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ABSTRACT 

 

Mechanical systems such as brakes and clutches experience 

short periods of intense heating. The heat lost from the exposed 

surfaces is small or even negligible compared to the frictional heat 

generated during a single engagement. The Biot number for such 

systems is known to be very low. The general transient solution is 

often obtained by the superposition of a particular solution and the 

solution of the corresponding homogenous problem. This paper 

presents the finite element realization of this method when the 

Biot number is low. 

 

INTRODUCTION 
 

Automotive brakes and clutches involve bodies that are in 

contact and move relative to one another. The contact pressure 

p and the relative sliding speed v yields frictional heating 

(q=fvp), where f is the coefficient of friction. The temperature 

field resulting from the frictional heating causes a thermo-

elastic distortion which in turn modifies the contact pressure 

distribution. This process is found to be unstable when the 

sliding speed exceeds some critical limit [1] leading to areas of 

high heat generation or hot spots [2]. To fully understand this 

process one needs to solve the two systems of equation; the 

thermo-elastic system for the contact pressure and the heat 

conduction problem for the temperature evolution. Analytical 

solution for this type of thermo-mechanical systems is only 

possible for simplified geometries such as sliding of half-plane 

against rigid surface [3] or sliding of two-half planes [4]. To 

account for real geometries, numerical or finite element 

approaches are often used [5].  

An intense amount of frictional heat is generated when the 

frictional disks in automotive brakes and clutches are engaged 

[6]. The engagement period in clutches for example is very 

short and may not exceed half a second. Numerical time 

integration is one alternative where the transient problem is 

solved for small time steps [7]. This approach however is found 

to be computer intensive mainly because of the small time steps 

that need to be used to capture the quick evolution of the 

temperature field. Another possible solution is based on 

superposition of the particular solution (often steady state) and 

the general solution of the homogenous problem. In this 

approach the homogenous problem is formulated to yield an 

eigenvalue problem. The complete solution comprises of a 

series expansion of the eigenvalues and eigenfunctions [8]. The 

method of superposition is known to be less computer intensive 

when compared to the method of time integration. 

A large amount of heat is generated during the engagement and 

the capacity of the outer surface areas to dissipate heat during 

the engagement period is either small or negligible. Hence the 

ratio of the heat transfer resistance of the body to the surface of 

body is small (resulting into a system of low Biot number). The 

evolution of the temperature field is largely determined by the 

heat input and the thermal capacity of the system. The order of 

magnitude of the steady state solution is large when the Biot 

number is low. This in turn can result into numerical inaccuracy 

in the transient solution of the heat conduction problem. This 

paper presents a method that can be used to overcome problem 

of numerical inaccuracy associated with the method of 

superposition. The proposed methodology will be tested in the 

context of a disk sliding against a non-conductive surface. 

NOMENCLATURE 
 

T [ C ] Temperature 

t [s] Time 

q [W/m
2
] Heat input 

k [m
2
/s] Thermal diffusivity  

K [ CmW o./ ] Thermal Conductivity 

h [ CmW o./ 2 ] Heat transfer coefficient 

 
TRANSIENT HEAT CONDUCTION PROBLEM 
 

In the general transient heat conduction problem one seek the 

solution of the heat equation 
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where T  is the temperature in some domain ),,( zyx ,  t  is the 

time and k  is the thermal diffusivity of the material. In typical 

brakes and clutches, the boundary condition will be of the form 
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where   defines the boundary of  , n  is the outward normal 

to  , q  is the frictional heat generation on the boundary q  

and h  is a heat transfer coefficient. T  here is measured with 

respect to room temperature T . Furthermore, the sought 

solution must satisfies the initial condition 
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The general solution to equation (1) can be expressed as the 

sum of a particular solution pT  and the solution of the 

homogeneous problem, HT . The particular solution must 

satisfies the governing equation and the boundary conditions 

but not necessarily the initial condition.  
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A steady state solution can be regarded for the particular 

solution. The general solution of the homogeneous problem is 

defined by 
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A solution of exponential form can be considered for the 

homogenous problem [9] 
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Substituting for TH in equations (7) and (8), gives 
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There are certain eigenvalues ib  and eigenfunctions i  that 

satisfies the governing equation (10). The general solution of 

the homogenous problem can then be written as an 

eigenfunction series 
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where iA  are a set of arbitrary constants to be determined from 

the initial condition. 

 

FINITE ELEMENT SOLUTION 
 

The particular solution can be approximated by 
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where jT  are a set of nodal temperatures and jN  are 

independent shape functions. The solution of the heat equation 

(5) can then be approximated using the Galerkin’s method [10]. 
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for ),1( Nk  . The order of the derivative in equation (1) is 

usually greater than the order of continuity in the shape 

functions. This difficulty can be overcome by reducing the 

order of the derivative in equation (5) using the divergence 

theorem 
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Applying the particular solution boundary conditions (6) yields 

the matrix equation 
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A similar procedure can be followed to obtain the finite 

element solution of the homogenous problem which yields the 

matrix equation 
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where 

 

  dNND kjjk       (19) 

 

Equation (18) defines a general eigenvalue problem that can be 

solved for the eigenvalues ib  and the eigenvectors iΘ . The 

general solution of the heat conduction problem can be written 

as 
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The particular solution s
T can be expanded in terms of the 

eigenvectors 
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s
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Using equation (18) into (22) 
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Since the matrices HK,  and D are symmetric, one can show 

that the eigenvectors satisfies the orthogonally condition [11] 
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This condition can be used in equation (23) to yield a relation 

for the particular solution constants 
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The general solution now becomes 
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The initial boundary condition can be used to solve for the 

constants iA  
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Applying the orthogonally condition (24) gives 
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APPROXIMATION FOR SMALL BIOT NUMBER 
 

In the steady state, the energy balance requires that the total 

heat input to  to be equal to the heat exchanged through the 

boundary h. 

 

Q= hs AhTdzyxq  ),,(      (30) 

 

If the heat transfer coefficient h is small, the steady state 

temperature must then be large.  
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The Biot number can be defined as 

K

ha
Bi         (32) 

where a is a length representative of the domain  and can be 

defined as the volume of the body divided by the surface area 

of the body. Applying the divergence theorem to equation (10) 

shows that 
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The zero heat transfer coefficient h corresponds to zero Biot 

number (Bi = 0) and hence bi = 0 satisfies equation (33). In 

other word as 0Bi , the first eigenvalue b1 approaches zero. 

For small Biot number the constants 11 , BA  are anticipated to 

be a very large numbers of opposite sign as seen from equations 

(25) and (28). Subtracting two large numbers of approximately 

equal magnitudes will results in numerical inaccuracy. This 

difficulty can be overcome by separating the terms 11 , BA  from 

the series 
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Eliminating A1 in using equation (28) and defining the 

exponential function as a power series 
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If 0Bi , the leading eigenvalue 01 b . The product B1b1 is 

however bounded (equation 25) 
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Using this result in (35) gives an approximate solution for small 

Biot number, 

 

   



N

i
iiii

T tbABtt
2

1

0

1 )exp()()( ΘΘDTQΘT  (37) 

 

 

1474



    

TIME DEPENDENT HEAT CONDITION 
 

In brake and clutch systems the sliding speed drops from some 

initial value to zero which results in time dependent heat 

condition 

 

),,()(),,,( zyxptfvtzyxq       (38) 

 

The particular solution here is time dependent and equation 

(16) changes to 
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where Tp is the particular solution. As before, the particular 

solution can be expanded as eigenfunction series 
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Substituting (40) into (39), we obtain 
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Multiplying (41) by T

jΘ  and using the orthogonality condition 

(24) yields, 
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The solution for Bj can written as 
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Alternatively, a step-wise approximation can be regarded for 

time dependent boundary condition where the heat input is 

assumed to remain constant over small time steps. The method 

for constant boundary condition can then be used to obtain the 

temperature evolution. The temperature at the end of the 

preceding time step acts as the initial condition. Furthermore, 

new particular solution must be obtained for each time step. 

  

ONE DISK MODEL 
 

The method presented above was tested in the context of a 

single steel disk sliding against a non-conductive surface 

(Figure 1). The disk has an inner radius of 44.5 mm and an 

outer radius of 57.0 mm. The disk has a thermal conductivity of 

54 CW o/ , a specific heat capacity of 532 )./( CkgJ o  and 

density of 7800 3/ mkg . The disk rotates at speed  of 250 

srad /  and has a coefficient of friction f of 0.2. A uniform 

contact pressure p of 1 MPa  is applied along the contact 

interface. The heat input is proportional to the radial distance r 

and can be defined as 

 

rpfq         (44) 

 

The disk was divided into 400 elements of 441 nodes. The 

temperature evolution was simulated for a single engagement 

of 0.5 s.  

 

 

 

The aim here is to investigate the effect of the Biot number (Bi) 

on the temperature evolution and to test the extension of the 

approximate solution presented in equation (37). The 

approximate solution is compared with that of equation (34). 

As explained before, the numerical inaccuracy resulting from 

the coefficients A1 and B1 being very large is eliminated from 

the solution of equation (34) and therefore this solution is 

considered to be exact. Figure 2 shows the temperature 

distribution along the heated surface for different values of Bi. 

The solutions of Bi = 0.01 and 0.1 are almost identical. A slight 

deviation is seen for Bi = 1.0. It is worth mentioning that for 

most brakes and clutches the Biot number is usually less than 

unity. The heat boundary q dependence on the radial distance 

(44) resulted in higher heat generation at outer radius of the 

disk. This explains why the temperature at the outer radius is 

higher. A significant drop in the temperature is seen at the inner 

and the outer radius for 0.10Bi . This is mainly because of 

the cooling effect applied at the inner and outer surfaces. 

Figures 3, 4, and 5 show a comparison between the exact 

solution of (34) and the approximate solution of (37) for Biot 

number of 0.1, 1.0 and 10 respectively. For 1.0Bi  and 1, the 

two solutions are almost exact. For 10Bi , the approximate 

solution overestimate the maximum temperature by almost 

10%.  

A time depended boundary condition was tested in which the 

sliding speed and therefore the frictional heat input drops 

linearly from an initial value of 250 srad /  to zero in 0.5 s. A 

constant-wise approximation is used to represent the heat input 

time history and is divided into 50 equals time steps. Figures 6, 

7, and 8 show the temperature time history at three different 

locations along the heated surface for Biot numbers of 0.01, 

0.1, 1 respectively. The temperature reaches a maximum value 

and then starts to decrease near the end of the engagement. As 

seen in figure 8, the temperature time history is the same for the 

Non-Conductive Disk 

44.5 mm 

57.0 mm 

 

Heated surface 
z 

r 

Figure 1: Sliding contact of two disks 
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three Biot numbers. A slight discrepancy is seen at the inner 

and the out radius toward the end of the engagement driven by 

the cooling effect at these two locations. 

What makes this method an attractive alternative to the time 

integration is the fact that a single time step is needed to obtain 

the transient solution when the heat condition is constant. The 

number of time steps for time dependent heat condition was 

investigated and shown in figure 9. Using 5 time steps is 

enough to capture the solution with an acceptable accuracy.  

System equation (18) resulted into 441 eigenvalues and 

eigenvectors. All of the eigenvectors are used in the expansion 

series (34). 

  

 
 

Figure 2: Temperature distribution along the heated surface at 

the end of the engagement for different Biot numbers. 

 

 
 

Figure 3: Temperature distribution along the heated surface for 

1.0Bi  

 
Figure 4: Temperature evolution at three different locations for 

0.1Bi  

 
Figure 5: Temperature evolution at three different locations for 

0.10Bi  

 
Figure 6: Temperature time history at the inner radius for 

different Biot numbers  
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Figure 7: Temperature time history at the mean radius for 

different Biot numbers 

 
Figure 8: Temperature time history at the outer radius for 

different Biot numbers 

 
Figure 9: Temperature time history at the mean radius for 

different number of time steps 

 

 

 

 

CONCLUSION 

 

A methodology for solving the heat conduction problem with 

low Biot number was investigated. The method is based on a 

conventional way of solving the transient heat equation where 

the steady state solution is superimposed to the solution of the 

homogenous problem. Finite element realization of this method 

was presented. An approximate solution for heat problem with 

low Biot number was investigated and tested. The method was 

proven to work well even when the Biot number is close to 

unity. Furthermore, this method eliminate the problem of 

numerical inaccuracy that can result from the direct use of the 

steady state solution. A solution for a time dependent heat 

condition was also investigated along with the appropriate 

number of time steps that need to be used. 
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