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ABSTRACT 

The Poiseuille-Rayleigh-Bénard (PRB) problem, involving 

the onset of thermoconvective structures in channels heated 

from below, was the subject of many theoretical, numerical and 

experimental studies for incompressible flows or perfect gas. 

However, to the authors’ knowledge, this problem was never 

studied for supercritical fluids (SCF). The objective of this 

paper is to study the influence of the specific properties of SCF 

on thermoconvective instability phenomena compared with 

those observed in the perfect gas case. The effect of the 

distance to the critical point is also investigated. The numerical 

approach used is based on the Navier-Stokes equations in the 

framework of the low Mach number approximation. 

 

INTRODUCTION 
Poiseuille-Rayleigh-Bénard (PRB) flows are mixed 

convection flows in horizontal channels heated from below. 

When the Rayleigh number exceeds a critical value, 

thermoconvective structures develop in the channel. This paper 

focuses on these thermal instabilities in the case of fluids near 

their gas-liquid critical point. More precisely, a supercritical 

fluid (SCF) is a fluid for which temperature and pressure are 

larger than those of the critical point. In this zone of the phase 

diagram, the physical properties of the fluid (density, viscosity, 

diffusivity) are intermediate between those of liquids and gases. 

Moreover, they are very sensitive to temperature and pressure 

variations. These tunable properties motivated the use of SCF 

in many industrial applications, such as supercritical fluid 

extraction [1], particle generation [2], in particular in 

pharmaceutical industry, and preparation of metallic films 

using supercritical fluid deposition [3].  

The instability onset and the development of the associated 

patterns in PRB flows were extensively studied for 

incompressible fluids and perfect gas from many years because 

the PRB configuration is relevant for several technological 

processes such as the cooling of microelectronic equipments [4] 

or the growth of thin crystal films from chemical vapor 

deposition (CVD) [5-8]. A detailed review of various studies 

reported in literature was performed by Nicolas in 2002 [9]. 

These studies showed that when the base flow becomes 

unstable, two kinds of thermoconvective structures may appear: 

transversal rolls at low Reynolds number (about Re<10) and 

longitudinal rolls at higher Reynolds number. The transversal 

rolls axes are perpendicular to the mean flow direction and 

these patterns can be considered as a quasi two-dimensional 

structure, whereas the longitudinal rolls axes are parallel to the 

mean flow and the three velocity components are excited. 

Results of linear stability analysis for incompressible flows 

showed that the transversal rolls are due to a convective or an 

absolute instability depending on the value of the Rayleigh 

number. The critical value of the two onsets depends on the 

Prandtl number and it increases with the Reynolds number. On 

the other hand, the longitudinal rolls can be only convectively 

unstable and the critical Rayleigh number is independent from 

the Reynolds and Prandtl numbers. These theoretical 

predictions were confirmed by experiments.  

To the authors’ knowledge, the PRB problem was never 

studied for fluids near their liquid-gas critical point while it is 

relevant for supercritical fluid deposition processes and it can 

be expected that the fluid response to the bottom boundary 

heating may be quite different in this special zone of the phase 

diagram. Indeed, as was already said, near the critical point, 

thermodynamic properties, such as density, and transport 

coefficients exhibit large variations with temperature and 

pressure. More precisely, on the critical isochore, several 

properties, such as isothermal compressibility, thermal 

expansion coefficient, specific heats or thermal conductivity, 

diverge as the critical temperature is approached, while other 

properties, such as thermal diffusivity, tend to zero. These 

critical behaviors cause some peculiar phenomena, such as a 
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fast heat transport by thermoacoustic effects (also called Piston 

effect) [10-12] in supercritical fluids. Natural convection in 

SCF was extensively studied in the past decade [13-23], 

especially in the Rayleigh-Bénard configuration [15-23]. These 

works showed, in particular, that the adiabatic temperature 

gradient, which is generally relevant only at large length scale, 

like for the study of atmospheric flows, must be taken into 

account for the convection onset in supercritical fluids in 

cavities of a few millimeters in height. We can therefore 

suppose that the specific properties of SCF may also modify the 

instability onset in the PRB configuration.  

In the present paper, the stability of a supercritical fluid, 

modeled by the Peng-Robinson equation of state, in the PRB 

configuration is investigated using 2D direct numerical 

simulations. The first section is devoted to the mathematical 

formulation of the treated problem, namely the Navier-Stokes 

equations in the framework of the low Mach number 

approximation and the boundary conditions. Then, the 

numerical method, based on a Chebyshev collocation 

approximation, is described in details. Results obtained for a 

Reynolds number equal to 50.57 in a channel of height 

H’=1mm are presented in the third section. First, we studied the 

influence of the temperature increase on the onset and the 

development of convection for a fluid set at 1K above its 

critical temperature. The relation between the Rayleigh number 

and the instability characteristics is thus investigated. In a 

second part, we are focusing on the influence of the proximity 

to the critical point on the instability onset.  

 

NOMENCLATURE 
 
a [-] Energy parameter in the equation of state 

b [-] Covolume in the equation of state 

CP’ [J/(kg.K)] Isobaric specific heat 
CV’ [J/(kg.K)] Isochoric specific heat 

Fr [-] Froud number,  2   refFr U g H  

g’ [m/s2] Gravity constant 

H’ [m] Channel height 

L’ [m] Channel length 

Ma [-] Mach number, 0   ref cMa U R T  

P’ [Pa] pressure  

Pr [-] Prandtl number,     P b bPr C  

R’ [J/(kg.K)] Perfect gas constant 

Ra [-] Rayleigh number,  2 3            c P b bRa g C T H  

Re [-] Reynolds number,      c mean bRe U H  

t’ [s] Time  

T’ [K] Temperature 
u’ [m/s] Velocity component in the x-direction 

v’ [m/s] Velocity component in the y-direction 
x’ [m] Cartesian axis direction  

y’ [m] Cartesian axis direction  

 
Special characters 
α [-] Soave function in the equation of state 
β'  [K-1] Thermal expansion coefficient 

δt [-] Dimensionless time step 

δT’ [K] Temperature increase 
ε [-] Dimensionless proximity to the critical point, 

     i c cT T T  

λ' [W/(m.K)] Thermal conductivity 
μ' [Pa.s] Dynamic viscosity 
ρ’ [kg/m3] Density  

χ’ [Pa-1] Isothermal compressibility 
ω [-] Acentric factor   

Ω [-] Computational domain 
∂Ω [-] Boundary of the computational domain 

γ [-] Specific heats ratio 

 
Subscripts 

b  Background property 
c  Critical property 

dyn  Dynamic part 

hyd  Hydrostatic part 
i  Initial value 

mean  Mean value 
ref  Reference value 

th  Thermodynamic part 

0  Value for the perfect gas 

 

PHYSICAL PROBLEM AND MODELLING 
The physical model consists of a 2D channel of height 

H’=1mm, with an aspect ratio L’/H’=10 or 15. The carried fluid 

is supercritical CO2 subject to gravity. Initially, the fluid is at a 

uniform temperature slightly above the critical temperature, 

Ti’=(1+ε)Tc’ (with ε<<1), and at a mean density equal to the 

critical density ρc’, and it flows through the channel according 

to a Poiseuille profile. Then, the temperature of the bottom wall 

is gradually increased up to Tch’=Ti’+δT’ (with δT’ ranging 

from about ten to some hundreds milliKelvin) from a distance 

H’ from inlet (cf. Figure 1). 

 

Figure 1 Channel geometry with top and bottom thermal 

boundary conditions. 

 

The supercritical fluid is modeled by the Peng-Robinson 

equation of state. This equation implicitly accounts for the 

divergence of the thermal expansion coefficient β’ of the 

isothermal compressibility ’ and of the specific heat at 

constant pressure CP’ near the liquid-gas critical point. The 

divergence of the thermal conductivity ’ is modelled by the 

formula  
0.5

[1 1 ] 


     b cT T . The physical parameters 

of CO2 were used: Tc’=304.13K, c’=467.8kg.m
-3

, 

b’=0.04412W.m
-1

.K
-1

, =0.75. 

The evolution of the flow is governed by the time-

dependent 2D Navier-Stokes equations coupled with the energy 

and the Peng-Robinson equations. These equations are solved 

in the framework of the low Mach number approximation [24]: 

the pressure P’ is thus split into a thermodynamic part, Pth’, 

which is constant in space and appears in the energy equation 
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and the equation of state, and a dynamic part, Pdyn’, involved in 

the momentum equation. However, the basic approximation of 

Paolucci [24] is modified as proposed in [25] to account for the 

stratification of the fluid near the critical point since Ma
2
/Fr 

(where Ma and Fr are respectively the Mach and the Froud 

numbers) is not in O(Ma
2
). We chose as characteristic variables 

Tc’ for temperature, c’ for density, c’R’Tc’ for pressure (with 

R’=188.92J.kg
-1

.K
-1 

the perfect gas constant), H’ for 

length,      refU g T H  for velocity (with g’ the Earth 

gravity),  refH U  for time and b’ for the thermal 

conductivity. The specific heat at constant volume CV’ and the 

dynamic viscosity μ’ were fixed to their background values, 

CVb’=472.313J.kg
-1

.K
-1

 and b’=3.2702×10
-5

Pa.s. The 

dimensionless governing equations are therefore:  

 . 0





 
t

V  (1) 

 

 

1
. .

3

1

 

 

  
           

 

dyn

i y

Pr
P

t Ra

Fr

V
V V V V

e

 (2) 

   

 

0

0

0

. 1 .

.



  




  
      

  

  

T P
T T

t T

Pr
T

Pr Ra

V V

 (3) 

  2

2 2

 

1 1 2

 

  
  

  
th hyd

a TT
P P

b b b
 (4) 

 

with a and b the dimensionless energy parameter and covolume 

respectively and  the Soave function defined by:  

   
2

1.487422  , 0.253076 ,  1 1      
 

a b T m T  

where m is computed from the acentric factor  (=0.225 for 

CO2) by the formula 226992.054226.137464.0  m . 

In Eqs. (1)-(4), Phyd is the hydrostatic pressure introduced by 

the modification of the Low Mach number approximation, ey is 

the unit vector in the y-direction and 0 and Pr0 are respectively 

the specific heats ratio and the Prandtl number for the perfect 

gas (0=1.4, Pr0=0.6567). The other dimensionless numbers 

introduced are the Prandtl number Pr, the Rayleigh number Ra, 

the Mach number Ma and the Froud number Fr which are 

defined by:  
22 3

0

 , =  ,  , 
   

   

        
  

     

ref refP b c P

b b b c

U UC g C T H
Pr Ra Ma Fr

g HR T

 

In the above formula, the physical parameters β’ and CP’ are 

calculated for the initial state (Ti’, ρi’) from the equation of 

state. The initial condition for the dimensionless variables in 

Ω=[0,L’/H’]×[0,1] is:  

     
2

, 1.5 1 2 1   ,  , 0    
 i i

Pr
u x y Re y v x y

Ra
 (5) 

where Re is the Reynolds number defined by 

     c mean bRe U H , with U’mean the mean velocity at inlet,  

 , 1  iT x y  (6) 

and, as it was proposed in [25], the stratification of the fluid is 

taken into account leading to the initial condition for density 

and pressure:  

 
2

2
2,   

1









K y

i K

e
x y K

e
 (7) 

    ,  i thi hydP x y P P y  (8) 

with 
 

   

 

2

2 0 1 2 2
21

2 11
,  

1 1 2





  

  

ib TMa
K K

K Fr b b b

 

and:  

 
 

2

2
1 22

1
  ,  1

1 1 2 1

 



 
    

     

K y
i

thi hyd K

T e
P P y K K

b b b e
 

Equations (1)-(4) are solved with the following boundary 

conditions:  

- On the channel walls, the no-slip condition is prescribed for 

the velocity. The top wall (y=1) is kept at the initial 

temperature Ti. On the bottom heated wall (y=0), in order to 

avoid a discontinuity of the temperature profile. the following 

boundary condition is imposed for 0xL’/H’:  

         2 2 2 18 2            iT x T T th x th th th  (9) 

This boundary condition allows a continuous transition between 

the cold entry zone for 0 x1 and the hot zone for 1 xL’/H’. 

- At the channel inlet (x=0), temperature is kept at its initial 

value Ti and a parabolic profile is imposed for velocity:  

 

     
2

1

1.5 1 2 1   ,  0

  

    
 

iT y T

Pr
u y Re y v y

Ra

 (10) 

- At the channel outlet (x=L’/H’), an Orlanski type boundary 

condition is prescribed for all the variables:  

0   for  , , .
 


 

  
 

Pr
Re T u v

t Ra x
 (11) 

 

NUMERICAL METHOD 
Time scheme and space approximation 

Equations (1)-(4) are discretized in time with a second order 

semi-implicit scheme: the convective terms are evaluated by an 

Adams-Bashforth scheme, a second order backward Euler 

scheme is used for the discretization of time derivatives and the 

diffusive terms as the energy source term    .


   T P T V  
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are implicitly treated. The outlet boundary condition (11) is 

also discretized using the same second order scheme, leading to 

a Dirichlet boundary condition for the variables at the current 

time step n+1.  

The space approximation is performed using a Chebyshev-

collocation method with Gauss-Lobatto points. For the 

computation of the convective terms, the derivatives are 

calculated in the spectral space and the products are performed 

in the physical one; the connection between the spectral and the 

physical spaces is realized through a FFT algorithm. On the 

other hand, the spectral differentiation matrices are used for the 

derivatives in the diffusive terms. 

 

Numerical algorithm 

At a given time step, the discretized equations are coupled 

because of the implicit treatment of the energy source term 

involving .V. This term must be implicitly evaluated for 

supercritical fluids. However, it is possible to completely 

uncouple the solution of the energy equation and the 

computation of the dynamic field by calculating the velocity 

divergence from the sole knowledge of the thermodynamic 

variables [26, 27]. The procedure consists in taking the total 

derivative of the equation of state (4) written in the form 

F(Pth,T,ρ)=0. Then, using the energy equation (3) and the 

continuity equation (1), the following formula is obtained for 

the velocity divergence:  

 

 

0

,

0
,,

1
.

.

1










 
 

 
   

 
 

     
      

     

th

thth

th

0 P

th

PT P

dP Pr F
T

dt Pr Ra T

PF T F

T T

V  (12) 

with: 
2 2

,

1 1

1 1 2

 

   

 
   

    
thP

F a d

T b dTb b
 

 

  

 

2

2 2
2 2

,

2  1

1 1 2

  

   

 
   

    thT P

a T bF T

b b b

 

2

2 21 2

 


 

   
     

    

th
th hyd

P d
T P P a T

T dT b b
 

In the case of an open system, as the one considered here, the 

thermodynamic pressure Pth is also constant in time. Therefore, 

the time derivative dPth/dt disappears in Eq. (12). Otherwise, 

this derivative can be evaluated using a second order backward 

Euler scheme as in [27].  

Thanks to Eq. (12), the discretized equations are solved in 

two successive steps: first, the thermodynamic variables are 

computed through an iterative algorithm [26, 27] and then the 

Navier-Stokes equations are solved using the modified 

projection method developed in [28] and extended to variable 

density flows. The two steps are described in details below. 

 

- 1
st
 step: Computation of (T, ρ, .V) 

At time step n+1, the discretized energy equation can be 

written as a Helmholtz equation with coefficients involving λ
n+1 

and ρ
n+1

. In order to take advantage of the efficiency of the full 

diagonalization technique developed for the solution of 

Helmholtz problems with time-independent coefficients [29], 

the density and the thermal conductivity are split into a constant 

part, namely their value at t=0, and a time-dependent part. So, 

the terms involving the time-dependent parts are treated as 

source terms and the discretized energy equation can be written 

as a Helmholtz equation with constant coefficients. The 

complete diagonalization of the Helmholtz operator with 

constant coefficients is performed once for all in a 

preprocessing stage. Then, at each time step, the solution of the 

Helmholtz problem is reduced to matrix products, leading to a 

very efficient solution technique on supercomputers.  

More precisely, the computation of T, ρ and .V is 

performed through the following iterative algorithm:  

1. The variables T
k-1

, k-1
 and (.V)

k-1
 are initialized at their 

values at the previous time step n; 

2. The temperature T
k
 is obtained by the solution of the 

Helmholtz equation:  

 

  

   

 

1
10

1 10

1
11

0

1
, 11

3 3 

2 2

.

1 .

4
.

2




   

 


 



 





 







   

   

 
   

 

 
    

 

k
k k k

i i i
0

k k
i

0

k
kk th

n n
n nk

Pr T
T T

Pr Ra t t

Pr
T

Pr Ra

P
T V

T

T T
AB T

t
V

 

with the boundary conditions of the problem. In the above 

equation, t is the time-step and the notation AB(.) means an 

Adams-Bashforth evaluation of the quantity:  

 
, 1 12  
  

n n n nAB  

3. The thermal conductivity λ
k
 is updated; 

4. The density ρ
k
 is computed from the equation of state (4); 

5. The velocity divergence (.V)
k
 is computed by Eq. (12).  

The steps 2 to 5 are repeated until convergence is achieved on 

temperature and density. The convergence criterion used is 

Max(ResT,Resρ)<10
-11

, with Resϕ=Max((ϕ
k
-ϕ

k-1
)/ϕ

k-1
) for 

ϕ=T,ρ and the maximum number of iterations is fixed to 150.  

 

- 2
nd

 step: Computation of (V, Pdyn) 

When starting the solution of the Navier-Stokes equations, 

temperature, density and velocity divergence at the current time 

step (n+1) are known. It is therefore possible to use a 

projection-type algorithm such as those developed for the 

solution of incompressible Navier-Stokes equations, with some 

modifications. In this work, we have used the modified 

projection method proposed by Hugues and 

Randriamampianina [28] and analysed in details in [30]. It was 

1123



    

shown in particular that the modification introduced by Hugues 

and Randriamampianina, namely the computation of a 

preliminary pressure, improves the accuracy on pressure and 

allows to reduce the slip velocity compared to other projection 

methods [30]. The modified projection method consists in 

solving the Navier-Stokes equations by three successive steps 

as follows:  

 Computation of a preliminary pressure 

First, a preliminary pressure 1n
dynP  is computed from a Poisson 

equation derived from the discretized momentum equation (2):  

 

   

 

1
, 11 1

1 1
y

1 1
1

4
. .

2

1 1
.  

3

3 3 4
.

2 2

 


 

  

 


 

 

 


  
        

  


     



  
      

 

n n
n nn n

dyn

n n
i

n n n
n

P AB
t

Pr

Ra Fr

Pr

Ra t t

V V
V V

V e

V

 

Neumann boundary conditions are obtained by the normal 

projection of the momentum equation (2) on the boundary: 

 

   

  

1 1 1
, 1 1

1 1

, 1

3 4
. .

2

4 1
.

3

 


 

  
 

 



    
         

    


   



n n n n
n ndyn n
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where W
n+1 

represents the velocity boundary condition. At the 

channel outlet, the discretization of Eq. (11) leads to:  
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 Computation of a predicted velocity V
*
 

The predicted velocity field V
*
 is computed implicitly from the 

momentum equation with the gradient of the preliminary 

pressure instead of that of the actual pressure 1n
dynP . The 

predicted velocity therefore satisfies the following problem:  
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Here again, we have to solve Helmholtz equations with 

coefficients involving ρ
n+1

 for each velocity component. As for 

the energy equation, the density n+1 
is split into a constant part 

and a time-dependent part and Helmholtz equations with 

constant coefficients are solved iteratively for each velocity 

component. The convergence is achieved when Max(Resu, 

Resv)<10
-13

. This criterion is fulfilled after 3 or 4 iterations.  

 

 Correction step 

The converged velocity field V
*
 is then corrected by taking into 

account the pressure gradient at the current time step (n+1) so 

that the final velocity field satisfies the continuity equation (1). 

This correction is performed through the solution of the 

following Poisson problem for the intermediate variable 

 1 12 3    n n
dyn dynt P P : 

 
1 1

1 * 3 4
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It must be noted that the above Poisson-Neumann problem 

must fulfill a compatibility condition to be solvable. Because of 

the inhomogeneous Dirichlet condition for the predicted 

velocity V
*
 at the channel outlet, this compatibility condition is 

not fulfilled. A renormalization of V
*
 at the outlet boundary 

was therefore performed before the solution of the Poisson-

Neumann problem as proposed in [31].  

 

The actual velocity field and pressure at the current time step 

(n+1) are finally calculated in   by the formulae:  

1 *

1

1







  n

n
V V  , 1 1 3

2




  n n
dyn dynP P

t
.  

RESULTS AND DISCUSSION 
Simulations were performed for a Reynolds number Re=50.57. 

Instantaneous temperature fields at several times are presented 

in order to show the spatio-temporal evolution of the 

thermoconvective structures. First, the fluid was set at 1K 

above its critical temperature, which corresponds to a 

dimensionless distance to the critical point ε=3.288×10
-3

, and 

several values of the bottom wall heating were considered. 

These results were obtained in a channel with an aspect ratio 

L’/H’=10. Then, the influence of the proximity to the critical 

point was investigated. In this case, in order to track further the 

different structures in the channel, we increased the aspect ratio 

to L’/H’=15.  

 

Thermoconvective instabilities at 1K from the critical point 

Computations were carried out for δT’ ranging from 2×10
-2

K 

up to 10
-1

K. Because of the divergence of the thermal 

expansion coefficient β’ and of the isobaric specific heat Cp’ 

near the critical point, these small temperature increases induce 

large Rayleigh numbers ranging from 1.05×10
6
 to 5.23×10

6 
. 

Figure 2 shows the temperature fields for several values of δT’ 
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collected at different calculation times. In all the cases, 

instability appears in the form of thermal plumes which develop 

on the hot boundary layer. These structures are similar to those 

previously obtained for a supercritical fluid in the Rayleigh-

Bénard configuration [14-22]. However, in a closed cavity, the 

bottom wall heating induces a piston effect that homogeneously 

increases the bulk temperature and gives rise to a second 

unstable thermal boundary layer on the top cold wall. This is 

not the case in an open channel as it can be seen in Figure 2. 

The couple  , ins inst x  (where inst  is the time corresponding to 

the beginning of the isotherms deformation and insx  the axial 

position of the first plume) which characterizes the instability 

onset is respectively (4H’, 1.22s), (3H’, 0.71s), (1H’, 0.33s) for 

δT’=2×10
-2

K, 4×10
-2

K and 10
-1

K. So the thermoconvective 

instability appears earlier and closer to the beginning of the 

heated zone when the Rayleigh number is increased. 

Furthermore, as the heating increases, the disturbances grow 

faster. 

 

A δT’=2×10
-2

K (Ra=1.05×10
6
)  

t’=0.83s 

 t’=1.22s 

 t’=1.26s 

 t’=1.61s 
 

B δT’=4×10
-2

K (Ra=2.09×10
6
)  

 t’=0.45s 

 t’=0.72s 

  t’=1.00s 

  t’=1.28s 

 

C δT’=10
-1

K (Ra=5.23×10
6
)  

t’=0.33s 

t’=0.47s 

t’=0.61s 

t’=0.89s 
 

Figure 2 Temperature field for Ti’ = Tc’+1K (Pr =31.72). 

 

Figure 2 also shows that the number and the development of 

the thermoconvective structures are different according to the 

value of δT’. While instability appears in the form of one or 

some plumes which move downstream during time for δT’ 

about 10
-2

K (cases A and B), many structures develop in the 

whole channel for the largest heating (case C). In addition, in 

this last case, as the structures move downstream, new thermal 

plumes continuously appear near the beginning of the heated 

zone. According to previous studies [32], the time evolution of 

the patterns may indicate that the structures are due to a 

convective instability in cases A and B and to an absolute 

instability in case C. As a consequence, since longitudinal rolls 

can never be absolutely unstable, as it was shown in [32], the 

thermoconvective structures in Figure 2 could be transversal 

rolls. Further simulations are necessary to confirm this 

assumption. However, if these results were confirmed, they 

would indicate that the transition between transversal rolls and 

longitudinal rolls occurs for larger Reynolds number values 

than for perfect gas or incompressible fluids.  

 

Influence of the distance to the critical point on the 

thermoconvective instabilities 

Very close to the critical point, several physical properties, such 

as thermal expansion coefficient and isobaric specific heat, 

diverge. In order to study the influence of these diverging 

properties on the stability of the supercritical fluid, simulations 

were performed at 5K from the critical temperature. In this 

case, the dimensionless distance to the critical point is 

ε=1.644×10
-2

.  

 

 (K) i cT T  β’ (K
-1

) Cp’ (J/kg/K) Pr 

1 0.82199 42803.48 31.72 

5 0.15334 8478.77 6.28 

 

Table 1 Thermodynamic properties and Prandtl number at 1K 

and 5K to the critical point. 

 

As is shown in Table 1, the thermal expansion coefficient and 

the isobaric specific heat strongly decrease as the distance to 

the critical point increases. As a consequence, Rayleigh 

numbers obtained for similar temperature differences δT’ are 

much smaller than those involved at 1K from Tc
’
. In addition, 

the Prandtl number Pr at 5K from the critical point is 5 times 

smaller than at 1K. This change of Pr is quite significant and 

previous studies for incompressible fluids or perfect gas 

showed that the critical Rayleigh number depends (respectively 

does not depend) on Pr for the onset of transversal rolls 

(respectively longitudinal rolls) [32].   

 

t’=1.14s 

 t’=1.26s 
 

Figure 3 Temperature field for Ti’ = Tc’+5K (Pr =6.28) and 

Ra=5.23×10
5
. 
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Figure 3 shows the temperature fields obtained for a 

temperature increase δT’=2.7×10
-1

K, corresponding to a 

Rayleigh number Ra=5.23×10
5
. The Rayleigh number is 

therefore smaller than the smallest value that we considered at 

1K from Tc
’ 
(case A). It can be noted that the thermoconvective 

structures develop much faster compared to case A of Figure 2 

and they are also much larger. This fast and strong growth of 

the perturbations means that Ra=5.23×10
5
 is much larger than 

the critical value for the instability threshold. Therefore, these 

results reveal that, for Re=50.57, the critical Rayleigh number 

is smaller at 5K than at 1K from the critical point and, 

consequently, it means that it depends on the Prandtl number. 

According to the previous studies [32], this result confirms that 

the observed thermoconvective structures may be transversal 

rolls.  

 

CONCLUSION  
In this paper, the Poiseuille-Rayleigh-Bénard problem for a 

supercritical fluid, modeled by the Peng-Robinson equation of 

state, was studied for a Reynolds number Re=50.57. The 

temperature fields obtained in a channel of height H’=1mm 

revealed the existence of thermoconvective instabilities 

appearing in the form of thermal plumes, similar to those 

previously observed in supercritical fluids in the Rayleigh-

Bénard configuration [14-22]. These thermal plumes develop 

on the hot boundary layer and then move downstream during 

time. Thus, contrary to the perfect gas case, for which the 

convective structures occupy the whole height of the channel, 

instability develops here on the fine thermal boundary layer 

along the heated zone. The temporal evolution of the patterns 

indicates that the instability is convective or absolute depending 

on the value of the Rayleigh number. As a consequence, since 

longitudinal rolls can never be absolutely unstable [32], the 

thermoconvective structures could be transversal rolls.  

Moreover, the results obtained at different distances from 

the critical point showed that the critical Rayleigh number for 

the first instability threshold depends on the Prandtl number. 

This variation of the critical Rayleigh number with the Prandtl 

number is also characteristic of transversal rolls according to 

previous studies [32].  

Obviously, the results presented here are preliminary results 

and further simulations are necessary to confirm the type of 

structures that we obtained. In particular, simulations will be 

performed to determine the convective instability threshold for 

various values of the Reynolds number as well as the Reynolds 

number for the transition between transversal rolls and 

longitudinal rolls. Three-dimensional computations will also be 

carried out.  
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