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ABSTRACT 

In the paper the dynamics of liquid movement inside the 

glass nozzle submerged in the glass tank filled by distilled 

water has been analyzed. Considered liquid movement 

accompanied the process of bubble departures from the nozzle. 
There has been investigated the influence of air volume flow 

rate on the dynamics of liquid movement. The position of 

liquid-air interface inside the glass nozzle has been measured 

using the high speed camera. Recorded videos have been 

analyzed using the special software allowing to obtain the time 

series of position of air-liquid interface inside the glass nozzle. 

The dynamics of such obtained time series has been analyzed 

using the non-linear methods. The attractor reconstruction, 

correlation dimension and reoccurrence plot have been applied.  

 

INTRODUCTION 
The knowledge of bubble dynamics is of key importance in 

physical, biological and medical processes, and particularly in 

industrial applications. There are numerous physical parameters 

such as: physical properties of the two phases, gas flow rate, 

gas pressure, height of the liquid and gravity conditions which 

influence on the bubbles formation. The study of bubble 

dynamics is crucial to understand bubble-liquid and bubble-

bubble interactions. Liquid penetration into capillaries during 

the bubble departures decides about the length of waiting time 

for appearing the next bubble. This process has been discussed 

in the papers [1, 2, 3]. In the present paper the dynamics of 

liquid movement inside the glass nozzle submerged in the glass 
tank filled by distillate water has been analyzed. Considered 

liquid movement accompanied the process of bubble departures 

from the nozzle. There has been investigated the influence of 

air volume flow rate on the dynamics of liquid movement. In 

the experiment bubbles were generated in tank (300x150x700), 

from glass nozzle with inner diameter equal to 1 mm. The 

experimental setup has been shown in Fig.1.  

NOMENCLATURE 
 
C - autocorrelation function, correlation function 

D - dimension 

DET [%] determinism 

DIV [1/samples] divergence 

f [Hz] frequency 

L [samples] length of the diagonal line 

LAVG [samples] average length of the diagonal lines 

m - embedding dimension 

N - number of samples 

P - probability distribution 

q [l/min] air volume flow rate 

R - recurrence plot 

RR [%] recurrence rate 

t [s] time 

TT [samples] trapping time 

V [samples] length of the vertical line 

w [samples] window wide 

x [pixels] sample value 

 

Special characters 

  - Heaviside function 

  - threshold distance 

τ [samples] time delay 

 

Subscripts 

i,j  samole number 

l  diagonal 

v  vertical 

2  correlation 

max  maximum value 

min  minimum value 

 

The nozzle was placed on the bottom of the tank. The tank 

was filled with distillate water, with temperature about 20oC. 

The temperature was constant during the experiment. The air 

pressure fluctuations have been measured using the silicon 

pressure sensor MPX12DP. The air volume flow rate was 

measured using the flow meter and was changed from 

0.0045 l/min to 0.125 l/min. The pressure was recorded using 
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the data acquisition system DT9800 series USB Function 

Modules for Data Acquisition Systems with sampling 

frequency of 2 kHz.  

The bubble departure and liquid movement inside the 

nozzle were recorded with the high – speed camera – CASIO 
EX FX 1. The duration of each video was 20s. The recorded 

frames (600 fps) in grey scale, has been divided into frames 

(Fig.2.).  

 

 
Figure 1 Experimental setup: 1 – glass tank, 2 -  camera, 3 -  

light source,4 -  computer acquisition system, 5 – air pump,  

6 – glass nozzle, 7 - air valve, 8 - air tank, 9, 11 - pressure 

sensor, 10 -  flow meter. 

 

 
Figure 2 Liquid penetration into capillaries and the bubble 

departure 

 

The depth of the liquid penetration was measured by a 

special program, which counted the number of lighter pixels in 

the frames. Then, the time series of depth of the liquid 

penetration has been received. For the selected gas flow, the 

length of the time series of depth of the liquid penetration was 

about 12 000 samples. The examples of recorded time series 

have been shown in Fig.3.  
The frequency of bubble departures has been estimated 

using the FFT method. The mean frequency of bubble 

departures was changed in the range between 2 and 16 Hz. The 

dynamics of such obtained time series has been analyzed using 

non-linear methods. The attractor reconstruction, correlation 

dimension and recurrence plot have been applied for 

identification of properties of dynamics of liquid movement. 
 

 
Figure 3 Time series of changing the position of air-liquid 

interface inside the glass nozzle for different air volume flow 

rates a) q = 0.00519 l/min, f = 2.56 Hz. b) q = 0.0132 l/min, 

f = 6.59 Hz. c) q = 0.0216 l/min, f = 10.62 Hz.  

d) q = 0.0334 l/min, f = 16.14 Hz. 

 

NONLINEAR DATA ANALYSIS 
 

The trajectories of nonlinear dynamical system in the phase 

space form objects called strange attractors of the structure 

resembling the fractal [7, 8]. The analysis of strange attractor 

gives us information about the properties of dynamical system 
such as system complexity and its stability. In nonlinear 

analysis the reconstruction of attractor in certain embedding 

dimension has been carried out using the stroboscope 

coordination. In this method subsequent co-ordinates of 

attractor points have been calculated basing on the subsequent 

samples, between which the distance is equal to time delay τ. 

The time delay is a multiplication of time between the samples. 

The nonlinear analysis of the experimental data is initiated by 

determining the time delay . For that purpose, the 
autocorrelation function is usually calculated. This function 

allows us to identify the correlation between subsequent 

samples. In case of chaotic data the value of autocorrelation 
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function rapidly decreases when  increases. The value of the 

time delay  is determined from the condition C()0.5*C(0) 
[7].  

The correlation dimension D2 is one of the characteristics of 

attractors, which allows us to identify the structure of attractors. 

It is defined by the following expression [7]: 

 

          
 

      
        (1) 

 

where:       
 

 
  

 

 
                  

  - Heaviside’s step function that determines the number 

of attractor’s point pairs of the distance shorter than d. 

 

The correlation dimension allows us to estimate the number 

of independent variables describing the system. This number is 

estimated as the lowest integer number greater than the 

correlation dimension. 
The recurrence plot (RP) visualizes the recurrence of states 

xi in a phase space. The RP enables us to investigate the 

recurrence of a state in m-dimensional phase. The recurrence of 

a state at time i at a different time j is marked within black dots 

in the plot, where both axes are time axes. From the formal 

point of view the RP can be expressed as [9]: 

 

                                  (2) 

 

where N is the number of considered states xi in m dimensional 

space, εi is a threshold distance, || ⋅ || a norm and Θ( ⋅ ) the 

Heaviside function. 

 

Single, isolated recurrence points can occur if states are 

rare. Oscillating systems have RPs with diagonal oriented, 

periodic recurrent structures. For quasi-periodic systems, the 
distances between the diagonal lines are different. A diagonal 

line occurs when a segment of the trajectory runs parallel to 

another segment and the distance between trajectories is less 

than ε. The length of this diagonal line is determined by the 

duration of this phenomenon. Large changes in the dynamics 

cause appearance of white areas or bands in the RP. A vertical 

(horizontal) line indicates the time in which a state does not 

change or changes very slowly.  

Coefficient RR (recurrence rate) is the percentage of 

recurrence points in the RP and is calculated as follows [9]:  

 

    
 

  
     

 
      (3) 

 

Coefficient DET (determinism) is the percentage of 

recurrence points which form diagonal lines greater than lmin 

[9]:  

 

     
       

      

     
 
   

 (4) 

 

where P(l) is the histogram of the lengths l of the diagonal 
lines.  

 

Coefficient LAVG is the average length of diagonal lines 

and is calculated as follows [9]:   

 

      
       

      

      
      

 (5) 

 

Coefficient Lmax is the length of the longest diagonal line. 
Coefficient DIV (divergence) is the inverse of Lmax [9]:  

 

      
 

    
 (6) 

 

The value of coefficient DIV is related with the sum of the 

positive Lyapunov exponents [9].  

Coefficient TT (trapping time) is the average length of the 

vertical lines greater than vmin [9]:  

 

    
       

      

      
      

 (7) 

 

Coefficient Vmax is the length of the longest vertical line  

 

In the present analysis the recurrence plots were constructed 

for subsequent parts of analyzed time series. The subsequent 

parts of time series are selected from original time series by 

moving window with constant wide. Such parameters as 

correlation dimension and time delay have been calculated for 

the entire time series. The subsequent RPs have been 

constructed for the attractor reconstructed in embedding 
demission greater than correlation dimension. In this case the 

embedding dimension is the lowest integer number greater than 

attractor correlation dimension. For each window the above 

quantities characterizing the RP are determined. Finally, these 

quantities become the function of window location in time 

series. These functions describe the changes in time of 

dynamics of investigated system. 

The following 6 functions have been considered: 

              ,                                 
               ,               ,                 ,  

where t – time calculated as the multiplication of location of 

centre of window by time period between samples. 

In Fig.4 it has been shown the autocorrelation function, log-

log plot and changes of correlation dimension vs embedding 

dimension calculated for q = 0.0216 l/min, f = 10.62 Hz. 

Obtained results allow us to estimate the proper value of 

time delay. In case under consideration is equal to 11 and 

embedding dimension proper for attractor reconstruction is 

equal to 2.  

In Fig.5 it has been shown the part of time series for 

q = 0.0216 l/min, view of attractors and recurrence plots 
obtained for the beginning and end part of time series. Related 

locations of windows have been shown above the time series 

chart. The windows wide ware equal to 1000 samples, time 

delay 11 and embedding dimension 2. In Fig.5c when the 

values of time series is close to zero, in RP vertical and 

horizontal lines are visible. Decreasing of amplitude of time 

series causes the appearance of diagonal lines with smaller 

length (Fig.5d).  
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Figure 4 Example of analysis of entire time series.  

a) autocorrelation function, b) log-log plot, c) correlation 

dimension for q = 0.0216 l/min, f = 10.62 Hz 

 

In Fig.6 it has been shown the changes of different 

quantities characterizing the RPs reconstructed for subsequent 

windows moving along the time series. The calculation has 

been made for window wide equal to 1000 samples, embedding 

dimension equal to 2, threshold ε equal to 1% of attractor 

diameter and time delay calculated separately for each time 

series.  

 

Overall characteristic of moving RP 

The changes of coefficient RR presented in Fig.6a show the 

overall characteristic of changes of subsequent recurrence plots 

for different time series. The decreasing of depth of water 

flooding to the nozzle in subsequent waiting times are visible as 

decreasing of the value of coefficient RR. Two such time 

periods were identified in the time series 1, 3 for time series 2. 

Similar behaviour of functions RR(t) are observed for another 

time series.  

Characteristics of small changes of system state 

Small changes of time series appear when maximum depth 
of water flooding nozzle is small. Such situations are indicated 

by vertical (horizontal) lines which appear in the RP (Fig.2c). 

Coefficients vmax and TT characterize the length of vertical 

(horizontal) lines in RP are shown in Fig.6b and c. Coefficient 

vmax indicates when the small changes of the system state 

appear. Function vmax(t) consist of segments of constant line. 

The duration of time when the coefficient vmax has a constant 

value (Fig.6b) depends on the width of the window. The 

coefficient TT is a measure of average length of the vertical 

(horizontal) lines greater than 1. The Coefficient TT reaches 

maximum values for times series 1. It happens because the 
frequency of bubble departure is small. Also coefficient TT 

reaches high values for series 4 it is because in this case the 

situation when maximum depth of water flooding nozzle is 

small often occur.  

 

 

 
Figure 5 Part of time series for q = 0.0216 l/min, view of 

attractors and recurrence plots obtained for the beginning and 

end part of time series. a), b) 2D attractors, c), d) Recurrence 

plots. e) part of time series.  
 

 
Figure 6 Results of calculations of quantities characterizing the 

moving RPs. Window width was equal to 1000 samples, 

embedding dimension equal to 2, threshold ε equal to 1% of 

attractor diameter and time delay calculated for each time series 

separately (35, 17, 11,7). a) Coefficients RR. b) Coefficients 
vmax. c) Coefficients TT. d) Coefficients DIV. e) Coefficients 

DET. f) Coefficients LAVG. 
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Characteristics of periodic or quasi periodic changes of 

system state 

Periodic changes of system state appear when subsequent 
maximum depths of water flooding nozzle are similar. The 

length of diagonal lines is a measure of duration of oscillating 

character of the system. Increase of the average length of 

diagonal lines indicates that periodic processes are more 

present in the investigated system. In Fig.6 it has been shown 

the changes in time of three coefficients characterized by the 

diagonal lines in subsequent moving RP. In Fig.6d it has been 

shown the functions DIV(t) which are calculated as 1/Lmax. The 

function DIV reaches the higher value for time series 2. In this 

case the subsequent values of large maximum depth of flooding 

water oscillate. Such changes causes that length of diagonal 
lines are small in comparison with other cases. In Fig.6e it has 

been shown the functions DET(t). The value of the coefficient 

DET is the percentage of recurrence points which form 

diagonal lines greater than 1. Function DET(t) reaches the 

maximum values for time series 1 and minimum value for time 

series 4. It means that in series 4 the duration of periodic 

changes of values of time series are longer than in series 1. 

Coefficient LAVG is the measure of average length of the 

diagonal lines, the function LAVG(t) has been shown in Fig.6f. 

Obtained results correspond with results obtained for function 

DET(t).  

 

Chaotic dynamics of the system 

Recurrence plot created for deterministic chaos system 

consists of segments of diagonal lines and isolated points. In 

cases under consideration the values of functions DET(t) are 

greater than 50%. It means that more than half points of RPs 

form diagonal lines. From the other side the average length of 

diagonal lines (LAVG) is much lower than number of samples 

in the window (maximum length of diagonal lines is less than 

300). Therefore, we can conclude that such behaviours of 

moving RPs are characteristic for deterministic chaos systems.  

 

CONCLUSION  
 

In the paper the time series describing the liquid-air 

interface positions in the glass nozzle have been analyzed. In 

recorded time series we can distinguish two kinds of changes of 

the position of liquid-air interface inside the nozzle. In the first 

kind, the changes have large amplitude and they seem to have 

periodic or quasi periodic character. In the other one, the 

amplitude of changes is lower than this one in previous case 

and the changes are not periodic. The increase of air liquid flow 

rate causes the decrease of duration of periodic changes. 

Despite the fact that obtained results of nonlinear analysis show 
that investigated time series have deterministic chaos character 

the periodic changes happen often for lower air volume flow 

rate. The chaotic bubble departures lead to bubble coalescences 

and finally to decreasing the area of liquid-gas interface. The 

understanding mechanisms of appearance of chaotic bubble 

departures can be useful in industrial applications where the 

area of liquid-gas interface plays an important role.  

The analysis carried out in the paper show that for the low 

frequency of bubble departures (2.573.4% Hz) the liquid 
movement inside the glass nozzle loses its stability every time 

after about 7s period of time. This resulted in small variation 
(3.4%) of frequency of bubble departures. During the periodic 

liquid movement (in 7s period of time) the variations of 

frequency of bubble departures are about 0.1%. For the higher 

frequency of bubble departures its variation significantly 

increases from (10.6714% Hz) up to 14%. In this case, time 
periods with periodic liquid movement disappear.  
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