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ABSTRACT

Strong temperature gradients are often the cause of
malfunctions taking place in mechanical systems which
associate two rubbing solids. This work presents the thermal
behaviour of a system consisting on a rotating disk in rubbing
contact with a pin. Immersed in an environment characterized
by a surface conductance 4, and a temperature 7, , the disk is

subjected to localised heat flux generated by the friction with
the pin, eccentric with respect to the rotating axis of the disk.
Several parameters intervene decisively on the local heat
transfer and therefore on the temperature of the contact surface
between the two solids in friction. In addition to the
conductance, other parameters as the angular velocity of the
disk, the frictional heat flux or the pin diameter and its off-
center with respect to the disk rotation axis, play a major role in
the thermal exchange. The present work examines the influence
of such parameters on the thermal solution.

An analytical expression is proposed for the calculation of the
3D disk’s temperature. The presented thermal cartographies
make possible to locate the zones of the system undergoing the
greatest temperature gradients and thus the associated spots of
mechanical rupture. Results are compared with other analytical
solutions found in the specialized literature.

INTRODUCTION

Temperature plays a major role in the sizing and thermal
behaviour of systems with rotating elements. Friction between
two solids converts mechanical energy into heat causing a local
temperature increase. The thermal gradients are at the origin of
the surface physical-chemical changes. This sometimes
involves significant alterations, reversible or not, of the
properties of the constituent materials or their total loss.

Several numerical and experimental studies treating this
problem have been published in the specialised literature. We
refer to [1, 2] who treat the coupling between two semi-infinite
solids in contact on a rough surface of circular shape. The
authors proposed solutions to calculate the temperature of a
single solid subjected to a uniform heat source. In [1] the
arithmetic mean of the surface temperature of both solids is
adopted as the representative temperature of the interface. The
case of a circular heat source in rectilinear motion on the
surface of an isolated semi-infinite medium is treated in [3].
Other numerical and analytical studies covering the subject [4-
10] have been published recently. The authors studied the heat
flux division which is generated in the contact and distributed
towards the two solids in contact. They carried out a parametric
study and estimated the mean surface temperature and mean
fluxes. The present work treats the case of a disk in rotation,
subjected to a heat flux density on a portion of the upper face,
generated by the friction of a pin. An expression making it
possible to calculate the 3D temperature of the disk is proposed,
followed by a study of sensitivity to some geometrical and
physical parameters influencing the thermal behaviour of the
system. The treated case can be applied among others to piece
machining, operation of guide blades and bearings or to the
vehicles brake systems.

NOMENCLATURE

a [m] Radius of the heat source
b [m] Radius of the disk

Bi [1] Biot number Bi=/h,b/2,
d [m] Thickness of the disk
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e [m] Eccentricity

h [W/mK] I(iltélgvectlon coefficient on the rubbing faceon the lower
h; [W/m?K]  Convection coefficient on the lower face

I [1] Bessel function of the first kind of order m

Pe [1] Peclet number. Pe = eaw/c,

44 [W/m?]  Heat flux density

T, K] Disk temperature

T, [K]1 Ambient temperature T, = 273K

T [1] dimensionless disk temperature 7" =7, / (q rrn
r [m] radial coordinate

z [m] axial coordinate

Greek symbols

a, [m%s]  Thermal diffusivity of the disk

Ay [W/mK] Thermal conductivity of the disk

4 [rad] Angular coordinate

2] [rad/s] Angular velocity

THE PHYSICAL PROBLEM

The system treated is represented in Fig. 1. The disk of radius
b, thickness d and rotating at angular velocity @ is subjected to
a uniform heat flux g, This flux is caused by the contact
between the disk and a pin of radius a, supposed semi-infinite,
off-centred a distance e with respect to the disk axis. The rest of
the upper face is subjected to an imposed surface conductance
h, and to ambient temperature7, , taken to be 0 °C in the

present work. These ambient thermal conditions are the same
for the lateral and lower surfaces of the disk. The stationary
thermal solution for this problem is related to the resolution of
the 3D heat equation in cylindrical coordinates
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with periodic conditions

(T0), .. =(T0),.. )
and

The boundary conditions are:
e  On the lateral surface
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[ (4 Jb,B,z -0 @)
e On the lower face
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e On the upper face
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Figure 1 Studied system

The hypothesis of a uniform heat flux entering the disk through
the contact is associated with the assumption of the integral
cooling of the disk rubbing face (including the own area

receiving the heat flux ¢, ).

This assumption is realistic as long as the ratio of areas pin-to-
disk is small and the heat convection coefficient with the
environment /, does not exceed a few thousands of [W/m’K].
This fact is confirmed in [11] concerning the study of an
infinite cylinder receiving a heat flux on a portion of its
periphery and cooled by convection on the remaining surfaces.
The authors show that the adopted approximation remains valid
as long as i,\2a,/w /2, <1. This condition is largely checked
for many practical applications like machining, pin-disk
tribological devices and the disk brake system. If such
conditions are not met, the solution appeared as the integral
equation of Fredholm, that can be solved by successive
analytical iterations or by decomposition in Fourier series.

In the adverse case of a disk in  steel
(a,=510"m"s7", 2, =20Wm™ k') which would be rotating at

small angular speed w=1s" and subjected to a high
conductance /, =5000W.m2.K"', de hypothesis is satisfied

because i,\2a,/w [4, ~0.8.



ANALYTIC SOLUTION AND VALIDATION

To solve the equation (1) with the conditions (2) to (6), we
use the integral Fourier transform adapted to the problems
showing a spatial periodicity (hereafter denoted by 9)

7 Km 7 —im6
T, :gdee 46 @)

with k,=1 or K,

Hankel transform adapted to cylindrical geometries (hereafter
denoted by r)

i"d = J‘:zfd J(B,r)dr ®)

=2 and i the imaginary unit, and the finite

In (8), J, represents the Bessel function of the first kind of
order m , and g, the root of the transcendental equation

T, (Bb)=0 ©
Equation (1) then becomes

dzlz"d_ , imo |z

gl o (10)

with the associated boundary conditions

dr, s 3
_14[7;} =G, T,
20

z (11)
dT, z
A4 [T;j =hT,
z=d
where
. J, J,
5, =q,aK, \(B,a) . (B.e) (12)
The tranformed expression of (9) becomes
T,(z)=E(2) +4,F (=) (13)

where
g,a° (—h,z + A, + dh,)

E()-[i(n)] | -l (14)

oo 2[ 2 (h+hy)+dih, ]

represents the mean temperature at a given section of constant
z, and
_ (a7 +hy)
005(7‘1)[/1[17 +hy tanh(;/d)}
Agycosh y(d —z) ]+ hysinh[ 7 (d -z)]
X 2
(A7) tanh(yd )+ hA,y +hh, tanh(yd)

F(2)

(15)

represents the fluctuating part of the temperature, with

]/=pexp(i(p);p=[ﬂ:Jr(ma)/a)z}l/4 ; p=tan'1(ma)/aﬂ"2)/2 (16)
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The application of the respective inverse Hankel and
Fourier transforms lead to the expression of the 3D temperature
of the disk. There appear the geometrical and physical
parameters of the treated problem

| @B e (i (17
;;’ [(ﬁnb)z_mz]-]f,(ﬁ”b) "{ () p( )}

In the case of a semi-infinite disk, this equation can be
written as

Ty (r,@,z): L

20,0525 Ko (B0) 1 (B,0) ], (Bie) T, (Br) (18)
Y [(B2) =m |3 (Bb)5

x cos[m@—z// —zpsin(go)]exp[—zpcos(gﬂ)]

where
5= [ljpz +h] +22,ph, cos((p)]

v = tan™ Apsin(p) 19)
Agpcos(p)+h,

12

This expression is valid whatever are the geometrical or
physical parameters of the problem.

The bulk temperature, 7, =q,*/h,b* , which is the first term

of Eq. (18)], corresponds to the thermal equilibrium between
the heat flux entering the disk ¢, 7’ and the convective flux

exchanged with the ambient, &, zb°T, .

RESULTS AND INTERPRETATION

We discuss here the results obtained for the particular
geometrical and physical data given in Table 1.

The analytical solution was used to calculate the dimensionless
mean temperature of contact as a function of the Peclet number.
The results are presented in Table 2. where the results obtained
in [3] are also given for the sake of comparison.

Variable Numerical value Units
b 0.1 [m]
afb 0.1 [-]
e/b 0.7 [
Pe 100 [-]

44 10° [W/m?]
a, 107 [m?/s]
A 20 [W/mK]
Bi 0.05 [-]

Table 1 Physical and geometrical data used
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V7T /(g ,al2,)

Present study

Pe Reference [3] (a/b=0.05,

o/b=0.78)
0 0.4789 0.4769
1 0.3610 03613
2 0.3017 0.3037
4 0.2383 0.2388
8 0.1800 0.1791
16 0.1320 0.1313
32 0.0952 0.0959
64 0.0680 0.0704

Table 2 Comparison of the dimensionless mean temperatures
of the present study with those in [3]

The comparison points up a good concordance between the
values of the dimensionless mean temperature obtained in both
works. Deviations are less than 4% and can be partially
attributed to the effect of curvature

Fig 2. shows the thermal map of the disk surface obtained from
(18). It is clearly visible the thermal trace starting at the contact
point and extending in the disk rotation sense.

Figure 2 Isothermal lines for Pe=20; Bi=1; a/b=0.1;¢/b=0.7

The angular and radial variations of the surface
dimensionless temperature T"(e,0,0) and T°(r,0,0) are

represented in Fig.3 and Fig. 4 respectively for different values
of the Peclet number and the same constant heat flux g, in all

cases.

The set of curves show the increase of temperature with the
angular velocity of the disk and the appearance of the flash
temperature described in [1-2]. The rise in temperature when
passing the contact zone is weakened for higher speeds. In
dynamic mode, the maximum temperatures are always located
at the exit of the contact. This zone is where the angular
temperature  gradient turns over, having important
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consequences in terms of mechanical performance (strong
thermal stresses, cracking). The zone near to the entrance of the
contact is equally affected.
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Figure 3 Influence of the rotating speed on the dimensionless
disk temperature. Angular variation
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Figure 4 Influence of the rotating speed on the dimensionless
disk temperature. Radial variation

Fig. 5 shows that, from a certain depth, the temperature
becomes uniform and is not influenced anymore by the cyclic
appearance of the heat source, which is in agreement with the
values of the skin thickness.
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Figure 5 Angular variation of the dimensionless disk
temperature at different depths z



The influence of the thermal surface conductance on the
dimensionless temperature of the rubbing face of the disk is
given in Fig. 6. It diminishes with increasing values of the Biot
number, but the differences between the maximum and
minimum values of temperature are independent of Bi,
showing the same angular profile.
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Figure 6 Influence of the heat convection coefficient on the
dimensionless disk temperature

Finally the influence of the thermal conductivity of the disk on
the temperature 7°(e,0,0) is illustrated in Fig. 7 and 8. The

profiles shown there are physically coherent and concordant
with other published results.
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Figure 7 Influence of the thermal conductivity on the
dimensionless disk temperature

CONCLUSIONS

An explicit analytical 3D model has been implemented to
deal with the thermal problem of a rotating disk receiving heat
on one of its faces from an off-centred heat source, to calculate
the temperature distribution and to study the influence of the
intervenient physical and geometrical parameters. This model is
easy to implement and is solved by using the integral
transforms of Fourier and Hankel. High thermal gradients in the
proximity of the contact with the pin are clearly present on
different thermal cartographies. These cartographies make easy
to identify the zones with strong temperature variations that
often cause fissures and cracks which are observable in brake
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systems. This model allows, in very short computing times, to
analyse the influence of different physical parameters such as
the convection coefficient, the conductivity of the material as
well as the rotational speed on the temperature of the disk.
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