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ABSTRACT 
The three-dimensional time-dependent Navier-Stokes 

equations (Boussinesq approximation) for an incompressible 
viscous fluid are approximated using finite-differences. A 
uniform cylindrical mesh consisting of LxMxN discrete points 
in the radial (r), azimuthal (φ) and axial (z) directions 
respectively is superimposed on the solution domain.  The 
energy and vorticity transport equations are solved using a 
modified transient Samarskii-Andreyev ADI scheme. The 
elliptic equation for the vector-potential is solved using by 
direct Fourier series using a fast Fourier transform algorithm. 
Transient numerical solutions of time dependent three-
dimensional equations for Rayleigh-Bénard convection in a 
vertical cylinder are presented. Results are presented for aspect 
ratio (radius to height) of 8, a Prandtl number Pr=7 and 
Rayleigh numbers 1000 ≤ Ra ≤ 20000. 

 
INTRODUCTION 

Fluid motion driven by convection (due to thermal 
gradients) is a common and important phenomenon in nature. It 
is important in storage of fluids, solar collectors, crystal growth 
and industrial processes. Natural convection in a shallow 
horizontal fluid layer has been extensively studied in 
rectangular containers with the upper and lower surfaces cooled 
and heated respectively and the vertical walls insulated [1-3]. 
Rectangular container with conducting vertical walls was 
studied experimentally by Stock and Müller [4] and 
theoretically by Davis [5]. A closed vertical cylinder was used 
by Müller et al. [6] for their experimental and theoretical 
studies for aspect ratios between 0.1 and 1.0. The three-
dimensional numerical results of Leong [7] for aspect ratios of 
2 and 4 showed that the heat transfer is dependent on the flow 
structure. Liu and Ahlers [8] used aspect ratio of 30 in their 
experimental study of Rayleigh-Bénard convection in pure 
gases and binary gas mixtures. . Cioni et al. [9] used aspect 
ratio of 0.5 in their experimental study in mercury and water at 
high-Rayleigh numbers. 

 
In the present numerical study, the top surface of a vertical 

cylindrical container is cooled, the bottom surface is heated, the 
vertical cylindrical wall is adiabatic and the initial interior 
temperature is the average of the top and bottom temperature. 
The vertical temperature gradient creates a buoyancy-driven 
flow within the cylinder. Depending on the Rayleigh number 
Ra, heat is initially transferred by conduction only and there is 
no motion. Convection only starts when Ra exceeds a critical 
Rayleigh number Rac.  The resulting natural convection can be 
simple or complex three-dimensional flow structures. It is also 
possible to have more than one flow structure for a given Ra.  

NOMENCLATURE 
 
a aspect ratio, R/H 
H height of cylinder 
KE relative kinetic energy 
L number of radial mesh points 
M number of azimuthal mesh points 
N number of axial mesh points 
Nu Nusselt number 
Pr Prandtl number 
R radius of cylinder 
Ra Rayleigh number 
r radial coordinate 
t dimensionless time 
U   velocity vector 
u radial velocity 
v azimuthal velocity 
w axial velocity 
z axial coordinate 
φ azimuthal coordinate 
θ dimensionless temperature 
υ kinematic viscosity 
κ thermal diffusivity 
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ψ  vector potential 
ζ  vorticity vector 
 
Subscripts 
h hot 
c cold 
φ azimuthal component 
r radial component 
z axial component 
 
 
GOVERNING EQUATIONS 

The energy and momentum equations are non-
dimensionalised using H (height of the cylinder), H2/κ  and κ/H 
as scale factors for length, time and velocity respectively. κ is 
the fluid thermal diffusivity. Applying the Boussinesq 
approximation, the energy and vorticity transport equations are 
given by: 
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where θ=(T-To)/∆T is the dimensionless temperature, 
To=(Th+Tc)/2,  ∆T=(Th-Tc) and Th and Tc are the temperature at 
the hot lower and cold upper surfaces respectively.  ζ  is the 
vorticity vector, Pr=υ/κ is the Prandtl number, Ra=βg(Th-
Tc)R3/υκ  is the Rayleigh number and υ is the kinematic 
viscosity. The components of the velocity vector U  are u, v 
and w in the radial (r), azimuthal (φ and axial (z) directions 
respectively. The velocity is obtained from a solenoidal vector 
potential field ψ , which satisfies the continuity equation and 
the curl of which gives the velocity field, that is:  

0ψ∇ • =  (3)  

U ψ= ∇×   (4)  

The relationship between vorticity ζ  and vector potentialψ is 
given by: 

( )Uζ ψ= ∇× = ∇× ∇×   (5)  

 
BOUNDARY CONDITIONS 

The fluid has zero velocities at the rigid walls (u=v=w=0). 
The thermal boundary conditions are θ=0.5 and θ=-0.5 at the 
heated bottom and cooled top isothermal horizontal surfaces 
respectively and adiabatic at the vertical curved cylindrical 
wall. The vorticity boundary conditions, in terms of the vector 
potential, are: 

at  z=0,1 
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The boundary conditions for the vector potential are:  
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NUMERICAL SOLUTION 

A uniform mesh consisting of LxMxN discrete points in the r-
, φ- and z- directions respectively is superimposed on the 
solution domain so that the radial mesh points are given  by 
ri=(i− ½)∆r for  i=1,2,3,...L;  the azimuthal mesh points are 
given by φj=(j− 1)∆φ for j=1,2,3,...M and the axial mesh points 
are given by zk=(k− 1)∆z  for k=1,2,3,...N,  where  ∆r=a/(L− ½),  
∆φ=2π/M  and ∆z=1/(N−1). This mesh avoids the singularity at 
the axis. Using this mesh, centred finite difference 
approximations are used for equations (1) and (2), except at 
r=∆r/2  (i.e. i=1) where second order forward differences are 
used for the radial derivatives. The resulting finite difference 
equations are then solved using a modified Samarskii-Andreyev 
alternating direction implicit (ADI) scheme (Samarskii and 
Andreyev [10]. The elliptic equation (5) is solved by direct 
Fourier series (Le Bail [11]) using the fast Fourier transform 
algorithm of Cooley and Tukey [12]. Details of the solution 
procedure are reported by Leong [13]. 

 
Initial Conditions 

The initial velocities, vorticities and vector-potentials in the 
solution domain and at the rigid walls were all set to zeros. The 
thermal boundary conditions are θ = 0.5  and θ = −0.5  at the 
heated lower and cooled upper isothermal horizontal surfaces 
respectively. The temperatures at all the interior mesh-points 
and at the vertical cylindrical wall are set to θ = 0.  
 
RESULTS 

Solutions are obtained for Prandtl number Pr=7 and various 
Rayleigh number (Ra)  using an aspect ratio of 8. For Rayleigh 
numbers Ra ≤ 1860, the fluid is thermally stratified, there is no 
convection and heat is transferred only by conduction. The 
Nusselt number Nu, representing heat transfer from the heated 
lower surface to the fluid in the cylinder is evaluated using 
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a dNu r drd
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π θ φ= − ∫ ∫  

is equal to 201.1 which is the same value for pure conduction. 
A relative kinetic energy evaluated using  

2
2

1
2

1KE V rd drdz
a

φ
π

= ∫∫∫
 

is used to give the strength of the flow within the cylinder. For 
Ra ≤ 1860 there is no motion and KE is equal zero. 

 
When Ra=1880, convection is very weak and at steady state  

Nu=201.3. The Nusselt number of 201.2 will be used to 
indicate when pure conduction ends and convection starts. The 
duration of the pure conduction phase is 265.2. The value of KE 
at steady state is 0.02842. Figure 1 shows the transient plot of 
Nu for  Ra=1900. The initial sharp drop in Nu is due to the 
interior temperature being set at zero and therefore the initial 
high temperature gradient at both the upper and lower ends of 
the cylinder. There is no fluid motion and heat is transferred by 
pure conduction. This pure conduction phase ends at t=63.21 
when Nu=201.2 and convection starts. At steady state 
Nu=202.4. Figure 2 shows the transient plot of KE for 
Ra=1900. Initially there is no motion during the pure 
conduction phase. As convection starts, KE increases in value 
and at steady state it is equal to 0.1474. 

Figure 3 shows the isotherms and aximuthal component ψφ  
of the vector-potential in a vertical plane for Ra=1900 at steady 
state. The contour plots show the range of the contour values 
and the number of levels. There are 15 rolls and the strength of 
the rolls decreases away from the axis of the cylinder. The 
central roll rotates about the diameter and all the other rolls 
rotate about semi-circular arcs. Figure 4(a) shows the isotherms 
at the horizontal mid-height plane (z=0.5). Figures 4(b) and 4(c) 
show axial velocity (w) contours and profile respectively at the 
horizontal mid-height plane (z=0.5). The isotherms and w 
contours two contours plots look very similar and therefore 
only temperature contours will be used to display the flow 
structure of higher Rayleigh numbers. 

 
 

 
Figure 1  Transient plot of Nu for Ra=1900. 

 

 
Figure 2  Transient plot of KE for Ra=1900. 

 

 
(a) θ [-0.4, 0.4, (9)] 

 
(b) ψφ [-0.6, 0.6, (13)] 

Figure 3  Contour plots of ψφ and θ  respectively in the vertical 
plane for Ra=1900. 

 

                      
 (a)θ [-0.1, 0.1, (11)]  (b) w [-2.4, 2.4, (11)] 

 
(c) w [-2.4, 2.4, (11)] 

Figure 4  Isotherms and contour plots and profile of axial 
velocity (w) at horizontal mid-height plane (z=0.5) at steady 

state for Ra=1900 
 
Figure 5 and 6 show transient plots of Nu and KE 

respectively for Ra=2000. The pure conduction phase is now 
much shorter and convection starts at t=8.47. Nu increases 
sharply to 228.3 where it remains constant for a while before 
increasing to 229.1 at steady state. KE increases to 3.50 after 
convection has started an remains constant during this 
convection phase before changing to 3.605 at steady state.. 
Figure 7 shows the isotherms and ψφ  in the vertical plane at 
t=305.  Figure 8 shows isotherms at mid-height plane (z=0.5) at 
various times. At t=15, the isotherms are semi-circular in shape. 
This is the convection phase after the pure conduction phase, It 
then starts to merge at t=36 to form spirals. These spirals rotate 
very slowly in a clockwise direction about the axis of the 
cylinder. During this rotation, Nu and KE remain constant. 
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Figure 5  Transient plot of Nu for Ra=2000. 

 
 

 
Figure 6  Transient plot of KE for Ra=2000. 

 
 

 
(a) θ [-0.4, 0.4, (9)] 

 

 
(b) ψφ [-1.5, 1.5, (13)] 

Figure 7  Contour plots of ψφ and θ  respectively in the vertical 
plane for Ra=2000. 

 
 

 
 (a) t=15 (b) t=36.8 (c) t=305 

θ [-0.2, 0.2, (5)] 

Figure 8  Isotherms at horizontal mid-height plane (z=0.5) at 
various times for Ra=2000. 

 
Figure 9 and 10 show transient plots of NU and KE for 

Ra=4000. The pure conduction phase ends at t=1.17 when 
convection starts. At t=2.8, semi-circular rolls are formed as 
shown in Figure 11. At this time there are 17 rolls in the 
vertical plane. These semi-circular rolls then start to merge to 
form spirals (t=6.2, 12.6 and 15.0). At t=15.0, the completed 
spirals start to rotate in a clockwise direction. The number of 
rolls in the vertical plane is now reduced to 13. At t=70.6, it has 

rotated through almost 90º and at t=123.9 it has rotated through 
a complete cycle. The period of this rotation is 106.5. The 
values of Nu and KE during the steady rotation are 374.6 and 
43.88 respectively.   
 

 
Figure 9  Transient plot of Nu for Ra=4000. 

 
 

 
Figure 10  Transient plot of KE for Ra=4000. 

 
 

   
 (a) t=2.8 (b) t=6.2 (c) t=12.6 
 

   
 (d) t=15.0 (e) t=70.6 (f) t=123.9 

θ [-0.3, 0.3, (7)] 
 

Figure 11  Isotherms at horizontal mid-height plane (z=0.5) at 
various times for Ra=4000. 

 
Figure 12 shows transient plot of Nu for Ra=7000. 

Convection starts at t=0.6 and rises sharply to 476.2 and at 
steady rotation state Nu=455.5. KE rises sharply to a maximum 
of 115.3 and at steady state rotation KE is 110.0. Figure 14 
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shows the isotherms at various times. At t=0.8, the isotherms 
are semi-circular in shape as shown in Figure 14(a). Figure 
15(a) shows that there are 19 rolls in the vertical plane 
perpendicular to the horizontal diameter in Figure 14 at t=0.8. 
Figure 14(b) shows some of the semi-circular isotherms are 
starting to merge together at t=2.2. At this stage the number of 
rolls is reduced to 17 as shown in Figure 15(b). The spiral 
formation starts to take shape at t=3.8 as shown in Figure 14(c) 
and the number of rolls is further reduced to 15. At t=7.3, 
Figure 14(e) shows the isotherms are now in a spiral formation. 
At the same time, Figure 15(e) shows 13 rolls in the vertical 
plane. This spiral formation starts to rotate in a counter-
clockwise direction. The period of steady state rotation is 45.8.  
 

 
Figure 12  Transient plot of Nu for Ra=7000. 

 
 

 
Figure 13  Transient plot of KE for Ra=7000. 

 

   
 (a) t=0.8 (b) t=2.2 (c) t=3.8 
 

   
 (d) t=6.5 (e) t=7.3 (f) t=29.7 

 

  
 (g) t=52.2 (h) t=75.5 

θ [-0.3, 0.3, (7)] 
Figure 14  Isotherms at horizontal mid-height plane (z=0.5) at 

various times for Ra=7000. 
 

 
(a) t=0.8 

 
(b) t=2.2 

 
(c) t=3.8 

 
(d) t=6.5 

 
(e) t=7.3 

 
(f) t=29.7 

 
(g) t=52.2 

 
(h) t=75.5 

Figure 15  Contour plots of ψφ  [-7.0,7.0, (13)] in the vertical 
plane for Ra=7000. 

 
When Ra is increased to 104, convection starts at t=0.424. 

Nu rises sharply reaching a maximum value of 520. Nu=520.0 
during the steady rotation. The maximum value of KE is 191.0 
and during steady rotation it is 175.0. Figure 16(a) shows 
convection starts near the vertical wall of the cylinder and 
increases towards the centre. This is different from that for 
Ra=1900 shown in Figure 4(a). By t=0.6, convection is stronger 
near the centre while the convection near the walls become 
weaker. At t=0.7, all the convection is of the same strength 
throughout the mid-height plane. Figures 16(d), (e) and (f) 
show the formation of the spiral. This is different from that for 
Ra=7000 shown in Figures 14(c), (d) and (e). The spiral also 
unwinds before it starts to rotate in a counter clockwise 
direction. 
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 (a) t=0.5 (b) t=0.6 (c) t=0.7 
 

 
 (d) t=1.7 (e) t=2.1 (f) t=7.8 

θ [-0.35, 0.35, (9)]  

Figure 16  Isotherms at horizontal mid-height plane (z=0.5) at 
various times for Ra=104. 

 
Figure 17 and 18 show the transient plot of Nu and KE 

respectively for Ra=2x104. Convection starts at t=0.252 and Nu 
reached a maximum value of 659.2 at t=0.76. During the steady 
rotation, Nu=558.5. The maximum value of KE is 478.8 and at 
steady rotation it is 404. Figure 19(a) shows convection starts 
near the vertical wall with the formation of semi-circular arcs 
of isotherms. At t=0.55, these semi-circular isotherms starts to 
merge to form different isotherms shapes. At t=4.6, almost 
parallel isotherms are formed before they form a spiral by 
t=11.7. The spirals rotate in a clockwise direction with a period 
of 18.72. Figure 20(a) shows 23 rolls in the vertical plane at 
t=0.43. This is reduced to 19 at t=1.04and at t=2.7 there are 13 
rolls. During the steady rotation, the number of rolls is between 
7 and 9. 
 
 

 
 

Figure 17  Transient plot of Nu for Ra=2x104. 
 

 
Figure 18  Transient plot of KE for Ra=2x104. 

 

 
 (a) t=0.3 (b) t=0.43 (c) t=0.55 

 
 (d) t=0.8 (e) t=1.04 (f) t=1.5 

 
 (g) t=2.1 (h) t=2.7 (i) t=3.8 

 
 (j) t=4.6 (k) t=7.0 (l) t=8.8 

 
 (m) t=11.7 (n) t=18.6 (o) t=29.0 

θ [-0.4, 0.4, (11)] 
Figure 19  Isotherms at horizontal mid-height plane (z=0.5) at 

various times for Ra=2x104. 
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(a) t=0.43 

 
(b) t=1.04 

 
(c) t=2.7 

 
(d) t=7.0 

 
(e) t=18.6 

(f) t=23.2 
 
Figure 20  Contour plots of ψφ  [-15.0,15.0, (13)] in the vertical 

plane for Ra=2x104. 
 

CONCLUSION  
In the range of Ra studied, there is always a pure conduction 
phase before convection starts. The duration of this pure 
conduction is reduced as Ra increases. The initial convection 
starts near the axis of the cylinder for low Rayleigh numbers 
and moves away from the axis as Ra increases. The initial 
number of rolls in the vertical plane increases as Ra increases. 
For Ra>2000, a spiral structure is formed which rotates about 
the axis of the cylinder. This spiral formation can be simple or 
complex changes in the structure of the isotherms. The 
frequency of the spiral rotation increases as Ra increases. The 
rotation can either be clockwise or counter clockwise. 
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