. The macroscopic behavior of the flow
like pressure drop, wall heat exchanges or mechanical
interaction with structures is strongly correlated to the flow
regime and can vary from one pattern to another. From an
industrial point of view, an optimal exploitation offers
durability and safety of the equipment only when the
installation operates according to the flow regimes that it was
designed for. This means that one has to be able not only to
detect instantaneously what the flow pattern is, but also an
eventual undesired flow pattern transition must be detected in
order to react in the sense of avoiding it, or simply to be aware

of'it. Thus, it is clear that the use of active control techniques in
two-phase flows manipulation and transport systems represents
a major technological development in petrochemical or
thermonuclear industries among others [2].

NOMENCLATURE

A [-] Output variable of ANN
b [-] Bias of ANN neuron

d [mm] Tube diameter

Er - Relative Error

Mass flux

Neurons in the hidden layer
Saturation Temperature

The net input by adding all the inputs
w [-] Weight matrix of ANN connections
x [-] Vapor quality

Xi [-] ANN input

y [-] ANN output
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u [-]

Special character

9 []

Activation Function

Subscripts

c Numerical data

e Experimental data
P Prediction by ANN

It is over 50 years since the first flow pattern map was
proposed by Baker [3], who defined flow pattern transitions
based upon the superficial gas and liquid velocities for oil and
gas flows. Since then, several maps and prediction methods to
characterize flow patterns in two-phase flows have been
proposed, most of them being based on observations from
channels with internal diameters larger than 10mm.
Combinations of physical properties with superficial velocities,
void fraction and, in the case of diabatic applications, the total
mass velocity, and vapor quality have been used to characterize
flow pattern transitions in these maps. Some maps for two-
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phase flow on tube bundles have also been proposed. Recently,
Cheng et al. [4] presented a broad review on two-phase flow
patterns that is cited here as a comprehensive prospect not only
on the historical aspects of flow pattern characterization but
also on the actual “status quo” of research that has been
performed on this topic [5].

In recent years, emphasis has been put on the characteristics
of two-phase flow and heat transfer in small and microscale
flow passages due to the rapid development of microscale
devices, but yet, no general accepted flow-pattern map for
microscale channels is available. This paper focuses on
identification of flow pattern in microchannels and aims to
provide a neural network for flow pattern prediction of
refrigerant R134a.

FLOW PATTERNS IN MICROSCALE CHANNELS

Evaporation in microchannels, often implemented as
numerous microchannels in parallel in a cooling element, has
seen or is being considered for cooling of computer
microprocessors, chemical microreactors, power electronics,
automotive air conditioners and other emerging technologies.
The typical advantages of a multi-microchannel cooling system
are that they are very compact, they can be sandwiched
between hot process channels in a stack arrangement, the
boiling heat transfer coefficients are very high, very low to very
high heat fluxes can be dissipated, fairly uniform temperatures
can be produced when required, various materials can be used
for their construction and their rapid time response to changes
in the thermal cooling load for ease in temperature control [6].

Due to the differences of transport phenomena in microscale
channels as compared to conventional size channels or
macroscale channels, one very important issue should be
clarified about the distinction between microscale and
macroscale channels. However, a universal agreement is not
clearly established in the literature. Based on engineering
practice and application areas such as refrigeration industry in
the small tonnage units, compact evaporators employed in
automotive, aerospace, air separation, and cryogenic industries,
cooling elements in the field of microelectronics, and
microelectromechanical systems (MEMS), Kandlikar [7]
defined that the distinction between small and conventional size
channels is 3 mm [1].

According to Tripplet ef al. [8] apud Thome and Ribastki
[6], since the channel diameters for microscale channels are
about equal to or smaller than the Laplace length scale, the
hydrodynamic interfacial process that are governed by Taylor
instability does not apply to capillaries and therefore
macrochannel flow pattern transition prediction methods will
not work for smaller channels. In microscale channels, the
liquid flow is often laminar with typical Reynolds numbers in
applications from about 100 to 4000, which is rare in
macroscale channels where the opposite is true: the majority of
applications have turbulent liquid flow. Based on this, it seems
likely that the knowledge developed for macroscale channels
under turbulent conditions cannot be directly extended to
predict flow pattern transitions in microscale channels.
However, it seems that except for stratified flows, the other
major flow patterns that are common in large channels also
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occur in microchannels, although, certain flow pattern details
may differs from those in large channels and the boundaries of
the various regimes are different.

As observed and characterized by Thome and co-workers
[9,10], the flow patterns and their transitions encountered
during flow boiling of R-134a in a 0.5mm tube are as follows:

- Bubbly flow: In bubbly flow, the bubbles are smaller in
length than the diameter of the tube and the vapor
phase is distributed as discrete bubbles in a continuous
liquid phase. Figure 1a shows a picture of this regime.

- Bubbly/slug flow: Here both bubbles longer and shorter
than the diameter of the channel are observed, as shown
in Figure 1b.

- Elongated bubble flow: This regime is characterized by
vapor bubbles longer than the diameter of the channel,
which are slightly smaller in diameter than the tube.
The bubbles are separated from the inner channel wall
by a thin film of liquid and from one another by liquid
slugs as depicted in Figure lc.

- Slug/semi-annular flow: Here both slug and semi-
annular flows are present. The bubble velocity
increases with heat flux and the rear of the elongated
bubbles begin to break up (Figure 1d). Coalescence is
no longer clean but instead creates a churn-like zone in
place of the liquid slug.

- Semi-annular flow: In this flow, liquid slugs are non-
existent, as shown in Figure le. A liquid film forms at
the tube wall with a nearly continuous central vapor
core, truncated periodically by churning liquid—vapor
zones. It is interesting to emphasize that the churning
liquid—vapor zones disappear gradually from the
beginning of this regime up to its end.

- Annular flow: In annular flow, a liquid film flows on the
tube wall with a continuous central vapor core without
churning liquid—vapor zones. There are two types of
annular flow, distinctly wavy and relatively smooth, as
can be seen in Figure 1f and g, respectively.



b) Bubbly/slug flow at x = 4%

c)Shugflow at x=11%
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d) Slug'sem i-annular flow at x = 19%

€) Semi-annularflow at x = 40%

f) Wavy annular flow at x = 82%

m
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Figure 1 Flow images by Revellin et a/. [10] for R-134a,
d=0.509mm, G=500 kgm’zs'l and T,=30°C at exit of heated
channel taken with high-definition, high-speed digital video

camera.

FLOW PATTERN PREDICTION METHODS FOR
MICROSCALE CHANNELS

To the best of the authors’ knowledge, there is no model for
flow pattern transition in micro-scale channels [11]. Generally,
in the literature concerning micro-scale channels, only curve
fitting of dimensionless numbers based on restricted databases
studies have been found as, for example, the one by Revellin
and Thome [9], among others. Thus, they cannot be considered
generalized methods.

Revellin and Thome [9] proposed a flow pattern map for
evaporating flows in microchannels for eventual use in
mechanistic types of models for flow boiling and two-phase
pressure drops. Rather than segregating the observations into
the traditional flow regimes and an adiabatic map, the proposed
map classifies flows into three types: (i) the isolated bubble
(IB) regime, where the bubble generation rate is much larger
than the bubble coalescence rate and includes both bubbly and
slug flows, (ii) the coalescing bubble (CB) regime, where the
bubble coalescence rate is much larger than the bubble
generation rate and exists up to the end of the coalescence
process and (iii) the annular (A) regime, whose extent is
limited by post dryout (PD) regime, and begins at the vapor
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qualities corresponding to the onset of critical heat flux. The
database used was two refrigerants (R-134a and R-245fa) and
two channel diameters (0.509mm and 0.790mm). Figure 2
shows an example of the proposed flow pattern in a mass
velocity versus vapor quality plot.
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Figure 2 Revellin and Thome [9] map for diabatic flow

with R-134a, d=0.5mm and T,~=22°C.

Felcar et al. [5] developed a flow pattern prediction
procedure based on the Taitel and Dukler [12] model for
horizontal flows. They incorporated surface tension effects,
contact angle and secondary flows on the stratified/annular and
intermittent/annular transitions. In order to adjust the empirical
coefficients, they used experimental results of air-water flows
in microchannels. Figure 3 displays a comparison between the
flow pattern predictive method by Felcar et al. [5] and some
air-water flow pattern data from the literature. Arcanjo et al.
[13] have compared Felcar et al. [5] predictive method against

their experimental results for R134a in a 2.3mm tube and

obtained good results, as shown in Figure 4.
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Figure 3 Felcar et al. [5] diabatic map
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Figure 4 Felcar et al. [5] map for diabatic flow with

R-134a, d=2.3mm and T,,=22°C [13]

NEURAL NETWORK MODEL FOR THE FLOW
PATTERN IDENTIFICATION

Neural networks, an analytical tool imitating the neural
aspect of the human brain, are excellent at pattern recognition
and trend prediction for processes that are nonlinear, poorly
understood and too complex for accurate mathematical
modeling [14, 15]. They seem good predictive tools to be
applied to multiphase flow systems, and when properly
designed and trained, can potentially improve on-line
monitoring and diagnostics [16].

An artificial neural network (ANN) consists of a great
number of interconnected neurons. A block diagram of the
model of a neuron is shown in Figure 5. A neuron is a basic
information processing and operating unit in a neural network.
Specifically, a signal x; is input to connect to a neuron with the
synaptic weight w;, and then all input signals weighted by their
respective synapses are summed as a net input u. A bias b is
applied to the neuron so that the increase or decrease of net
input depends on whether the bias is positive or negative.
Finally the increased or decreased net input is imported into an
activation function resulting in the output. The activation
function is so developed that the amplitude of the net output of
a neuron is limited. The input-to-output operation of a neuron is
formulized mathematically as follows:

k— ym k
W= L=t Wi%; 1)

V=g (uk+b*)=¢ (T, wkx; +b¥)=¢(Tm, wkx;)
)

It is noted that the bias may be accounted for as a new input
fixed at x, = 1 with its weight b and then combined with the
original inputs as a whole input. Therefore the above equation
has been reformulated to combine inputs and bias by replacing
subscript 1 with 0 as seen in the last term of the right-hand side
of equation (2) [17].
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Figure 5 Nonlinear model of a neuron [17]

Recently, some successful applications of neural networks
to multiphase flow problems have demonstrated their enormous
potential. Abro et al. [18] determined the void fraction and flow
regime of oil/gas flow using a neural network trained by
simulated data based on gamma-ray densitometry. Mi et al.
[19] applied a neural network for the two-phase flow pattern
recognition in a vertical channel using signals from electric
capacitance probes. Xie et al. [20] designed an artificial neural
network for the classification of flow patterns in three-phase
systems using pressure signals. The above findings have shown
that neural networks are capable of learning to recognize flow
patterns based on pressure fluctuation and some other flow-
induced signals [16].

Experimental Data and ANN Structure

The tests were run for R134a evaporating in a stainless
steel tube with diameter of 2.32 mm, mass velocities from 50 to
600 kg/m? and saturation temperatures of 22°C, 31°C and
41°C. The tube was heated by applying a direct DC current to
its surface. Images from a high-speed video-camera (8000
frames/s) obtained through a transparent tube just downstream
of the heated section were used to identify the following flow
patterns: bubbly, elongated bubbles, churn and annular. Dryout
conditions were also characterized.

Among the various kinds of ANNs that exist, the
feedforward configuration has become the most popular in
engineering applications [21]. A multilayer perception is a
feedforward ANN model that has one input layer, at least one
hidden layer and one output layer. Figure 6 shows the network
structure for this problem, where N represents the number of
neurons of the hidden layer, x: represents the mass flux, x. the

ANN Structure

Figure 6

The output standardization, representing the flow pattern,
was defined as follows in Table 1.



Flow
Pattern |7t | Y2 | V3| Y4
Annular [ 1 [0 [0 |0
Churn 0|1]0]0
Slug 0jo0|11]o0
Bubbles [0 |0 [0 |1
Table 1 Output standardization

ANN Training and Assessment

As shown in Figure 6, a three-neuron-layer network was
designed. The neurons in the input layer had a piecewise linear
activation function, while the neurons in the hidden and the
output layers used the logistic activation function. The back-
propagation learning algorithm was used. The learning rate was
set to 0.1 and the relative error of every predicted output was
defined by

e_ 3
pr= A AeAm 3)
where AP is the predicted results, that is output of ANN, A® is
the experimental data, that is the target output. The maximum
Er was set to 10"

A total of 759 groups of normalized mass flux, vapor
quality and saturation temperature data were available for the
neural networks. Following common practice, a fraction of the
obtained data (80%, or 607 data records) was selected for
training the neural networks, which constituted the so-called
‘calibration data’, and the other data records were used to
validate the network.

The number of the layers, input neuron and output
neuron was fixed and the determination of the number of
neurons in the hidden layer was carried out with cross-
validation. There were tested ANNs with 5, 10, 20, 30, 40 and
50 neurons in the hidden layer. Table 2 shows the tested
topologies and their respective errors. By consideration of the
ANN performance, we choose the topology with 10 neurons in
the hidden layer.

Topology Error
5 neurons 3,29%
10 neurons 2,63%
15 neurons 3,29%
20 neurons 3,29%
30 neurons 3,29%
40 neurons 5,26%

50 neurons

Table 2

overfiting

Topology errors

DISCUSSION

Figure 7 shows the flow map created by the ANN.
Figure 8 and Figure 9 showa comparison of the map created
against the flow pattern transitions provided by the method of

Two phase flow

Revellin and Thome [9] and Felcar et al. [5] , respectively, for
saturation temperatures of 22°C.
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Figure 7 ANN Map for R-134a, d=2.3mm and T,=22°C
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Figure 9 Felcar et al. [5] map for ANN database
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As can be observed, Revellin and Thome [9] method
failed into predict the present database. A transition to stratified
flows is not provided by this method, since was based only on
data for tube diameters smaller than 1mm, a condition for
which stratified flows are not feasible [13].

In general, Felcar et al. [5] method predicts relatively
well the database obtained with the ANN. The transition from
intermittent to annular is predicted relatively well, capturing the
annular-intermittent vapor quality threshold decreases with
increasing mass velocity.

CONCLUSION

In the present study it was applied the ANN approach to
accurately model the flow patterns of the refrigerant R134a in a
microscale channel. A summary of the conclusions drawn from
the results of the present investigation is as follows:

a) Because of the inherent attributes of the ANN technique,
ANNS can predict experimental data with errors of the
same order as the uncertainty of the measurements. It
can be said that the multilayer perceptron ANN is a
good method for flow pattern predictions, since the
flow pattern map created shown good concordance
with an existing method.

b) In general, the flow pattern predictive method proposed
by Felcar et al. [5] agrees quite well with the database
created by the ANN. However, this method should be
further improved in order to more accurately predict
the flow pattern transitions at low mass velocities and
high vapor qualities. It should be also mentioned that
stratified flows seem improbable for flow boiling of
R134a in a 2.32mm diameter tube.
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