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ABSTRACT

This paper investigates the stability of a thin electrically
conductive fluid under the applied uniform magnetic filed
during spin coating. A generalized nonlinear kinematic model
is derived by the long-wave perturbation method to represent
the physical system. After linearizing the nonlinear evolution
equation, the method of normal mode is applied the linear
stability. The weakly nonlinear dynamics of a film flow are
studied by the multiple scales method. The Ginzburg-Landau
equation is determined to discuss the necessary conditions of
the various states of the critical flow states, namely sub-critical
stability, sub-critical instability, supercritical stability and
supercritical explosion. The study reveals that the rotation
number and the radius of the rotating circular disk generate
similar destabilizing effects but Hartman number gives a
stabilizing effect. Moreover, the optimum conditions can be
found to alter stability of the film flow by controlling the
applied magnetic field.

1. INTRODUCTION
The study of magnetohydrodynamic (MHD) effects is
important for a wide range of situations, varying from MEMS
technology, plasma engineering, and thin film materials
technology [1-3]. In fact, to stabilize the film flow by applying
a magnetic field has more advantages as follows: (1) neither
electrical nor mechanical contacts with the fluid are necessary,
(2) an active control of a technological process is simple.
Several researchers performed hydromagnetic stability
analyses of film flows on a rotating disk [4-8]. In the present
study, the authors present a weakly nonlinear stability analysis
of a thin electrically conductive fluid under the applied uniform
magnetic filed on a rotating disk, namely spin coating. The
induced magnetic field is neglected by assuming that the
magnetic Reynolds number <<1 [7] during spin coating. It is
also assumed that the disk radius is much larger than the film
thickness. Therefore, the peripheral effect is neglected by
comparing with total film area. It is focused that the effects of

stability due to centrifugal forces and MHD effects were
revealed in the region near the rotating axis. The influence of
the rotational motion, the disk size and the Hartmann number
on the equilibrium finite amplitude is studied and characterized
mathematically. In an attempt to verify the computational
results and to illustrate the effectiveness of the proposed
modelling approach, several numerical examples are presented.

2. MATHEMATICAL FORMULATION

Consider the axisymmetric flow of a thin electrically
conductive fluid flowing on a rotating circular disk which
rotates with constant angular velocity Q  under an applied
magnetic filed B, . The external uniform magnetic field is
applied perpendicular to the plane of the disk (see Fig. 1). A
variable with a superscript  represents a dimensional quantity.
Here the cylindrical polar coordinate axesr*,@",z"are chosen

as the radial direction, the circumferential direction and the
axial direction, respectively. All associated physical properties
and the rate of film flow are assumed to be constant (i.e. time-
invariant). Let " and w" be the velocity components in the
radial direction " and the perpendicular direction z* of the
disk, respectively. According to the experimental observation
by Takamasa and Kobayashi [9], it is reasonable to be assumed
to ignore the circumferential effect when the liquid film is very
thin (4" << »"). For simplification, we take the fluid velocity in

the thinning film to be independent of ¢*. For small magnetic
Reynolds number, the electromagnetic force Fy,, is & B,%u"[7, 8],
when imposed and induced electric fields are negligible and the

only applied magnetic field B,". The MHD governing equations
of motion can be expressed as
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Figure 1 Schematic diagram of a thin MHD fluid flowing
on a rotating circular disk

where , * is tangential velocity, , is constant fluid density,

p * is fluid pressure, g is acceleration due to gravity, , is
fluid dynamic viscosity and Bo* is magnetic flux density.
On the disk surface z° =0, the boundary conditions are treated
as no-slip as
u' =0 “)
w =0 &)
On the free surface z =4  , the boundary condition
approximated by the vanishing of shear stress is expressed as
ou" ow on" . ou" ow oh 6
G+ 2= (G -2 (G- TG =0 ©)
The normal stress condition obtained by solving the balance
equation in the direction normal to the free surface is given as
Q) G u_ ok,
or 0z or or

o+ 2u e (Lo de
or or 0Oz
L O0%h” @)

S
or"”?

+S

Oh" . 52 .
[1+(a—*)'] % = p,
r

The kinematic condition that ensures the flow does not travel
across a free surface can be given as

PO —w =0 ®)
ot or
where 4 is the local film thickness, S"is surface tension

and p’ is atmosphere pressure. By introducing a stream

function go*, the dimensional velocity components can be

expressed as

u=t 2l =10 ©)
r oz r or

The following variables are used to form the dimensionless

governing equations and boundary conditions
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where j* is the average film thickness, « 1is the

*

dimensionless wave number, , is the scale of velocity, v is

the kinematic viscosity, Re is the Reynolds number, Fr is the
Froude number, m is the Hartmann number and A is the
wavelength. In order to investigate the effect of angular
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velocity, Q" on the stability of the flow field, it is assumed
that the tangential velocity is constant [7, 8] throughout the
radial direction in the thin film, ie. v =rQ" . The
dimensionless parameter Ro (rotation number) is defined as

ro - 2h (11

U

In terms of these non-dimensional variables, the equations of
motion can be expressed as

g =—RerR?* +1”'mp +aRe(p, + 0, +10 0. ¢ —pp )+0) (12)
p.=—Fr+a(-Re"' r'p_)+0(a?) (13)
Using the non-dimensional variables, the boundary conditions
at the surface of disk z=0 reduce to

p=9, =¢.=0 (14)
And the boundary conditions at the free surface of disk z=h
become

o =d'[re, - +2h (1-’K) ' 2 ' p.—r7p.)] (15)
p==Sh,(1+ 1)+ 2R (141 (7, + ok )]+ O@)  (16)
h+r"'ho. +r'p =0 (17)

Hence the term ¢S can be treated as a quantity of zeroth
order [10, 11]. The long-wave length modes (i.e. a small wave
number, ¢ ) is considered in the present analysis, this can be
done by expanding the stream function and flow pressure in
terms of some small wave number (o <<1) as

(D=§00+0!(P1+0(0!2) (18)

p=P0+0¥71+O(0‘2) (19)
The flow conditions of the thin film can be obtained by
inserting the above expressions into Egs. (12)—(16) and then
solving systematically the resulting equations. By collecting all
terms of zeroth order ¢° and first order ¢' in the above
governing equations and boundary conditions, the zeroth and
first order solutions are inserted into the dimensionless free
surface kinematic equation to yield the following generalized
nonlinear kinematic equation

h+A(yh, +B(h)h, +C(hyh,,, + DR, + EWE +F(hhh,, =0 (20)
where A(h), B(h), C(h), D(h), E(h) and F(h) are given in
Appendix A.

3. STABILITY ANALYSIS
The dimensionless film thickness when expressed in
perturbed state can be given as

h(r,t)=1+n(r,t) 21
Where 7 is a perturbed quantity to the stationary film
thickness. Substituting the value of A(r,7)into the evolution
Eq. (20) and all terms up to the order of 7’ are collected, the
evolution equation of 7 becomes

1, +A4n, + By, +Cn,,, +Dn,,.+En +Fn,1,, =(A‘77+A7 7, +Bn +% nHn,

el D e ‘
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(22)
where the values of A, B, C, D, E, F and their derivatives are all

evaluated and as following at the dimensionless height of the
film h=1.



3.1 LINEAR STABILITY ANALYSIS
When the nonlinear terms of Eq. (22) are neglected, the
linearized equation is given as

n,+A4n. +Bn, +Cn, +Dn,., =0 (23)
In order to use the normal mode analysis, we assume that
n = aexpli(r —dt)]+c.c. 24)

where a is the perturbation amplitude, and c.c. is the complex
conjugate counterpart. The complex wave celerity, d is given as
d=d, +id,=(A-C)+i(B-D) (25)
where d, andd, are regarded as the linear wave speed and

linear growth rate of the disturbance respectively. The solution
of the disturbance about h(r, t)=1 is asymptotically stable or

unstable acCording asd, < Qord, > 0. This is equivalent to the
inequality B <D or B>D.

3.2 WEAKLY NONLINEAR STABILITY ANALYSIS

Nonlinear effects, when they are weak enough, do not
fundamentally alter the nature of the motion. A weakly
nonlinear solution can be usefully expressed as weak stability
or instability, but the definition is restricted to some
neighborhood of critical value. In this paper the authors are
interested in investigating the existence of the supercritical and
subcritical regions. In order to characterize the weakly
nonlinear behaviors of thin film flows, the method of multiple
scales [12] is employed here and the resulting Ginburg-Landau
equation [13] can be derived following the same procedure as
Chen [11] and Cheng and Lin [14].

0 o’ -
—a+Dl—?—g‘2d,.a+(E1+iFl)a2a=O (26)
o1, or,
where & is a small perturbation parameter, ¢, = &’¢, 1, =ér,
and

e=e +ie = (B-D+E-F)16D-4B)+6C(4 -C)

(16D —4B)* +36C* 27
o 6C(B —D +E—-F)—(4 -C)(16D—4B)
(16D —4B)* +36C*
D, =[(B—-6D)+i(3C)]
(28)
E, =(-5B +17D +4E—10F)e, —(4 —7C)e, +(—%B" +%D" +E-F) (29

F, =(-5B +17D +4E—10F)e, +(A4 —7C)e, +%(A" -C) (30)

The overhead bar appearing in Eq. (26) stands for the complex
conjugate of the same variable. Equation (26) can be used to
investigate the weak nonlinear behaviour of a fluid film flow.
In order to solve for Eq. (26), we assume a filtered wave with
no spatial modulation, so the filtered wave can be expressed as

a = a,exp[—ib(t,)t,] (€2))
After substituting Eq. (31) into Eq. (26), one can obtain
% —(¢7d —Ea)a, (32)
2
aAb)n] _ Fa? (33)
ot,
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The associated wave amplitude £a, in the supercritical stable
region is derived and given as
d; (34)

If E =0, then Eq. (32) is reduced to a linear equation. The

second term on the right-hand side of Eq. (32) is due to
nonlinearity and may moderate or accelerate the exponential
growth of the linear disturbance according to the signs of ¢,

and £, . Equation (33) is used to modify the perturbed wave

speed caused by infinitesimal disturbances appearing in the
nonlinear system. The Ginzburg—Landau equation can be used
to characterize various flow states, with the results summarized
and presented as a Landau table [15].

4. NUMERICAL EXAMPLES

In order to study the effects of dimensionless radius, rotation
number and Hartman number on the stability of a thin flow, we
select randomly but within specified ranges physical parameters
for numerical experiment. The ranges for these parameters are
based on published reasonable ranges for these parameters [10,
11, 14]. More specifically, these parameters and their values
include: (1) Reynolds number (range from 0 to 15); (2)
Dimensionless perturbation wave numbers (range from 0 to
0.12); (3) Rotation number (any one of the three values 0.15,
0.175 and 0.2); (4) Dimensionless radius (any one of the three
values 10, 15 and 20). (5) Hartman number (any one of the
three values 0, 0.05, 0.1 and 0.15). Other of our parameters are
treated as constants for all numerical computations since we are
considering practical spin coating systems in which these
variables are not expected to undergo significant variation. In
practice, the parameter S is a large value. Further, for

simplification analysis, a*S -~ Re and Fr are taken to be of
the same order (O(1)) [11, 14], so the values of some
dimensionless parameters are taken as, a constant
dimensionless surface tension S=6173.5 and Fr=9.8.

4.1 LINEAR STABILITY ANALYSIS

By setting d;= 0 in the linear stability analysis, the neutral
stability curve can be determined easily from Eq. (25). The
a’S -Re plane is divided into two different characteristic
regions by the neutral stability curve. One is the linearly stable
region where small disturbances decay with time and the other
is the linearly unstable region where small perturbations grow
as time increases. Figure 2(a) shows that the stable region
decreases and unstable region increases with an increase of
rotation number. Figure 2(b) shows that the stable region
decreases and unstable region increases with increasing radius
of the circular disk. The reason for this phenomenon is the
existence of the centrifugal force term, which is a radius-related
force in the governing equation. Increasing the radius and the
rotation number results in accelerated growth of the linear
disturbance due to the centrifugal force. Figure 2(c) shows that
the stable region increases and unstable region decreases with
an increase of Hartman number. The reason for this
phenomenon is the Lorentz forces can modify the velocity field
and moderate the growth of the linear disturbance. Hence one
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can say that in linear stability analysis rotation number and the
radius of circular disk generate similar destabilizing effects but

Hartman number gives a stabilizing effect.
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Figure 2(a) Linear neutral stability curves for three different
Ro values at =10 and m=0.1
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Figure 2(b) Linear neutral stability curves for three different
r values at m=0.1 and Ro=0.15
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Figure 2(c) Linear neutral stability curves for three different m
values at =10 and Ro=0.15
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4.2 WEAKLY NONLINEAR STABILITY ANALYSIS
Figures 3(a) to (c) reveal that various conditions for sub-
critical instability (d, <0,E, <0) ,sub-critical stability (d, <0,£ >0),

supercritical ~ stability (4 >0,5>0) and supercritical ~explosion

(d,>0,E <0)-

Figure 3(a) Neutral stability curves of MHD film flows for
r=10, Ro=0.15 and m =0.1

Figure 3(b) Neutral stability curves of MHD film flows for
r=10, Ro=0.175 and m= 0.1

Figure 3(c) Neutral stability curves of MHD film flows for
=10, Ro=0.15 and m=0.05



Figure 4(a) shows the threshold amplitude in sub-critical
instability region for various wave numbers with different Ro
values at Re=3, r=10 and m=0.1. The results indicate that the
threshold amplitude g4 becomes smaller as the value of rotation

number (Ro) increases. Figure 4(b) shows the threshold
amplitude in sub-critical instability region for various wave
numbers with different Hartman number (m) values at Re=3,
r=10 and Ro=0.15. The results indicate that the threshold
amplitude gaobecornes smaller as the value of m decreases. The

film flow which holds the higher threshold amplitude value will
become more stable than those that hold smaller one. If the
initial finite-amplitude disturbance is less than the threshold
amplitude, the system will become conditionally stable.

2¢a, F e

Figure 4(a) Threshold amplitude in sub-critical instability
region for three different Ro values at Re=3,
=10 and m=0.1
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Figure 4(b) Threshold amplitude in sub-critical instability
region for three different m values at Re=3,
=10 and Ro=0.15

Figure 5(a) shows the threshold amplitude in the
supercritical stability region for various wave numbers with
different Ro values at Re=6, r =10 and m=0.1. It is found that
decreasing the rotation number will lower the threshold
amplitude, whereupon the flow becomes relatively more stable.

Posters

Figure 5(b) shows the threshold amplitude in the supercritical
stability region for various wave numbers with different m
values at Re=6, r =10 and Ro=0.15. It is found that increasing
of the Hartman number will lower the threshold amplitude, and
the flow will become relatively more stable.

2ea, |

Ro=0.15

———- Ro=0.175

.

1
8.02 0.025 0.03
a

Figure 5(a) Threshold amplitude in supercritical stability
region for two different Ro values at Re=6,
r=10 and m=0.1

Figure 5(b) Threshold amplitude in supercritical stability
region for two different m values at Re=6 ,
r=10 and Ro=0.15

5. CONCLUDING REMARKS

The stability of a thin electrically conductive fluid under the
applied uniform magnetic filed during spin coating is
investigated using the method of long-wave perturbation. On
the basis of the results of numerical modeling, several
conclusions can be drawn:

(1).The modeling results indicate that the region of linearly
stability becomes smaller for increasing rotation number or
increasing radius. Hence one can say that in linear stability
analysis rotation number and the radius of circular disk
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generate similar destabilizing effects.

(2).The modeling results also shows that the stable region
increases and unstable region decreases with an increase of
Hartman number. In linear stability analysis Hartman
number gives a stabilizing effect.

(3).Weakly nonlinear stability analysis has successfully
revealed the sub-critical stability, sub-critical instability,
supercritical stability and supercritical explosion regions for
the flow patterns of a thin film on a rotating disk under the
applied uniform magnetic filed. It is found that in sub-

critical instability region, the threshold amplitude &q,

becomes smaller as the value of the rotation number
becomes larger. When the initial finite-amplitude
disturbance is less than the threshold amplitude, the flow
will be conditionally stable.

(4).1t is also shows that in sub-critical instability region, the

threshold amplitude &£a, becomes larger as the value of

the Hartman number becomes larger. The optimum
conditions can be obtained that the system is used to
increase stability of the film flow by controlling the applied
magnetic field.
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APPENDIX A
Ah)= 12%(Sech(hx/%z(%% (=30 Ro> — Fr-I'nia
m r
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Bm’r*Ro> —Fr-W’m’a+ h*(5h—6)m-r* Re’ Ro‘b)Cosh(Zh«/Z))
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