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ABSTRACT 

This paper extends the method, in which a Volterra-type 

integral equation that relates the local values of temperature and 

the corresponding heat flux within a semi-infinite domain, to a 

transient heat transfer process in a non-isolated system that has 

a memory about its previous state. To model such memory 

systems, the apparatus of fractional calculus is used. Based on 

the generalized constitutive equation with fractional order 

derivative, the fractional heat equation is obtained and solved. 

Its analytical solution is given in the form of a Volterra-type 

integral equation. It follows from the model, developed in this 

study, that the heat wave, generated in the beginning of ultra-

fast energy transport processes, is dissipated by thermal 

diffusion as the process goes on. The corresponding 

contributions of the wave and diffusion into the heat transfer 

process are quantified by a fractional parameter, H , which is a 

material-dependent constant. 

 

INTRODUCTION 
Modeling of heat transfer processes may often become a 

challenging task due to the fact that different phenomenological 

concepts (e.g. the classical Fourier model, thermal waves, 

lagging) may be used for such modeling. 

It seems that the method, which leads to a Volterra-type 

integral equation that relates the local values of temperature and 

the corresponding heat flux within a semi-infinite domain, is an 

effective analytical tool for solving many challenging problems 

in heat transfer. The method was proposed in [1] and applied to 

solving diffusion problem in [2]. The method was generalized 

by Frankel for finite domains in [3]. Then, the solution of the 

heat wave equation was obtained by means of this method 

accounting for the surface heat flux in work [4] and the both 

surface heat flux and volumetric source in [5].  

This work extends the method to a transient heat transfer 

process taking place in a non-isolated system that has a 

memory about its previous state. To model such memory 

systems, the apparatus of fractional calculus is used. To begin 

with, the single-phase-lag constitutive equation is considered: 

NOMENCLATURE 
 
a [-] Positive constant (for Gaussian distribution a = 2.77) 
C [Jm-3K-1] Volumetric heat capacity 

H [-] Dimensionless parameter 

k [W/mK] Thermal conductivity 
q'’ [W/m2] Heat flux vector 

q'’ [W/m2] Axial component of q'’ 

r [m] Position vector 
T [K] Temperature 

s [-] Laplace variable 

T0 [K] Initial temperature 
t [s] Time 

x [m] Cartesian axis direction  

 
Greek symbols 
α [m2/s] Thermal diffusivity 
τ [s] Relaxation time  
ξ [-] Dimensionless time 
η [-] Dimensionless spatial variable 

 

( , ) ( , ),t k T t   q'' r r      (1) 

where ( , )tq'' r  is the heat flux vector, ( , )T tr  is the 

temperature, r  is the position vector, t  is the time   is the 

relaxation time, k  is the thermal conductivity. Assuming that 

  is small, left part of Eqn. (1) can be extended into the 

fractional Taylor series [6] as follows 
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where   is the Gamma function, H  is parameter defined in 

interval  0,1 , 
nHD  is the Riemann-Liouville fractional 

derivative which is defined as 
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Neglecting the second order terms in Eqn. (2) the latter can be 

simplified as 

0( , ) ( , ) ( , ).H H
tt D t k T t   q'' r q'' r r    (4) 

Equation (4) is the generalized constitutive equation with a 

fractional order derivative. The fractional constitutive equation 

is the basic assumption in our study, which leads to the 

fractional differential equation for the temperature. Its 

analytical solution is obtained in the form of a Volterra-type 

integral equation that relates the local values of temperature and 

the corresponding heat flux. 

 

PROBLEM FORMULATION  
Let us consider the energy equation which relates the heat 

flux and temperature by mean of the following relationship  

( , ) ( , ),t C T t
t


  


q'' r r  (5) 

where C  is the volumetric heat capacity. Applying (5) to (4), 

and accounting for linear properties of (3) [7], the fractional 

differential equation for the temperature can be written as 
1 1 2

0 0( , ) ( , ) ( , ),H H
t tD T t D T t T t   r r r  (6) 

where   is the thermal diffusivity, which is assumed to be 

constant, in this study. Finally, let us rewrite Eqn. (6) for one-

dimension problem, replacing vector r  by the Cartesian 

coordinate x , we have 
2

1 1
0 0 2

( , ) ( , ) ( , ).H H
t tD T x t D T x t T x t

x
  

 


  (7) 

Equation (7) is the one-dimension partial fractional differential 

equation that describes the transient temperature behavior a 

non-isolated system.  

System (7) is applied to solve an initial-value problem in a 

semi-infinite domain under the condition of initial thermal 

equilibrium of the domain. Therefore, at time 0t  , the 

temperature T  is equal to 0T , which is a constant and uniform 

temperature everywhere within the domain. At 0x  , the 

boundary condition is one of the known heat flux (either 

adiabatic or uniform nonzero heat flux). For a semi-infinite 

domain, when x   the boundary condition is 0 .T T  

SOLUTION PROCEDURE 
Let us introduce new dimensionless variables, as follows 

/ ,  / .t x          (8) 

Using (8), Eqn. (7) can be rewritten  

2
1 1

0 0 2
( , ) ( , ) ( , ),H

t tD D        


 
 


  (9) 

where 0 .T T    Hence, the initial and boundary conditions 

become as follows 
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Taking the Laplace transform of (9) (details of the Laplace 

transform of fractional derivatives can be found in [7]) and 

taking into account conditions (10), Eqn. (9) becomes 
2

1

2
( ; ) ( ; ) ( ; ),Hs s s s s  



 
    


   (11) 

where ( ; )s   is the Laplace transform of ( , )   . The general 

solution of homogeneous equation (11) is 
( ) ( )

1 2( ; ) ( ) ( ) ,s ss C s e C s e          (12) 

where  ( ) 1 Hs s s   . To satisfy the boundary condition, 

1( )C s  must be identically zero. Denoting 2( ) ( )C s C s , Eqn. 

(12) can be rewritten as 
( )( ; ) ( ) .ss C s e          (13) 

To eliminate ( )C s  from (13) the derivative of ( , )s  with 

respect to   is used: 
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    (14) 

Combining (14) and (13), we have 
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The inverse Laplace transform of 1 ( )s  can be expressed in 

terms of the generalized function G [8] as follows 
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   (16) 

The description of function G  is shown in Appendix. Thus, 

using (16) and the convolution theorem, the inverse Laplace 

transform of (15) becomes 
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Restoring the original variables, Eqn. (17) can be rewritten 

as 

*
*
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Equation (18) gives the relationship between the 

temperature and its spatial derivative at any moment of time 

and at any location in the non-isolated domain. 
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It is important to note here that if 0H  , the generalized 

function 1 1
0, ,
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t
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 and the 

solution of (7) is the classical model considered in [9]. In the 

case of 1H  , the generalized function 1 1
1, ,

2 2

1,
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 
 
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 is 

reduced to 2
0

2

t
t

I e 



 
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 

, where 0I  is the modified Bessel 

function and the solution becomes the same as obtained in [4]. 

Let us rewrite the generalized constitutive Eqn. (4) for one-

dimensional case as 

0

( , )
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Substituting (19) into (18), the relationship between the 

local temperature and the corresponding heat flux for the non-

isolated systems is 

0 0
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RESULTS AND DISCUSSION 
Model (20) predicts that in the initial stage, the ultra-fast 

heat transfer process occurs by means of both thermal waves 

and diffusion. As time goes on, however, the thermal waves are 

fully dissipated by thermal diffusion. The corresponding 

contributions of the wave and diffusion into the heat transfer 

process are quantified by a fractional parameter, H , which is a 

material-dependent constant. 

Further, Eqn. (20) is solved numerically. In order to 

compute the surface temperature for a given heat flux at the 

boundary, let us take the representative physical properties of 

metals, that are 510   
2m s , 610C    3J m K , and 

10   ps. The heat flux is represented by the Gaussian, 

namely,  

2

''( ) exp ,
t b

q t a


  
      

 (21) 

where a  is a positive constant (e.g. for the Gaussian 

distribution a =2.77 [10]), 10b   ps and 5   ps. The time 

evolution of the normalized surface temperature, 

   0 max 0/sT T T T     for different values of parameter, H  

is shown in Figure 1.  

APPENDIX 
 

Generalized Function G 
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and Laplace transform of (22) is 

  
 

, , , ,q r r
q

s
L G a t

s a



 


     (23) 

where   is the Gamma function,  Re 0qr   ,  Re 0s  , 

0.
q

a

s
  

 

CONCLUSION  
 

This paper extends the method, in which a Volterra-type 

integral equation that relates the local values of temperature and 

the corresponding heat flux within a semi-infinite domain, to a 

transient heat transfer process in a non-isolated system that has 

a memory about its previous state. To model such memory 

systems, the apparatus of fractional calculus is used. Based on 

the generalized constitutive equation with fractional order 

derivative, the fractional heat equation is obtained and solved. 

Its analytical solution is given in the form of a Volterra-type 

integral equation. It follows from the model, developed in this 

study, that the heat wave, generated in the beginning of ultra-

fast energy transport processes, is dissipated by thermal 

diffusion as the process goes on. The corresponding 

contributions of the wave and diffusion into the heat transfer 

process are quantified by a fractional parameter, H , which is a 

material-dependent constant. 
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