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ABSTRACT 
In the present work, natural convection of air in heated 

vertical channels is studied. On the basis of the conception of 
induced-forced analogy, a simple and efficient analytical 
method of heat transfer and flow calculations is developed. 
General heat-transfer correlations in the form Nu = Nu(Re,Pr) 
are obtained for the air flow. The velocity (Reynolds number) is 
obtained by solving a momentum equation for induced 
convection taking into account energy balance for this case. It 
is shown that the developed method is simple and clear when 
applied to the problem under consideration. In this calculation, 
the initially known heat input (heat transfer rate or wall 
temperature) and hydraulic parameters are used. The developed 
method is applied to the problem natural convection of air in a 
symmetrically or asymmetrically heated vertical channel, which 
has allowed us to make a comparison with the literary data. The 
analogy and difference between the natural convection in a 
heated channel and a heated vertical plate in an infinite volume 
is demonstrated. A criterion of transition between the two is 
presented, and it is shown that this transition is smooth. 

 
INTRODUCTION 

In the present work, natural induced convection of air is 
studied. We use the term "induced" for the natural convection 
in channels with a physically obvious direction of a vented 
flow, as distinct from the free natural convection or, shortly, 
free convection in an infinite volume. 

A conception of induced-forced analogy is offered in the 
present paper. In general, we obtain induced heat-transfer 
correlations in the form Nu = Nu(Re,Pr) (Re-based analysis). 
The induced flow parameters must be defined, because they are 
initially unknown, in contrast to the case of forced convection. 
For this analysis, we have to consider the fact that an induced 
flow is initiated by the heating surface itself, and not by an 
external source. This fact determines the presence of an 
additional connection between thermal characteristics and air 

flow. Velocity (Reynolds number) calculation is realized by 
solving a momentum equation for induced convection taking 
into account the energy balance for this case. The constructive 
properties of the whole path of the flow are accounted for in 
hydraulic calculation similarly to those of forced convection. 
Therefore, the values of hydraulic coefficients play an 
important role in calculations, especially since the friction 
coefficient for the induced convection can differ from the case 
of forced convection. It should be pointed out that the 
calculations of hydraulic characteristics of the system are not 
the subject of our study. In our calculations we use data of 
Zvirin [1] for the friction coefficients for the induced 
convection flow, and recommendations of Idelchik [2] 
regarding local resistance factors. 

Next, universal heat-transfer correlations Nu(Re,Pr) are 
utilized. This procedure is basically the same as that for the 
forced convection. Note that heat-transfer correlations Nu(Re) 
for induced convection do not coincide with heat-transfer 
correlations for forced convection, too. 

Basic ideas of the present approach were first presented by 
Dubovsky et al. [3]. The approach has been thoroughly 
developed and verified by Dubovsky [4]. 

Several investigations were devoted to induced convection 
in a two-dimensional completely heated vertical channel. It is 
the simplest, although rather important case, which deserved 
greater attention. The results of a great number of experiments 
comprehensively reflecting the problem under study were 
presented by Aung et al. [5], Bar-Cohen and Rohsenow [6], 
Manca and Nardini [7], Auletta and Manca [8]. The 
generalization of experimental data, as mentioned by Auletta 

and Manca [8], was realized in Nub-
*
bRa  coordinates, where 

b is the channel spacing and rP
Lk

bqg
Rab 2

52
0*

µ
ρβ ′′

=  is a  
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NOMENCLATURE 
 
a [-] Linear scale factor 
Ac [m2] Cross-section area 
As [m2] Heating surface area 
b [m] Channel spacing 
C [-] Constant 
cp [J/kg K] Specific heat of air 
dH [m] Hydraulic diameter of the channel 
f [-] Friction coefficient 
Fr [-] Froude number 
g [m/s2] Gravitational acceleration 
Gr [-] Grashof number 
Gr* [-] Modified Grashof number 
h [W/m2K] Average heat transfer coefficient based on temperature 

difference ∆T  
H [m] Height 
k [W/mK] Thermal conductivity 
L [m] Length of the channel 
n [-] Number of heated sides in a two-dimensional channel 
Nu [-] Nusselt number based on heat transfer coefficient h 
P [Pa] Pressure 
∆P [Pa] Pressure difference 
Pr [-] Prandtl number 
q [W] Heat input 
q" [W/m2] Heat flux 
Ra [-] Rayleigh number 
Ra* [-] Modified Rayleigh number (Elenbaas number) 
Re [-] Reynolds number 
T [K] Temperature 
t [s] Time 
∆T [K] Temperature difference Tav-T0 
υ  [m/s] Average air velocity 
z [m] Vertical coordinate 
 
Special characters 
β [K -1] Volumetric thermal expansion coefficient 
Θ [K] Relative air temperature 
µ [kg/m s] Dynamic viscosity 
ρ [kg/m3] Air density 
ξ [-] Overall local resistance factor 
ξ0 [-] Overall resistance factor 
 
Subscripts 
a  Air 
av  Average 
b  Channel spacing  
D  Hydraulic diameter 
eff  Effective 
f  Friction 
L  Heated length 
out  Outlet 
q  Heated 
0  Ambient or overall 

 
modified Rayleigh number (Elenbaas number). The general 
form of the correlations was 

2.0*
bb RaCNu =      (1) 

where the constant value C is equal to 0.6 [5], 0.73 [6], 0.68 
[7], 0.775 [8]. 

Developing equation (1), one can easily obtain 

;
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 where the channel spacing b is 

obviously cancelled. It is easy to check that these correlations 
are reduced to a well-known correlation of free convection for a 
vertical plate in an infinite volume (Raithby and Hollands [9]): 

2.0*624.0 LL RaNu =     (2) 

with a slight increase in the constant coefficient. The magnitude 

*
LRa  is determined as rP

k

Lqg
RaL 2

42
0*

µ
ρβ ′′

= . Thus, these 

correlations of equation (1) do not take into account differences 
between the channel and infinite volume. Note that this 
problem is absent in the benchmark paper involving the 
induced natural convection in a vertical channel by Elenbaas 
[10]. 

We demonstrate the simplicity and clearness of the 
developed method application to the problem under study and a 
good agreement of the calculated results with experimental data 
presented in [5]÷[8] and [10]. At the same time, we show the 
role of channel spacing. 
Joint research of the applicability area of our method and the 
transition from the induced convection in a channel to the free 
convection in an infinite volume has shown that the limit of 
applicability of our method and the limit between the induced 
and free convection are the same limit. This limit corresponds 

to the value 1225.0 =LRaL
b , and the magnitude RaL is 

determined as rP
LTg

RaL 2

32
0

µ
ρβ ∆

= . 

GENERAL APPROACH 
 
Momentum equation and energy balance 

We have to find a method of calculating the air flow 
velocity (Reynolds number) as a function of known values with 
the account for energy balance. 

Attention is drawn to the fact that in natural circulation 
loops we deal with the induced convection analogously to 
open-ended vented channels. Zvirin [1] calculated fluid 
velocity by solving momentum equation for a natural loop and 
used these flow parameters in the heat-transfer analysis. In our 
general approach, we analyze a one-dimensional momentum 
equation for induced convection, too, but with boundary 
conditions of the ambient air. 

A local one-dimensional momentum equation was written 
for an induced flow by Zvirin [1]. This equation for a vertical 
flow is 

Hd

f
g

z

P

t

2
05.0

4
υρ

ρ
υ

ρ −−
∂
∂

=
∂
∂

   (3) 

where P is pressure, υ  is flow velocity, g is gravity 
acceleration, z is the vertical coordinate, and dH is the hydraulic 
diameter of the flow channel. Shear stress at the wall is 
expressed by 1/2fρ0υ 2, where f is the friction coefficient. It is 
assumed that the Boussinesq approximation is valid, i.e., the 
density ρ is treated as constant except for the buoyancy force 
term. The density has a reference value ρ0. Hence, the average 
velocity υ  is uniform over the channel height. 

A steady-state solution of Eq. (3) for an open-ended vertical 
channel, with due regard for local hydraulic resistance is 
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where P∆  is the pressure difference between the outlet and 
inlet, and ξ is the overall local resistance factor. 

The pressure difference between the outlet and inlet of the 
channel is the weight of the environmental air column of the 
height L per unit area (gρ0L). Denote the average air density in 
the channel as 

dz
L

L

av ∫=
0

1
ρρ       (5) 

with the corresponding average air temperature Tav. 
Solving Eq. (4) in the framework of the Boussinesq 

approximation ( )000 TTavav −=− βρρρ  yields: 

2

2

1
υξβ 
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
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
+=Θ

H
aeff d

L
fHg    (6) 

where a relative outlet air temperature Θa = Tout – T0, and we 
define the effective height of the channel Heff as 

L
TT

H
a

av
eff Θ

−
= 0      (7) 

A detailed analysis carried out by Dubovsky [8] indicates 
that the effective height of the channel in a general case is close 
to the difference between the heights of the outlet of the 
channel and the heated plate centre. 

sapc AqcA ′′=Θ0ρυ      (8) 

where Ac is the cross-section area of the heated channel and As 

is the area of the heating surface with an average flux 

sA

q
q =′′  for the overall heat input q. Thus, 

c

s

p
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Equation (6) yields: 
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We use the Reynolds number and modified Grashof number 
based on the length of the heated plate Hq (for the case without 

adiabatic extension, Hq is equal to L): 
µ

υρ q
L

H
eR 0= , 

2

42
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µ

ρβ

k

Hqg
Gr q

L

′′
= , and Eq. (10) yields: 
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where we define the overall resistance factor ξ0 as a sum of 

local and frictional resistance factors 
Hd

L
f+= ξξ0 . 

Finally,  
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   (12) 

The right-hand side of equation (12) generally contains a 
dimensionless hydraulic resistance term (2/ξ0), dimensionless 
buoyancy term (Heff/Hq), and dimensionless heat input term 
(As/Ac)(Gr*

L/Pr). For the case without adiabatic extension, as 
mentioned above, the buoyancy term is equal to 0.5. 
 
Heat-transfer correlations for the induced convection of air 

In this section we present heat-transfer correlations as a 
power dependence of the Nu number on the Re number. This 
analogy with forced convection analysis is the central tenet of 
our concept. The existence of Nu-Re correlation with geometric 
parameters defined solely for a heated plate (heated channel) 
independently of other geometrical parameters (such as, for 
instance, parameters of the channel inlet-outlet, height and 
spacing of adiabatic extension and so on) demonstrates the 
advantage of our concept. It should be recalled that previous 
well-known correlations based on natural convection, such as 
Nu-Gr correlations, depend on some additional geometrical 
parameters and are applicable to a particular channel design 
only. In our approach, a general hydraulic characteristic of the 
whole channel is used for the induced flow calculation only, 
and specific heat-transfer experiments are not needed for every 
individual case. 

A numerical analysis of more than 200 cases of induced 
convection was performed for various structural versions of the 
channel with different adiabatic extensions and heated plates, 
including its arrangement within complicated enclosures. The 
effects of chimney height, heat losses and radiation heat 
transfer, together with geometric and thermal scaling, were 
analyzed and substantiated by these results. The method and 
verification of the numerical calculations are described in the 
previous work (Dubovsky [4]). Finally, the following general 
Nu-Re correlations for an induced convection of air (Figure 1) 
were obtained: 

flowturbulentrPeRNu

flowarinlamrPeRNu

LL

LL

5.075.0

4.04.0

12.0

05.2

=

=
 (13) 

These general correlations contain the Nusselt and Reynolds 
numbers based on the length of the heating surface. Note that 
for free convection in an infinite volume, the size used in 
dimensionless groups is the length of the heating surface, too. 

In our previous work [4] it is shown that the laminar-
turbulent limit criterion is ReD (analogously to a forced pipe 
and tube flow), rather than ReL. It is not surprising, because ReD 
distinguishes laminar and turbulent flows in a channel in case 
of hydraulic calculation. Thus, it is not surprising that in the 
general graph in Figure 1 for 2000 < ReL < 3000, the flow can 
be both laminar (for ReD <2300), and turbulent (for ReD > 
2300). 
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Accordingly, the importance of both ReD and ReL and their 
different meanings are demonstrated. This dualism (partial 
correspondence to either forced or free convection) is the most 
specific quality of naturally induced flows in channels. 

 

 

Figure 1. General graph of heat-transfer correlation 

 
Simplification of the equations and reference case usage 

Equations (12) - (13) generally allow obtaining the solution 
of the problem. By consideration of each separate case, the 
equations become simpler. 

For the laminar airflow we assume that the local resistance 
is unimportant, and the friction coefficient f is inversely related 

to the Reynolds number (
D

f

eR

C
f = ). 

5
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where the modified Rayleigh number is based on the heated 

plate length, rPGrRa LL
** = . 

For the two-dimensional case without adiabatic extension, 
with regard for hydraulic data of Zvirin [1], equation (14) 
yields: 

5
1

*892.0 






= LL Ra
L

b
nNu     (15) 

where b is the channel spacing and n is the number of heated 
sides; n = 2 for symmetrical (complete) heating and n = 1 for 
asymmetric heating. 

Modifications of the relation (15) for the case of heat input 
considered as the known wall temperature instead of the known 
heat transfer rate, as well as for the case of dimensionless 
groups based on channel spacing b instead of plate length L, 
may be very useful: 

4
1

867.0 






= LL Ra
L

b
nNu    (16) 

5
1
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
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= bb Ra
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4
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2
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= bb Ra
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b
nNu    (18) 

where rP
Tbg

Rab 2

32
0

µ
ρβ ∆

= . Elenbaas number *
bRa  

and the Rayleigh number RaL were defined above. 
Note that Eq. (17) demonstrates that a correct processing of 

experimental results in Nub-
*
bRa  coordinates should be 

carried out with respect to *
bRa

L

b
value. 

Now we consider a reference case that may be obtained 
from the study of experimental or numerical calculations. For 
this set of conditions, it is possible to perform a direct 
recalculation of another case with a different heat input or/and 
geometrically scaled system. The general forms of Eqs. (15), 
(17) and Eqs. (16), (18) in terms of physical parameters are, 
respectively: 

( ) 4
15

1

~;~ a
Tha

qh ∆




 ′′

   (19) 

where a is a linear scale factor. 
Turbulent flow 
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2
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



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
= L
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L Ra

A

A

H

H
Nu

ξ
   (20) 

For the same two-dimensional case without adiabatic 
extension, equation (20) yields: 

4
1

*

0

12.0 







= LL Ra

b

Ln
Nu

ξ
    (21) 

If we assume that the local resistance is unimportant 
(similarly to the laminar case), equation (21) yields 

4
1

*143.0 







= LL Ra

f

n
Nu     (22) 

This result is independent of the channel spacing b if the 
friction coefficient f is constant. 

If the overall resistance factor ξ0 is independent of the linear 
scale factor, the general form of the relations for turbulent 
flows 

( ) ( ) 3
1

4
1

~;~ Thqh ∆′′ ,    (23) 

is also independent of the linear scale factor. 
 
Validation of the results 

The equations (12) - (13) generally allow receiving a correct 
solution of the problem. 

Now we compare our analytical results with experimental 
data of the two-dimensional case without adiabatic extension 
[5]-[8]. 

1175



    

According to Auletta and Manca [8], the generalization of 
experimental data of [5], [6], [7] and [8] was realized in Nub-

*
bRa  coordinates. The comparison of these results with 

calculations using equations (12)-(13) in the same coordinates 
is demonstrated in Figure 2. 

 
Figure 2. Comparison of our analytical predictions to 

experimental data of a fully heated two-dimensional channel 
 
In the benchmark paper [10], Elenbaas obtains the 

correlation for a symmetrical heating case in the following 
form: 
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bb
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L

b
Ra

L
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A comparison with our results in Nub – Rab coordinates is 
shown in Figure 3. 

 
Figure 3. Comparison of Nusselt-Rayleigh relationships of 

Elenbaas with our calculations 
 
Note that in the strict sense we compare two different cases – 
the general case examined by Elenbaas with the case of only 

frictional resistance without local hydraulic one. Nevertheless, 
the comparison demonstrates a good qualitative and 
quantitative correspondence. 

 

LIMIT OF THE APPROACH AND TRANSITION FROM 
INDUCED CONVECTION TO FREE CONVECTION 

As shown in our previous work (Dubovsky [4]), a criterion 
for the limits of the method in the general case is the value of 
the specific Froude number 

4
2 2

>
Θ

=
aHdg

Fr
β
υ

     (25) 

Now we analyze a two-dimensional vertical channel 
involving a heated plate and an opposite plate. The opposite 
plate located at the distance b may be adiabatic (n = 1) or with 
the same heating (n = 2). Obviously, with increasing distance b, 
the induced convection in the channel finally passes into a free 
convection in an infinite volume. The following problems are 
studied: 

• to define the limit between the induced convection in a 
channel and free convection in an infinite volume; 

• to concretize the applicability limit of the analytical 
approach (equation (25)) for this case; 

• to find out whether these limits are the same or not. 
Numerical calculations were carried out in the following 

range: L = 0.1÷0.6m, b = 0.005÷0.2m, ∆T = 2÷100oC,  
q" = 4÷200W/m2. The results are processed with respect to the 
value b/n/L•RaL

0.25 and presented in Figures 4 and 5. 
In Figure 4 the value NuL/(ReLPr)0.4 is shown in Y-direction. 

It is shown that this value is actually constant close to 2.05, as it 
should be according to the equation (13) for the induced 
convection under the conditions defined by the relation (25). 

In Figure 5 the value NuL/Nufree is shown in Y-direction, 
where Nufree is determined by the well-known relation for a 
heated plate in an infinite volume [11]: 

25.059.0 Lfree RaNu =      (26) 

One can easily see that for b/n/L•RaL
0.25>12, the heat transfer 

corresponds to a free convection in an infinite volume. 
The range 

123 25.0 ≤< LRa
nL

b
     (27) 

corresponds to the induced convection in a channel both in 
Figure 4 and in Figure 5. In this range, the numerical results 
and the suggested analytical calculations for the induced 
convection are in a very good agreement. 

For b/n/L•RaL
0.25 < 3, the calculation of the heat transfer 

coefficient using temperature difference ∆T as for free 
convection, is physically incorrect. 

Summing up, it is possible to assert that the applicability 
range of the suggested analytical method extends up to the 
transition of the induced convection into a free convection. 
Such transition occurs at b/n/L•RaL

0.25 = 12. 
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Figure 4. Ratio NuL/(ReLPr)0.4 as a function of b/n/L•RaL

0.25 
 

 
Figure 5. Ratio NuL/(0.59RaL

0.25) for different cases 
 

 

SUMMARY 
A conception of induced-forced analogy is suggested in the 
present paper. General heat-transfer correlations in the form Nu 
= Nu(Re,Pr) (Re-based analysis) were obtained for the induced 
air flow. A preliminary calculation of the velocity (Reynolds 
number) is realized by solving a momentum equation for the 
induced convection taking into account the energy balance for 
this case. In this calculation, initially known parameters (the 
Grashof number) are used, as well as known hydraulic 
resistance factors. 

Simplified relations for the laminar and turbulent cases are 
obtained. The existence of a reference case is considered. For a 
typical flow, simple formulas for a direct recalculation of 
another case with a changing heat input or/and geometrically 
scaled system are demonstrated. 

The developed method is applied to the problem of induced 
convection in a symmetrically or asymmetrically heated 
vertical channel that allowed us to make a comparison with the 

literary data. Results of the calculation are in good agreement 
with the experimental data presented in [5]-[8] and [10]. The 
point is that recently suggested heat transfer correlations [5]-[8] 
do not differ, basically, from the known correlations for a free 
convection in an infinite volume. The one and only difference 
consists in the use of dimensionless groups based on channel 
spacing, whereas for a free convection the dimensionless 
groups are based on the plate height. The difference disappears 
after the transformation of correlations to the same Nusselt and 
Rayleigh numbers. This effect has a simple physical 
explanation. Actually, it is shown above that the limit between 
the induced convection and free convection in an infinite 
volume occurs at b/n/L•RaL

0.25 =12. For b/n/L•RaL
0.25 > 12, the 

heat transfer coincides with the free convection in an infinite 
volume. Accordingly, at b/n/L•RaL

0.25 < 12, the transition to our 
relations for the induced convection occurs very smoothly. 

Thus, it is possible to recommend data generalization of the 
induced convection in channels with respect to the Nusselt – 
Rayleigh numbers based on the height of a heated plate and in 
comparison with the well-known free convection in an infinite 
volume. 

It is noteworthy that the results of the presented theoretical 
analysis can find a wider application and are not limited by the 
problem under study. In particular, they can be applied to the 
cases of three-dimensional heated channels, channels with 
adiabatic extensions, and others. 
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