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ABSTRACT 

This work investigates the entropy generation in a steady 

flow of two immiscible couple stress fluids in a horizontal 

channel bounded by two porous beds at the bottom and top. 

The flow is considered in FOUR zones: zone-IV contains the 

flow of viscous fluid in the large porous bed with low 

permeability at the bottom, zone-I and II contain free flow of 

two immiscible couple stress fluids and zone-III contains the 

flow of viscous fluid in the thin porous bed with high 

permeability at the top. The flow is assumed to be governed by 

Stokes’s couple stress fluid flow equations in the free channel. 

In zone-IV, Darcy’s law together with the Beavers-Joseph (B-J) 

slip condition at the interface is used whereas in zone-III 

Brinkman’s model is used for flow. The plates of the channel 

are maintained at constant temperatures higher than that of the 

fluid. The closed form expressions for entropy generation 

number and Bejan number are derived in dimensionless form 

by using the expressions of velocity and temperature. The 

effects of relevant parameters on velocity, temperature, entropy 

generation number and Bejan number are analyzed and 

presented through graphs. 

 

INTRODUCTION 

Contemporary engineering thermodynamics use a parameter 

called the rate of entropy generation (or production) to gauge 

the irreversibility’s related to heat transfer, friction, and other 

non-idealities within systems. The second law of 

thermodynamics should be considered to evaluate the sources 

of irreversibility in flow and thermal systems. Conserving 

useful energy depends on designing efficient thermodynamic 

heat-transfer processes. Energy conversion processes are 

accompanied by an irreversible increase in entropy, which leads 

to a decrease in exergy (available energy). Thus, even though 

the energy is conserved, the quality of the available energy 

decreases because the energy is converted into a different form 

of energy, from which less work can be obtained. Reduced 

entropy generation results in more efficient designs of energy 

systems. Therefore, in recent years, the entropy minimization 

has become a topic of great interest in the thermo-fluid area. 

Bejan [1, 2, 3] focused on the different reasons behind the 

entropy generation in applied thermal engineering where the 

generation of entropy destroys the available work (exergy) of a 

system. Therefore, it makes good engineering sense to focus on 

the irreversibility of heat transfer and fluid flow processes, and 

try to understand the function of associated entropy generation 

mechanisms. Bejan [4] also carried out an extensive review on 

entropy generation minimization (EGM). The review traced the 

development and adoption of the method in several sectors of 

mainstream thermal engineering and science. Furthermore, 

many researchers carried out studies on the entropy generation 

in various flow cases. Bejan [1] studied the heat transfer 

problems in the pipe flow, boundary layer flow past a plate, and 

flow in the entrance region of a rectangular duct using EGM. 

He demonstrated that how the flow geometric parameters may 

be selected in order to minimize the irreversibility associated 

with a specific convective heat transfer. 

There are many problems in the fields of hydrology and 

reservoir mechanics in which systems involving two or more 

immiscible fluids of different densities/viscosities flowing in 

same pipe or channel or through porous media are encountered. 

Typical fluid flow examples of these systems are: air-water, 

water-salt water, oil-water, gas-oil, and gas-oil -water systems. 

These are referred to as multi-phase flows in literature. Blood 

flow in arteries has been studied by many researchers 

considering blood as two phase flow. Several investigations on 

multi-phase flows are reported by various researchers such as 

Chaturani and Samy [5], Bird et al. [6], Ramchandra Rao and 

Srinivasan Usha [7], Bhattacharya [8], Kapur and Shukla [9] 

etc. The flow and heat transfer in immiscible fluids are of 

special importance in the petroleum extraction and transport 

problem. Heat transfer in immiscible flows were discussed by 

Bakhtiyarov and Siginer [10], Chamkha [11] etc. 

Fluid flow in porous media is an important subject of 

widespread interest in hydrology, geophysics, biology and the 

petroleum industry. The problem of water coning is often 

encountered in the oil industry when a layer of water forms 

under a layer of oil. To understand this phenomenon, it is of 

interest to examine the contact layer at the flow of two 

immiscible fluids. So there has been widespread interest in the 

study of flow through channels and tubes in recent years. 

Vajravelu et al. [12] studied unsteady flow of two immiscible 

conducting fluids between two permeable beds. Vijayakumar 

and Syam Babu [13] discussed MHD viscous flow between two 

porous beds. Iyengar and Punnamchander [14] have studied the 

couple stress fluid flow between two porous beds. 

Entropy generation calculations for different systems which 

have different geometries in porous or nonporous channels 

have been restricted to the first law of thermodynamics. 

Calculations using the second law of thermodynamics, which 

are related to entropy generation and efficiency calculation, are 

more reliable than first law-based calculations. A great volume 

of information is available dealing with second law analysis in 
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the flow field and heat transfer in a porous medium. Waqar and 

Gorla [15] have analyzed the second law characteristics of heat 

transfer and fluid flow due to mixed convection in non-

Newtonian fluids over a horizontal plane. Hooman and Ejlali 

[16] studied both the first and the second laws of 

thermodynamics for thermally developing forced convection in 

a circular tube filled with a saturated porous medium. Tamayol 

et al. [17] studied thermal analysis of flow in a porous medium 

over a permeable stretching wall. Morosuk [18] discussed 

entropy generation in conduits filled with porous medium 

totally and partially. Mahmud and Fraser [19, 20] have 

discussed conjugate heat transfer inside a porous channel and 

magneto-hydrodynamic free convection and entropy generation 

in a square porous cavity and also mixed convection radiation 

interaction in a vertical porous channel. Tasnim et al. [21] 

studied entropy generation in a porous channel with hydro-

magnetic effect. Kamel Hooman [22] discussed the second-law 

analysis of thermally developing forced convection in a porous 

medium. Chauhan and Vikas Kumar [23] described the effects 

of slip conditions on forced convection and entropy generation 

in a circular channel occupied by a highly porous medium 

governed by Darcy extended Brinkman-Forchheimer model. 

Paresh Vyas and Archana Rai [24] investigated the entropy 

generation in radiative MHD Couette flow of a Newtonian fluid 

in a parallel plate channel with a naturally permeable base. In 

recent years, the fluid flow and entropy generation in two 

immiscible fluids in a channel have received considerable 

attention by researchers. Kamisli and Oztop [25] considered the 

fluid flow and entropy generation in two immiscible fluids in a 

channel. These authors explained very nicely the 

thermodynamic interface conditions involved in a flow of 

immiscible fluids and made a significant observation that 

minimum temperature gradient in the transverse direction of the 

flow offers minimum entropy generation near the plates. 

Recently, Ramana Murthy and Srinivas [26] have studied the 

second law analysis for the flow of two immiscible micropolar 

fluids between two parallel plates. They observed that the 

entropy generation is more near the plates than at the interface 

of the channel. 

Couple stress fluids: To the extent the present authors have 

surveyed the flow of immiscible incompressible couple stress 

fluids between two porous beds has not been studied so far. The 

consideration of couple-stress, in addition to the classical 

Cauchy stress, has led to the recent development of theories of 

fluid micro continua. This new branch of fluid mechanics has 

attracted a growing interest during recent years mainly because 

it possesses the mechanism to describe such rheologically 

complex fluids as liquid crystals, polymeric suspensions, and 

animal blood for which the Navier-Stoke’s theory is 

inadequate. One such couple stress theory of fluids was 

developed by Stokes [27], and represents the simplest 

generalization of the classical theory which allows for polar 

effects such as the presence of couple stresses and body 

couples. The couple stress fluid is a special case of a non-

Newtonian fluid which is intended to take into account the 

particle size effects. A review of couple stress (polar) fluid 

dynamics was reported by Stokes [28]. Ariman [29] discussed 

the applications on couple stress fluids and compared with that 

of micropolar fluids. A number of studies for such a fluid have 

been reported [30, 31]. 

The main objective of this paper is to study the entropy 

generation analysis for the flow of two immiscible couple stress 

fluids between two porous beds. 

PROBLEM FORMULATION AND GOVERNING 

EQUATIONS 

Consider the flow of two immiscible couple stress 

fluids between two parallel plates distant 2h apart, bounded by 

two porous beds of different permeability’s. The lower porous 

bed in zone-IV has low permeability with infinite thickness 

whereas the upper porous bed in zone-III is highly permeable 

with finite thickness H (Figure 1). The permeability’s of lower 

and upper beds are K1 and K2 respectively. Let X and Y are the 

axial and vertical coordinates respectively with the origin at the 

centre of the channel. Fluid flow is generated due to a constant 

pressure gradient which acts at the mouth of the channel. The 

lower fluid (viscosity µ1, density ρ1 and thermal conductivity 

k1) occupies the region (−h≤Y≤0) comprising the lower half of 

the channel and this region will be referred to as zone I. The 

upper fluid (viscosity µ2, density ρ2(<ρ1) and thermal 

conductivity k2) is assumed to occupy the upper half of the 

channel (i.e., 0≤Y≤ h), and this region is called zone II. The 

two walls of the channel are held at different temperatures TI 

and TII (with TI < TII). The equations for the flow in zone I and 

II (i.e., −h≤Y≤h) are assumed to be governed by couple stress 

fluid flow equations (neglecting body forces except gravity 

force and body couples) of Stokes [27, 28] and energy equation   

dρ
+div(ρq)=0

dt
                                                (1)                                                                               

dq 1
ρ = curl(ρ l)- P+µcurl(curlq))

dt 2

-ηcurl(curl(curl(curlq)))+(λ+2µ)grad(divq)

∇
            (2)     

2dE
ρ =Φ+k T

dt
∇                                                    (3) 

[ ]

T
where Φ=µ (gradq):(gradq) +(gradq):(gradq)

T
+ 4η (gradω):(gradω) +4 'η (gradω):(gradω)

 
 

 
 

                                                      

The equations (1) (3)−  represent conservation of mass, 

balance of linear momentum and energy equation respectively. 

The scalar quantity ρ  is the density and P  is the fluid pressure 

at any point. The vectors q , ω , f  and �  are the velocity, 

rotation, body force per unit mass and body couple per unit 

mass, respectively. The material constants λ  and µ  are the 

viscosity coefficients and η  and η'  are the couple stress 

viscosity coefficients satisfying the constraintsµ 0≥ ; 

3λ+2µ 0≥ ; η 0≥ , |η'| η≤ . There is a length parameter 

l= η/µ  which is a characteristic measure of the polarity of 

the couple stress fluid and this parameter is identically zero in 
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the case of non-polar fluids. In the energy equation Φ  is the 

dissipation function of mechanical energy per unit mass, E  is 

the specific internal energy, h  = - k T∇  is the heat flux, 

where k  is the thermal conductivity and T  is the temperature. 

The force stress tensor ijt  and the couple stress tensor ijM  

that arises in the theory of couple stress fluids are given by 

( )
1

t = -P+λdiv(q) δ +2µd + δ m +4ηw +ρc
ij ij ij ijk ,k k,rr k2

 
 

 (4) 

1
M = mδ +4ηω +4ηω

ij ij j,i
'

j,i3
                                      (5) 

In the above 
1

ω= curl(q)
2

 is the spin vector, ω
i,j

 is the spin 

tensor and ρc
k

 is the body couple vector. d
ij

 is the 

components of rate of shear strain, δ
ij

 is the Kronecker 

symbol, δ
ijk

 is the Levi-Civita symbol and comma denotes 

covariant differentiation. 

Darcy’s law is valid for the flows through porous bodies 

with low permeability. In applications where fluid velocities are 

low, such as movements of groundwater and petroleum, etc., 

Darcy’s law well describes the fluid transport in porous media. 

Darcy law is the simplest and, by far, the most popular one, due 

to its simplicity. It states that the filtration velocity of the fluid 

is proportional to the difference between the body force and the 

pressure gradient. The constant K appearing in the relation is 

called the permeability of the medium. Since Darcy law is a 

first order PDE for the velocity, it cannot sustain the no-slip 

condition on an impermeable wall or a transmission condition 

of the contact with free flow. That motivated Brinkman to 

modify the Darcy law in order to be able to impose the no-slip 

boundary condition on an obstacle submerged in porous 

medium.  

Certain flows that pass through bodies with high 

porosity do not follow the Darcy law. For this type of flows 

Beavers and Joseph [32] condition is not applicable. The Darcy 

law fails to describe the presence of an impermeable (solid) 

boundary. Brinkman model is applicable for this type of flows. 

Brinkman model is used in many applications as it allows one 

to resolve problems with boundary conditions on impermeable 

boundary as well as on the interface between porous medium 

and an open fluid domain. In this paper, Darcy law [33] for 

flow in zone IV and the Brinkman law [34] for flow in zone-III 

are taken.  

The flow in the infinite porous bed (i.e. in zone IV) is governed 

by Darcy law 

K
q= (f - P)
µ

∇  

The flow in the finite porous bed (i.e. in zone III) is governed 

by Brinkman equation 

µ 2
P= - q+µ q

K
∇ ∇  

The boundary conditions for the flow through porous 

beds need special attention. Generally the no-slip condition is 

valid on the boundary when a fluid flows past impermeable 

surfaces. But when it flows past permeable surfaces, the no-slip 

condition is no longer valid since there will be a migration of 

fluid, tangential to the boundary within the permeable surfaces. 

The velocity within the permeable beds will be different from 

the velocity of the fluid in the channel and we have to match 

the two velocities at the interface. Beavers and Joseph [32] 

based on their experimental investigations proposed that the 

slip velocity is related to the tangential stress (known as the 

Beavers and Joseph (BJ) condition). 

dU α*
= (U -Q)s

dY K
                                                   (6) 

Here Us is the slip velocity, i.e., the local averaged tangential 

velocity just outside the porous medium, Q is the velocity 

inside the porous bed, K is the permeability of the porous 

medium and the slip coefficient *α is a dimensionless constant 

depending on the material properties of the interstices and the 

derivative 
dY

dU  is taking positive when the normal to the 

boundary into the fluid medium is in a positive direction.  

*α varies from 0 to 5 for different porous material surfaces 

(Nield [35]).If *α =0, it indicates a perfect slip condition and  

*α →∞, we get no slip condition i.e., Us = Q. When K → ∞, 

the surface will be impermeable and the velocity of the fluid in 

the normal direction to the surface is zero. 

 

 
 

Figure 1 Schematic of the investigated problem 

Herein the velocity vector q  is taken in the form 

q=(U(Y),0,0) . Non-dimensional variables are introduced 

through:
X

x=
h

, 
Y

y=
h

,  
U

u=
Uo

 and 
P

p=
2

ρ Uo1

 where Uo  is 

the maximum velocity of the fluid in the channel. 

Neglecting body forces and body couples from the 

equation (2), we get the following set of non-dimensional form 

of governing equations and boundary conditions corresponding 

to the flow in two zones. 

The governing equations in the corresponding zones are: 

Zone I:(-1 y 0)≤ ≤  

1036



    

4 2
d u d u dp1 1-s = - Re s

1 14 2 dxdy dy
                                          (7) 

Zone II:(0 y 1)≤ ≤  

4 2
nd u d u dpρ2 2-s = - Re s

2 24 2 n dxdy dy µ

                                 (8) 

Zone III:(1 y (1+δ))≤ ≤  

dx

dp

µn

ρn
Re

3
u

k
nDa

1

dy

ud
3

3

3

=−                                      (9) 

Zone IV:(y -1)≤  

dx

dp
ReDa

4
u −=                                                                  (10) 

where 
ρ U ho1Re=
µ
1

 is the Reynolds number,
K

1Da=
2

h
 is the 

Darcy number,
µ

2n =µ
µ

1

 is the viscosity ratio,
ρ

2n =ρ
ρ
1

 is the 

density ratio,
K

2n =K
K

1

 is the permeability ratio,

2
κ h

is =
i γ

 is 

the couple stress parameter, (i=1,2) and 
H

δ=
h

. 

Boundary and interface conditions: 

A characteristic feature of the two-layer flow problem is 

the coupling across liquid-liquid interfaces. The liquid layers 

are mechanically coupled via transfer of momentum across the 

interfaces. Transfer of momentum results from the continuity of 

tangential velocity and a stress balance across the interface. 

V. K. Stokes has proposed two types of boundary 

conditions (A) and (B) respectively and the vanishing of couple 

stresses on the boundary is referred to as condition (A) [28]. 

This condition is adopted here as this is appropriate in the 

present context. 

At the lower porous boundary, couple stress vanishes: 

Beavers-Joseph (BJ) slip condition is taken at the lower porous 

bed i.e., 

*
du α h dp

= (u -u ) where u =-Da Res p p
dy dxK

1

                     (11) 

2
d u

1u(-1)=u and =0 (condition(   aA)) t y= -1s 2
dy

     (12) 

At the fluid interface velocity, vorticity, shear stress and couple 

stress are continuous:  

)(02)(01
uu += = , 

3 3
du du du d u du d u1 2 1 1 2 2

= , s - =n s -η1 23 3
dy dy dy dydy dy- + -(0 ) (0 ) (0 ) +(0 )

   
      
   

and 

2 2
d u d u1 2

nη2 2
dy dy

(0 ) (0 )

=

− +

   
      
   

                      (13)            

Where 2
η

1

η
n =

η
is the couple stress coefficient ratio. 

At the upper plate boundary, velocity and shear stress are 

continuous and couple stresses vanish due to no slip and hyper-

stick conditions: 

)(13)(12
uu += = , 

)1(

dy

3
du

2
s

)1(

3
dy

2u
3

d

dy

2
du

2s

+

=

−

− 


























and 

2

2
d u

0(condition (A)) at y 1
2

dy
= =                                (14) 

No slip condition: u3=0   at    y=1+δ                                      (15) 

where us and up are respectively the dimensionless slip velocity 

and Darcy’s velocity. 

 

SOLUTION OF THE PROBLEM 
Velocity distributions: 

Solving equations (7) and (10), we see that the velocity 

components in the zones as: 

Zone I: (-1≤y≤0) 

2
ByRe

2

1
y

1
sinhs

14
cy

1
coshs

13
cy

12
c

11
c(y)

1
u ++++=    (16)    

Zone II: (0≤y≤1) 

2
ByRe

µ
n

ρ
n

 
2

1
y2sinhs24cy2coshs23cy22c21c(y)2u ++++=

                                                                                         
 
(17) 

Zone III: (1≤y≤1+δ) 

n1 1 ρ
u (y)=c cosh y+c sinh y- Da n ReBK3 31 32

nDa n Da n µK K

   
   
      

 

             (18)                                                               

Zone IV: (y≤-1) 

u4(y)=-Da Re B                                                                      (19) 

where
dx

dp
B = (constant). Here we take the solutions as: zone I: 

u = u1(y), zone II: u = u2(y), zone III: u = u3(y) and zone IV: u = 

u4(y). These involve 11 constants c11, c12, c13, c14, c21, c22,c23, 

c24, c31, c32 and us. These constants are found from the 11 

boundary conditions given in (11) - (15) and these are obtained 

using Mathematica. As the expressions are cumbersome and 

they are not presented here. 
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Heat transfer analysis: 

Once the velocity distributions are known, the 

temperature distributions for the two zones are determined by 

solving the energy equation (3) in the respective zones, subject 

to the appropriate boundary and interface conditions. Thermal 

coupling is achieved through continuity of temperature at the 

interface and the balance of heat flux across the interface. In the 

present problem, it is assumed that the two walls are maintained 

at constant temperatures TI and TII (TI < TII ). 

The governing equation for the temperature TI of the 

conducting fluid in zone I is then given by 

222 2
d T dU d U1 1 1

k µ η 01 1 12 2
dYdY dY

= − + =

      
     

                        (20) 

The governing equation for the temperature TII of the 

conducting fluid in zone II is then given by 

222 2
d T dU d U2 2 2

k µ η 02 2 22 2
dYdY dY

= − + =

      
     

                   (21) 

In order to non-dimensionalize the above equations (20)-(21), 

the following transformation is used for non-dimensional 

temperature θ: 

ITT

TT
θ

II

I

−

−
= . 

The equations (20) and (21) are then reduced to the following 

form: 

0

2

2
dy

1u
2

d

1
s

1
2

dy

1du
Br

2
dy

1θ
2

d
=++






































                           (22) 

0

2

2
dy

2u
2

d

2s

1
2

dy

2du

k
n

µnBr 

2
dy

2θ
2

d
=++







































                  (23) 

where Br = Ek Pr is the Brinkman number, Pr=

1

p11

k

cµ
is the 

Prandtl number, 
)T(Tp1c

2
oU

Ek

III −
= is the Eckert number and 

1

2
k

k

k
n = is the thermal conductivity ratio. 

In the non-dimensional form, the boundary conditions for 

temperature and heat flux at the walls and interface become:  

(i) at the lower and upper plate boundaries the temperatures are 

respectively, 

0)y(
1
θ = and  y = -1 and 1)y(

2
θ = at y = 1                        (24) 

(ii) at the fluid interface temperature (θ) and heat flux ( h ) are 

continuous: 

(y)
2
θ(y)

1
θ = and 

dy

2dθ

k
n

dy

1dθ
= at y=0                    (25) 

The solutions of equations (22) and (23) with boundary 

and interface conditions are solved analytically and they are 

lengthy not shown here. The solution involves 4 constants c15, 

c16, c25 and c26 and these are found from the 4 boundary 

conditions (equations (24) and (25)) and are obtained using 

Mathematica. 

 

ENTROPY GENERATION ANALYSIS 

Once the velocity and temperature fields have been 

obtained, one can determine the entropy generation distribution 

in a flow channel. This function, which characterizes the 

irreversible behavior of system, will be used to optimize 

(minimize) the entropy generation rate by evaluating 

parameters as well as fluid properties. 

The convection process in a channel is inherently 

irreversible. Non-equilibrium conditions arise due to the 

exchange of energy and momentum within the fluid and at the 

solid boundaries. This causes the continuous entropy 

generation. One portion of this entropy production is due to 

heat transfer in the direction of finite temperature gradients. 

Another portion of the entropy production arises due to fluid 

friction irreversibility. The volumetric rate of entropy 

generation for incompressible couple stress fluid is given as 

follows 

( ) Φ

oT

12
T

2
oT

k
= )(S Gi +∇  

where Φ is the viscous dissipation function. 

The volumetric rate of entropy generation reduces to 

(Si)G=

22 2 2
k T µ U η Ui i i i i i

2 2
Y T Y TT Yo oo

∂ ∂ ∂
+ +

∂ ∂ ∂

    
    

     
                    (26) 

where the value of i can be either 1 or 2 that represents fluid I 

or fluid II, respectively. On the right hand side of the above 

equation, the first term is the entropy generation due to heat 

conduction and the remaining two terms represent the entropy 

generation due to the viscous dissipation function Φ for an 

incompressible couple stress fluid.  

The characteristic entropy generation rate SG,C is defined 

as,  

22
1 1

G,C 2 2 2

1 o o

k (∆T)( )
S

k T h T

   
= =   

  

h
                                   (27) 

In the above equation, 
1

h is the heat flux in zone I, To is the 

average, characteristic, absolute reference temperature of the 

medium, ∆ T = TII – TI and h is the half of transverse distance 

of the channel. 

The dimensionless form of entropy generation is the 

entropy generation number (Ns) is the ratio of the volumetric 

entropy generation rate (Si)G to a characteristics transfer rate 

SG,C. 

CG,
S

 
G

)
i

(S

i
Ns = (i=1,2) 

The entropy generation number for each fluid with 

dimensionless variables are given by 
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22 2 2
dθ du d uBr 11 1 1

Ns1 2
dy Ω dy s dy1

= + +

              
       

                  (28) 

22 2 2
dθ du d uBr 12 2 2

Ns n nµ2 k 2
dy Ω dy s dy2

= + +

              
       

          (29) 

where 

2
µ Uo1

Br=

k ∆T1

 
 
 

is the Brinkman number, which determines 

the importance of viscous dissipation because of the fluid 

frictions relative to the conduction heat flow resulting from the 

impressed temperature difference and  ( )Ω ∆T/To=  is the 

dimensionless temperature difference. 

It is desirable to consider the Ek and Pr in a group that is 

called the Brinkman number (Br = Ek.Pr) for evaluating the 

relative importance of the energy due to viscous dissipation to 

the energy because of heat conduction. It was reported that Br 

is much less than unity for many engineering processes [1]. 

Entropy generates in a process or system due to the 

presence of irreversibility [3, 36]. In convective problem both 

fluid friction and heat transfer have contributions to the rate of 

entropy generation. Expression of the entropy generation 

number (Ns) is good for generating entropy generation profiles 

but fails to give any idea about the relative importance of 

friction and heat transfer effects. The domination of the 

irreversibility mechanisms is physically important since the 

entropy generation number is unable to overcome this problem. 

Two alternate parameters, irreversibility distribution ratio (ϕ) 

and Bejan number (Be), are introduced for this purpose and 

they are gaining an increasing popularity among researchers 

studying the second law. 

The idea of irreversibility distribution ratio ϕ can 

enhance the understanding of the irreversibility’s associated 

with the heat transfer and the fluid friction. It is defined as the 

ratio of entropy generation due to fluid frictions (Nf) to heat 

transfer in the transverse direction (Ny) i.e., 

ϕ 







==

Ny

Nf

S

S

transferheatG,

frictionfluidG,                                                      (30) 

ϕ can be interpreted as follows: If 0 ≤ ϕ < 1, then ϕ indicates 

that heat transfer irreversibility dominates and if ϕ > 1 the fluid 

friction dominates. For the case of ϕ = 1, both the heat transfer 

and fluid friction have the same contribution for entropy 

generation.  

An alternative irreversibility distribution parameter, 

called Bejan number Be, was defined by Paoletti et al., [37] as 

ratio of entropy generation due to heat transfer to the total 

entropy generation and it is given by 

φ1

1

NfNy

Ny

Ns

Ny
Be

+
=

+
==                                              (31) 

This is employed to understand the entropy generation 

mechanisms in thermal systems.  Clearly, the value of the 

Bejan number ranges from 0 to 1. For Be>0.5, the entropy 

generation due to the heat transfer dominates, and this 

corresponds to the case of ϕ→0.  On the other hand, Be<0.5 

refers to the entropy generation effects due to the fluid friction. 

This corresponds to ϕ→1.  When Be=0.5, the contributions of 

the heat transfer and fluid friction in the entropy generation are 

equal, and this corresponds to the case of ϕ= 1.  

 

RESULTS AND DISCUSSION 

The closed form solutions for the flow of two 

immiscible couple stress fluids between two porous beds are 

obtained and reported in the previous section. Numerical work 

is undertaken and the variations of velocity, temperature, 

entropy generation rate and Bejan number for different values 

of parameters are shown through figures. 

 

Flow Field: 

 
Figure 2 Effect couple stress parameter s2 on velocity u for 

δ=0.2, α*=0.6, B=-0.8, Da=0.08, nρ=0.9, n
=0.9, nK=1.2, 

nµ=0.9, Re=2, s1=1.5. 

 

 
Figure 3 Effect of slip parameter α* on velocity u for δ=0.2, 

B=-0.2, Da=0.08, nρ=0.9, n
=0.9, nK=1.2, nµ=0.9, Re=2, s2=1.2, 

s1=1.2. 

 

The influence of the couple stress parameter s2 on the 

velocity field is shown in Figure 2. It is seen that as s2 

increases, the velocity increases. As s2 →∞  we get the case of 

Newtonian fluid. It can be concluded that the velocity of 

viscous fluid is more than that of couple stress fluid. Thus, the 

presence of couple stresses in the fluid increases the velocity. 

Figure 3 depicts the effects of the slip parameter α* on the 

velocity field. As α* increases, the velocity decreases. This 

change in velocity is seen to be more near the lower porous bed 

where Darcy law is applicable. The effect of the Darcy number 
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Da on the velocity field is shown in Figure 4. It is seen that as 

Da increases, the velocity increases in all regions of the 

channel. 

 
Figure 4 Effect of Darcy number Da on velocity u for δ=0.2, 

α*=0.5, B=-0.1, nρ=0.8, n
=0.8, nK=1.2, nµ=0.9, Re=2, s2=2, 

s1=2. 

 

 
Figure 5 Effect of couple stress parameter s2 on temperature θ 

for δ=0.2, α*=0.5, B=-0.9, Br=0.1, Da=0.02, nρ=0.9, n
=0.9, 

nk=0.9, nK=1.2, nµ=0.9, Re=2, s1=2. 

 

 
Figure 6 Effect of slip parameter α* on temperature θ for 

δ=0.2, B=-0.3, Br=0.1, Da=0.08, nρ=0.9, n
=0.7, nk=0.9, 

nK=1.2, nµ=0.9, Re=2, s1=3, s2=3. 

 

Thermal field and Heat transfer: 

Figure 5 displays the effect of the couple stress 

parameter s2 on the temperature field. As the couple stress 

parameter s2 increases, the temperature increases.  Figure 6 

presents the effects of slip parameter α*on the temperature 

distribution. As the slip parameter α* increases, temperature 

decreases. The effect of an increase in Darcy parameter Da on 

temperature field is found to increase it in both zones of the 

channel as shown in Figure 7. Figure 8 indicates that the 

temperature increases with increasing the Brinkman number Br. 

This may be due to viscous dissipation.  

 

 
Figure 7 Effect of Darcy number Da on temperature θ for 

δ=0.2, α*=0.1, B=-0.1, Br=0.1, nρ=0.9, n
=0.8, nk=0.9, nK=1.2, 

nµ=0.8, Re=1.2, s1=2, s2=2. 

 

 
Figure 8 Effect of Brinkman number Br on temperature θ for 

δ=0.2, α*=0.8, B=-0.3, Da=0.08, nρ=0.8, n
=0.8, nk=0.8, 

nK=0.8, nµ=0.8, Re=1.2, s1=3, s2=3. 

 

 
Figure 9 Effect of couple stress parameter s2 on Entropy 

generation number Ns for δ=0.2, α*=2, B=-0.1, Br=1.5, 

Da=0.01, nρ=0.9, n
=0.9, nk=1, nK=0.9, nµ=0.9, Re=5, s1=5, 

Ω=1. 
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Figure 10 Effect of couple stress parameter s2 on Bejan number 

Be for δ=0.2, α*=2, B=-0.1, Br=0.2, Da=0.01, nρ=0.9, n
=0.9, 

nk=1, nK=1.2, nµ=0.9, Re=2.2, s1=5, Ω=1. 

 

 
Figure 11 Effect of Reynolds number Re on Bejan number Be 

for δ=0.2, α*=0.1, B=-0.8, Br=0.1, Da=0.01, nρ=0.9, n
=0.9, 

nk=1, nK=0.9, nµ=0.9, s1=5, s2=5, Ω=1. 

 

 
Figure 12 Effect of Reynolds number Re on Bejan number Be 

for δ=0.2, α*=0.1, B=-0.1, Br=0.9, Da=0.01, nρ=0.6, n
=0.6, 

nk=0.8, nK=0.8, nµ=0.9, s1=2.5, s2=2.5, Ω=1. 

 

Entropy generation and Heat transfer irreversibility: 

Figure 9 demonstrates the effect of couple stress 

parameter s2 on the entropy generation number Ns. As the 

couple stress parameter increases, the entropy generation near 

the plates increases more rapidly in the fluid for the 

corresponding parameter. Ns is more on values near the plates 

in zone-I, than in the zone-II. This may be due to the more 

viscous nature of the fluid in zone-I.  

 
Figure 13 Effect of slip parameter α* on Entropy generation 

number Ns for δ=0.2, B=-0.5, Br=0.1, Da=0.01, nρ=0.6, n
=0.6, 

nk=1, nK=1.2, nµ=0.9, Re=2, s1=2, s2=2,Ω=1.  

 

 
Figure 14 Effect of slip parameter α* on Bejan number Be for 

δ=0.2, B=-0.5, Br=0.1, Da=0.01, nρ=0.6, n
=0.6, nk=1, nK=1.2, 

nµ=0.9, Re=2,s1=2, s2=2,Ω=1. 

 

 
Figure 15 Effect of Darcy number Da on Entropy generation 

number Ns for δ=0.2, α*=0.8, B=-0.5, Br=0.1, nρ=0.6, n
=0.6, 

nk=1, nK=0.8, nµ=0.9, Re=3, s1=3, s2=3,Ω=1. 

 

Figure 10 illustrates the effect of couple stress parameter 

s2 on Bejan number Be. As s2 increases Bejan number 

decreases. A slight increase in couple stress parameter s2, 

increases Bejan number Be huge at the interface and is nearly 

zero near the plates. Hence we conclude that near the plates the 

entropy generation rate due to conduction in the transverse 

direction is almost zero and entire entropy generation rate is 

due to fluid frictions only. From the limiting case of s2→∞, we 
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see that for viscous fluids, values of Be are less than the values 

of Be in couple stress fluids. With this we conclude that energy 

dissipation is more for viscous fluids than for couple stress 

fluids. 

Figure 11 shows the effect of Reynolds number Re on 

the entropy generation number Ns. The entropy generation near 

the plates increases more rapidly in the fluid I than in the fluid 

II. This is due to the fact that in zone-I fluid is more viscous. 

Figure 12 shows the effect of Reynolds number Re on Bejan 

number Be. As Re increases, Be decreases. The variation of Be 

near the plates is more than the variation at the interface. 

 

 
Figure 16 Effect of Darcy number Da on Bejan number Be for 

δ=0.2, α*=0.5, B=-0.2, Br=0.2, nρ=0.6, n
=0.6, nk=1, nK=1.2, 

nµ=0.9, Re=2, s1=2.5, s2=2.5, Ω=1. 

 

 
Figure 17 Effect of dissipation parameter (Br/Ω) on Entropy 

generation number Ns for δ=0.2, α*=0.1, B=-0.1, Da=0.01, 

nρ=0.6, n
=0.6, nk=1, nK=0.8, nµ=0.9, Re=2, s1=3, s2=3. 

 

Figure 13 predicts the entropy generation for different 

values of slip parameter α*. As the slip parameter α*is 

increasing, the entropy generation is increasing in zone-I only 

where the slip condition is applied. α*→∞ indicates no-slip 

condition, velocity decreases as α* increases. The same is 

observed in Figure 3. Hence when friction increases, entropy 

generation rate increases. Figure 14 describes the Bejan number 

Be profiles for different values of slip parameter. As the slip 

parameter α* increases, the Bejan number decreases. This is in 

good agreement with the previous observation in Figure 13 for 

entropy generation rate. 

 

 
Figure 18 Effect of viscous dissipation parameter (Br/Ω) on 

Bejan number Be for δ=0.2, α*=2, B=-0.1, Da=0.01, nρ=0.6, 

n
=0.6, nk=0.8, nK=0.8, nµ=0.9, Re=2, s1=2.5, s2=2.5. 

 

Figure 15 demonstrates the entropy generation for 

different values of Darcy number Da. As the Darcy number Da 

is increasing, the entropy generation is decreasing. Figure 16 

describes the Bejan number Be profiles for different values of 

Darcy number Da. As the Darcy number Da is increasing, the 

Bejan number is increasing. 

From Figure 17, we observe that as the viscous 

dissipation parameter (Br/Ω) increases, entropy generation 

number Ns increases. The more the viscosity of the fluid is, the 

more is the entropy generation. It is observed that Ns ≅ 0 at the 

interface of the channel. This implies that at the interface, 

entropy generation is minimum (almost zero) i.e., exergy 

(available energy) is maximum and hence at the interface 

almost dissipation of energy is zero. From Figure 18, we 

observe that the Bejan number is maximum at the interface of 

the channel and decreases as we move towards the channel 

walls in either direction. The Bejan number decreases as the 

viscous dissipation parameter (Br/Ω) increases. 

 

CONCLUSIONS 

The first and second laws (of thermodynamics) aspects 

of fluid flow and heat transfer in a channel of two immiscible 

couple stress fluids between two porous beds is investigated 

analytically. The velocity and temperature profiles are found 

analytically. The exergy loss distribution is studied in terms of 

the second law of thermodynamics. The effect of viscous 

dissipation parameter (Br/Ω) on the entropy generation number 

(Ns) and Bejan number (Be) are studied analytically. The 

computational results are presented through figures. The 

following observations are made from the above analysis: 

1. The presence of couple stresses in the fluid increases the 

velocity and temperature. 

2. Viscous dissipation parameter has a significant effect on the 

entropy generation rate. 

3. The values of Ns near the plates are more than they are at the 

interface, indicating that friction due to surface on the fluids 

increases entropy generation rate.  

4. The values of Ns in zone-I are more than they are in the 

zone-II near the plates. This indicates the more is the viscosity 

of the fluid, the more is the entropy generation rate. 
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5. The Bejan number is maximum and irreversibility ratio ϕ is 

minimum at the interface of the channel. This indicates that the 

amount of exergy (available energy) is maximum and 

irreversibility is minimum at the interface. 

6. The maximum entropy generation rate shifts to each plate as 

viscous effects become more important since the plates act as 

strong irreversibility producers due to more fluid frictions in 

plate regions. 

7. As the slip parameter increases, entropy generation rate 

increases. 
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