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ABSTRACT 

In this paper, the flow of two immiscible couple stress 

fluids between two inclined parallel plates of a channel with 

constant wall temperatures is studied in terms of entropy 

generation rate. The flow is assumed to be governed by 

Stokes’s couple stress fluid flow equation. The flow region 

consists of two zones, the flow of the heavier fluid taking place 

in the lower zone. The governing non-linear differential 

equations are then solved using Homotopy Analysis Method 

(HAM). Profiles of dimensionless velocity, temperature, 

entropy generation number and Bejan number are shown 

graphically for various values of couple stress parameter, 

Brinkman number, Grashof number, Reynolds number and 

viscous dissipation parameter. It is observed that couple stress 

fluid decreases the frictional forces and hence increases exergy. 

 

INTRODUCTION 

Entropy Generation Minimization Method: In the past few 

decades, it was observed that the first law of thermodynamics 

would not be capable of providing a clear insight into engine 

operations. For this reason, the use of the second law of 

thermodynamics has been intensified in internal combustion 

engines. The analysis of a process or a system with the second 

law of thermodynamics is termed availability or exergy 

analysis. The application of exergy analysis in engineering 

systems is very useful because it provides quantitative 

information about irreversibility and exergy losses in the 

system. In this way, the thermodynamic efficiency can be 

quantified and poor efficiency areas be identified, so that 

systems can be designed and operated more efficiently. 

The thermodynamic irreversibility in any fluid flow process 

can be quantified through entropy analysis. The first law of 

thermodynamics is simply an expression of conservation of 

energy principle. The second law of thermodynamics states that 

all real processes are irreversible. Entropy generation is a 

measure of the account of irreversibility associated with the real 

processes. As entropy generation takes place, the quality of 

energy (i.e. exergy) decreases. In order to preserve the quality 

of energy in a fluid flow process or at least to reduce the 

entropy generation, it is important to study the distribution of 

the entropy generation within the fluid volume. The optimal 

design for any thermal system can be achieved by minimizing 

entropy generation in the system. Entropy generation in thermal 

engineering system destroys available work and thus reduces its 

efficiency. Many studies have been published to assess the 

sources of irreversibility in components and systems. This was 

first studied by Bejan [1, 2] and he gave good engineering 

sense for the study by focusing on irreversibility. This new 

concept is based on simultaneous application of first and 

second laws of thermodynamics in analysis and design of the 

systems. In the paper [1], he studied the heat transfer problems 

in the pipe flow, boundary layer flow past a plate, and flow in 

the entrance region of a rectangular duct using Entropy 

Generation Minimization (EGM) method and also explained 

various reasons behind entropy generation in applied thermal 

engineering where the generation of entropy destroys the 

available work, called exergy, of a system. Also Bejan [3] 

studied the entropy generation for forced convective heat 

transfer due to temperature gradient and viscosity effect in a 

fluid. Later on, many investigations have been carried to 

determine the entropy generation and Bejan profiles for 

different geometric arrangements, flow situations, and thermal 

boundary conditions. Several works on entropy generation 

minimization have appeared in the open literature [4]-[8]. 

Immiscible Fluids: The flow and heat transfer of immiscible 

fluids in inclined channel are of special importance in the 

petroleum extraction and transport problem. The reservoir rock 

of oil field contains many immiscible fluids in its pores. A 

portion of the pores contains water and the rest contains oil or 

gases or both. The immiscible flows in crude oil transport were 

studied experimentally by Bakhtiyarov and Siginer [9]. 

Malashetty and Umavathi [10] investigated MHD two-phase 

flow and heat transfer in an inclined channel. In another paper, 

Malashetty et al. [11] have studied the flow and heat transfer in 

an inclined channel containing fluid and porous layers. In 

recent years, the fluid flow and entropy generation in two 

immiscible fluids in an inclined/horizontal channel has received 

considerable attention by researchers. Komurgoz et al. [12] 

discussed second law analysis for an inclined channel 

containing porous-fluid layers by using the differential 

transform method. Kiwan and Khodier [13] discussed natural 

convection heat transfer in an open-ended inclined channel-

partially filled with porous media. 

Couple Stress Fluids: Since classical continuum mechanics of 

fluid does not consider size effect of particle additives in the 

fluid, it fails to define the features of such non-Newtonian 
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fluids. Various theories have been postulated to interpret the 

rheological abnormalities which are due to the long chain 

molecules of the lubricant additives. The flow behavior of 

blended lubricants is well described by Stokes micro continuum 

theory [14, 15], which considers the polar effects, such as 

presence of non-symmetric stress tensors, couples tresses (i.e. 

stress produced due to spin of micro elements in the fluid) and 

body couples in the fluid. This theory is referred as couple 

stress theory of fluids among the research community. Mineral 

oils containing polar compounds (like polymer additive), 

synthetic lubricant, colloidal fluids, liquid crystals, and bio-

fluids (blood [16], synovial fluid [17]) are the examples of 

couple stress fluid. The study of couple-stress fluids has 

applications in a number of processes that occur in various 

industries such as the extrusion of polymer fluids, solidification 

of liquid crystals, cooling of metallic plate in a bath, colloidal 

solutions etc. Stokes discussed the hydro-magnetic steady flow 

of a fluid with couple stress effects. A review of couple stress 

(polar) fluid dynamics was reported by Stokes [15]. 

Soundalgekar and Aranake [18] discussed the effects of couple 

stresses on MHD Couette flow. Application of the couple stress 

fluid model to biomechanics problems has been proposed in the 

study of peristaltic transport by Srivastava [19]. Shehawey and 

Mekheimer [20] and blood flow in the microcirculation by 

Dulal Pal et al. [21]. Many authors have investigated the couple 

stress effects with reference to different lubrication problems 

(Hsiu-Lu Chiang [22], Naduvinamani et al. [23], Jian and Chen 

[24], Lu and Lin [25]). 

Homotopy Analysis Method: In recent years, a growing interest 

towards the application of the homotopy technique in nonlinear 

problems has been devoted by the engineering practice. The 

main success of the HAM consists in the fact that a simple 

problem is to continuously deform to solve into the difficult 

problem under study. The homotopy analysis method (HAM), 

first proposed by Liao [26, 27] is one of the most successful 

and efficient methods in solving different types of nonlinear 

differential equations such as coupled, decoupled, 

homogeneous and non-homogeneous. This method does not 

require small/large parameters and thus can be applied to solve 

nonlinear problems without small or large parameters. Its main 

procedure is to construct a class of homotopy in a very general 

form by introducing an auxiliary parameter. This parameter can 

provide us with a convenient way to control the convergence of 

approximation series and adjust convergence regions when 

necessary. The description of this method was given 

systematically by Liao [28], where the author also discussed the 

convergence of the approximation series and showed that, as 

long as the series given by HAM converges, it must converge 

to one solution of the studied problem.  

Thermodynamic analysis in the case of viscous fluids was 

carried out by many researchers. But very less attention has 

been paid in this direction for the couple stress fluid flows. 

Since couple stress fluids are known to have rotational effects, 

these fluids may help to increase the exergy. Hence, in the 

present study, attention is paid to examine the entropy 

generation characteristics for an inclined channel of two 

immiscible couple stress fluids.  

MATHEMATICAL FORMULATION AND GOVERNING 

EQUATIONS 

Consider a steady, fully developed laminar flow of 

two immiscible couple stress fluids between two inclined 

parallel plates distant 2h apart. Choose the coordinate system 

such that X-axis is taken along horizontal direction through the 

central line of the channel, Y is perpendicular to the plates and 

the two plates are infinitely extended in the direction of X 

(Figure 1). The length of the plates is much greater than the 

distance between them so that the flow at any point in the X-

direction is same. Since the boundaries in the X direction are of 

infinite dimensions, without loss of generality, we assume that 

the physical quantities depend on Y only. Fluid flow is 

generated due to a constant pressure gradient which acts at the 

mouth of the channel. The fluid in the lower zone (viscosity µ1, 

density ρ1 and thermal conductivity k1) occupies the region 

(−h≤Y≤0) comprising the lower half of the channel and this 

region will be referred to as zone I. The fluid in the upper zone 

(viscosity µ2, density ρ2 (<ρ1) and thermal conductivity k2) is 

assumed to occupy the upper half of the channel (i.e., 0≤Y≤ h), 

and this region is called zone II. The two walls of the channel 

are held at different temperatures TI and TII (with TI < TII). 

Also, the tilt angle, measured clockwise from the horizontal is 

denoted by φ in the considered equations. The fluid properties 

are assumed to be constant except for density variations in the 

buoyancy force term. The equations for the flow in zone I and 

II (i.e., −h≤Y≤h) are assumed to be governed by couple stress 

fluid flow equations (neglecting body forces except gravity 

force and body couples) of Stokes [14, 15] and energy equation                                                                                      

dρ
+ .(ρq)=0

dt
∇                                                                          (1) 

dq 1
ρ[ +(q· )q]=ρf+ ×(ρ l)- P+µ ×( ×q)

dt 2

         -η ×( ×( ×( ×q)))+(λ+2µ) ( ·q)+ρg

∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇ ∇

                       (2) 

                                                T
2

kΦ
dt

dE
ρ ∇+=          (3) 

[ ]

T

T

where Φ=µ ( q):( q) +( q):( q)

             +4η ( ω):( ω) +4η ( ω):( ω)'

 ∇ ∇ ∇ ∇ 

 ∇ ∇ ∇ ∇ 

 

where q is the velocity vector, )(
2

1
ω q×∇= is the spin vector. 

The scalar quantity ρ is the density, P is the fluid pressure at 

any point. The material constants λ and µ are the viscosity 

coefficients and � and
'η are the couple stress viscosity 

coefficients satisfying the constraints µ ≥ 0; 3λ+2µ≥0; �≥0, 

ηη' ≤ . There is a length parameter l= η/µ which is a 

characteristic measure of the polarity of the couple stress fluid 

and this parameter is identically zero in the case of non-polar 

fluids. In linear momentum equation (2), the body force 

term gρ is taken as ϕsin)wTb(Tgρ −  for buoyancy force in 

case of heat conduction. In the energy equation, Φ is the 
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dissipation function of mechanical energy per unit mass, E is 

the specific internal energy, -k T= ∇h is the heat flux, where 

k is the thermal conductivity and T is the temperature. 

 

 
Figure 1 Schematic of the investigated problem 

Herein the velocity vector q is taken in the form 

q =(U(Y),0,0). Introducing the non-dimensional variables: 

ITIIT

ITT
θand

2
oU1ρ

P
p,

oU

U
u,

h

Y
y,

h

X
x

−

−
===== where 

oU  is the maximum velocity of the fluid in the channel. 

The equations (2) and (3) reduced to the following sets 

of non-dimensional form of governing equations and boundary 

conditions corresponding to the flow in the two zones. 

Zone I: (-1≤y≤0) 

The governing equations in zone I are: 

dx

dp

1
ResSin

1
θ

1
s
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Gr

2
dy

1
u

2
d

1
s

4
dy
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−=−− ϕ                         (4) 
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                        (5) 

Zone I: (0≤y≤1) 

The governing equations in zone II are: 

dx

dp

2
sRe

µn

1
Sin

2
θ

2
s
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Gr

µn

ρn
b

n

2
dy

2u
2

d

2
s

4
dy

2u
4

d
−=−− ϕ          (6) 
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dy
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2
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2s

1
2

dy
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n
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2θ
2

d
=++










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






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







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
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
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                        (7) 

Where 

1µ

hoU1ρRe = is the Reynolds number, is

i
η

2
h

i
µ

i
s = the 

couple stress parameter, Br = Ek Pr is the Brinkman number, 

1
µ

2
µ

µn = is the viscosity ratio, 
)T(Tp1c

2
oU

Ek

III −
= is the Eckert 

number, ϕSin
2
1µ

)T(T
3

h1bg
2
1ρ

Gr
III −

= is the Grashof number, 

Pr=

1k

p1c1µ
is the Prandtl number, 

1
b

2
b

b
n =  is the thermal 

expansion coefficient ratio, 

1
ρ

2
ρ

ρn = is the density ratio, 

1
k

2
k

k
n = is the thermal conductivity ratio (i=1,2). 

 

BOUNDARY AND INTERFACE CONDITIONS: 

A characteristic feature of the two-layer flow problem is 

the coupling across liquid/liquid interface. The liquid layers are 

mechanically coupled via transfer of momentum across the 

interface. Transfer of momentum results from the continuity of 

interface tangential velocity and from a stress balance across 

the interface. The above equations (4)-(7) are solved using 

appropriate boundary conditions. 

To determine the velocity components u1(y), u2(y) in the 

zones I and II described above, we adopt the following 

boundary and interface conditions: 

Zone I is constituted by the fixed lower plate given by        

y = −1 and a fluid-fluid interface defined by y = 0. Zone II is 

constituted by the fluid interface given by y = 0 and the fixed 

upper plate given by y = 1. 

In view of the no slip condition on the static boundaries, 

we have to prescribe 

u1(y) = 0 on y = −1 and u2(y) = 0 on y = 1                              (8) 

which represent the no slip condition. 

Stokes mainly proposed two types of boundary 

conditions (A) and (B) respectively and the vanishing of couple 

stresses on the boundary is condition (A) [15]. This condition is 

adopted here as this is appropriate in the present context. On 

the static boundary, this leads to 

0
2

dy

1
u

2
d

= on y=-1 and 0
2

dy

2
u

2
d

=  on y=1                        (9) 

At the fluid-fluid interface y = 0, we assume that the velocity, 

vorticity, shear stress and couple stress components are 

continuous. This implies 

)(02
u

)(01
u +=− ,

)0(dy

2du

)0(dy

1du

+
=

−
, 

)(02xyτ
)(01xyτ

+
=

−
and

)xy(02
M

)xy(01
M +=−  (10)           

     

2070



    

The last two conditions of (10) give us 

)0(

3
dy

2
u

3
d

dy

2
du
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s

)0(
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dy

1
u

3
d

dy

1
du
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ηn
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)0(

2
dy

1
u

2
d

−


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







= ηn

)0(

2
dy

2u
2

d

+













respectively, where 

1η

2η

ηn = is 

the couple stress coefficient ratio. 

The boundary conditions for temperature and heat flux at 

the plates and interface are as follows: 

(i) at the lower and upper plate boundaries the temperatures are 

respectively, 

0)y(
1
θ =  and y = -1 and 1)y(

2
θ = at y = 1                        (11) 

(ii) at the fluid interface temperature (θ) and heat flux ( h ) are 

continuous: 

(y)
2
θ(y)

1
θ = and 

dy

2dθ

k
n

dy

1dθ
= at y=0                   (12) 

The equations for u and θ in (4) - (7) under the conditions 

(8) - (12) are solved by Homotopy Analysis Method (HAM). 

HAM SOLUTION FOR VELOCITY AND TEMPERATURE 

PROFILES 

 

zero-th order deformation equations 

The homotopy equations for velocity u and temperature θ for 

both the zones is given by 

[ ] [ ]1 i o u 1(1-q)L u (y;q)-u (y) =q h N u(y;q) ,i=1,2        (13) 

[ ] [ ]2 i o θ 2(1-q)L θ (y;q)-θ (y) =q h N θ(y;q) ,i=1,2        (14) 

where q ∈  [0, 1] is the embedding homotopy parameter. 

The auxiliary operator is chosen as 

4
y

4

1L
∂

∂
= and 

2
y

2

2
L

∂

∂
=                                                            (15) 

Such that  

2 3
y y

L d +d y+d +d =0 and L(d +d y)=0
1 2 3 4 1 2

2 6

 
  
 

            (16) 

and non-linear operators N1 and N2 are defined as 

 

ZoneI:                        

[ ]
dx
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1
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1
θ
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Gr
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dy
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1
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q)θ(y;q),u(y;
1

N +−−= ϕ  

        (17) 

[ ]


































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dy

q)(y;1u
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1s

1
2

dy

q)(y;1du
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dy

q)(y;1θ
2

d
q)θ(y;q),u(y;2N
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Zone II: 

[ ]
dx

dp

2Res

µn

1
q)Sin(y;2θ2s

Re

Gr

µn

ρnn

2
dy

2u
2

d

2s
4

dy

2u
4

d
q)θ(y;q),u(y;1N

b
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q)(y;
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q)(y;
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q)θ(y;q),u(y;2N
 

              (20) 
For HAM solutions, we choose the initial approximations of 

u(y) and θ(y) in both the zones as follows  

,

k
n1

1)(y
k

n
(y)

1,0
θ(y;0)

1
θ0,(y)

1,0
u(y;0)

1
u

+

+
====  

k
n1

)
k

n(y
(y)

2,0
θ(y;0)

2
θ0,(y)

2,0
u(y;0)

2
u

+

+
====          (21) 

and satisfying the boundary conditions 

 

2 2
d u (-1) d u (1)1,0 2,0

u (-1)=0,u (1)=0, =0, =0,u (0)=u (0),1,0 1,0 1,0 2,02 2
dy dy

2 2
du (0) du (0) d u (0) d u (0)1,0 2,0 1,0 2,0

= , =n ,τ | =τ |η xy xy1,0 2,02 2
dy dy dy dy

dθ (0) dθ (0)1,0 2,0
θ (-1)=0, θ (1)=0,  θ (0)=θ (0) and =n1,0 1,0 1,0 2,0 k

dy

, 

dy

(22) 

When q = 1, Eqns. (13) - (14) are same as Eqns. (4) - (7) 

respectively, therefore at q = 1 we get the final solutions 

(y)2θ(y,1)2θ(y),2u(y,1)2u(y),1θ(y,1)1θ(y),1u(y,1)1u ====  (23) 

Hence the process of giving an increment to q from 0 to 1 is the 

process of u1(y; q) varying continuously from the initial guess 

u1,0(y) to the final solution u1(y) (similar for θ1(y), u2(y) and 

θ2(y)). This kind of continuous variation is called deformation 

in topology so that we call system Eqns. (13) - (14), the zero-th 

order deformation equations. 

 

m-th order deformation equations 

The m-th order deformation equations can be written as 

[ ] (y)
u

mi,
Ruh(y)

1mi,
umχmi,

u
1

L =−−                               (24) 

[ ] (y)
θ

mi,
Rθh(y)

1mi,
θmχmi,
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with the boundary conditions of 
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==−
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     (26) 

Where 
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4
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For m being integer ,0mχ = for m ≤ 1 and ,1mχ = for m > 1 

The initial guess approximations u1,0(y), θ1,0(y), u2,0(y), and 

θ2,0(y), linear operators L1 and L2 and the auxiliary parameters 

hu and hθ are assumed to be so selected that Eqns. (13) - (14) 

have solution at each point q ∈  [0, 1]. With the help of Taylors 

series and by referring to Eqn. (22), u(y; q), θ(y; q) can be 

expressed as 
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in which the convergence of series equations (31) - (32) 

depends strongly upon the auxiliary parameters hu and hθ-the 

values of hu and hθ are selected in such a way that the series 

equations (31) - (32) converge when q=1. Hence equations (31) 

- (32) become, 
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∞

=
=                                     (34) 

for which we presume that the initial guesses to u, θ satisfies 

L(u) = 0 and L(θ) = 0 and the non-zero auxiliary parameters hu 

and hθ are so selected. 

The m-th order derivatives for u(y; q), θ(y; q) are defined as 
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=
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It is clear that the convergence of Taylor series at q = 1 is a 

prior assumption, whose justification is provided via a theorem 

[30]. The effects of relevant parameters in flow two immiscible 

couple stress fluids can be studied from the exact formulas (31) 

- (32). Moreover, a special emphasize should be placed here 

that the m-th order deformation system (24) - (25) is a linear 

differential equation system with an auxiliary linear operators L 

whose fundamental solution is known. 

 

ENTROPY GENERATION ANALYSIS 

 

The volumetric entropy generation 

It is assumed that each the couple stress fluid with the 

constant physical properties (ρi, µi, �i, ki, cpi) is flowing in the 

channel subjected to constant wall temperatures on the each 

plate. If we take an infinitesimal fluid element in each zone and 

assume that the element as an open thermodynamic system 

subjected to mass fluxes, energy transfer and entropy transfer 

interactions through a fixed control surface, the volumetric rate 

of entropy generation for incompressible couple stress fluid is 

given as 

(Si)G= (Si) G, heat transfer+ (Si) G, viscous dissipation= Φ
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Where Φ is the viscous dissipation function. 

For the present study, the volumetric rate of entropy generation 

reduces to 
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where the value of i can be either 1 or 2 that represents fluid I 

or fluid II, respectively. On the right hand side of the above 

equation, the first term is the entropy generation due to heat 

conduction and the remaining two terms represent entropy 

generation due to the viscous dissipation function Φ for an 

incompressible couple stress fluid. Entropy generation rate is 

positive and finite as long as temperature and velocity gradients 

are present in the medium. 

 

The characteristic entropy generation rate 

The characteristic entropy generation rate SG,C is defined 

as, 

22
1 1

G,C 2 2 2

1 o o

k (∆T)( )
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k T h T
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h
                                   (36) 

In the above equation, 1h is the heat flux in zone I, To is the 

average, characteristic, absolute reference temperature of the 

medium, ∆T = TII – TI and h is the half of transverse distance 

of the channel. 

 

The entropy generation number 
The entropy generation number for each fluid with 

dimensionless variables are given by 
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where 







=

∆T1k

2
oU1µ

Br is the Brinkman number, which determines 

the importance of viscous dissipation because of the fluid 

frictions relative to the conduction heat flow resulting from the 

impressed temperature difference and ( )o∆T/TΩ =  is the 

dimensionless temperature difference. 

 

Fluid friction versus heat transfer irreversibility 

Entropy generation number (Ns) is good for generating 

entropy generation profiles but fails to give any idea about 

relative importance of friction and heat transfer effects. Two 

alternate parameters, irreversibility distribution ratio (ϕ) and 

Bejan number (Be), are introduced for this purpose and they are 

achieving an increasing popularity among researchers studying 

the second law. 

 

The irreversibility ratio 

The idea of irreversibility distribution ratio ϕ can 

enhance the understanding of the irreversibilities associated 

with the heat transfer and the fluid friction. It is defined as the 

ratio of entropy generation due to fluid frictions (Nf) to heat 

transfer in transverse direction (Ny) i.e, 

ϕ 







==

Ny

Nf

transferheatG,
S

frictionfluidG,
S

 

ϕ can be interpreted as follows: If 0 ≤ ϕ < 1, then ϕ indicates 

that heat transfer irreversibility dominates and if ϕ > 1 the fluid 

friction dominates. For the case of ϕ = 1, both the heat transfer 

and fluid friction have the same contribution for entropy 

generation.  

 

The Bejan number 
An alternative irreversibility distribution parameter, 

called Bejan number Be, was defined by Paoletti et al., [29] as 

ratio of entropy generation due to heat transfer to the total 

entropy generation and it is given by 

φ+
=

+
===

1

1

NfNy

Ny

Ns

Ny

generationentropytotal

transferheattoduegenerationentropy
Be

 The value of Be → 1 indicates that the heat transfer 

irreversibility dominates over fluid friction, and this 

corresponds to the case of ϕ→0. On the other hand, Be → 0 

indicates that the irreversibility due to fluid friction and 

magnetic field dominates over the irreversibility due to the heat 

transfer. This corresponds to ϕ→1. It is obvious that Be = 0.5 is 

the case at which the heat transfer and fluid friction entropy 

generation rates are equal, and this corresponds to the case of 

ϕ= 1. 

 
Importance of second law: By the first law of 

thermodynamics, we can find the temperature distributions of 

fluids within the channel and also heat transfer coefficients at 

the walls. But this law will not give any information regarding 

the relative effects of viscosity and heat convection for entropy 

generation. Second law states that entropy is always positive. 

The law is also stated in the form of inequality in terms of 

entropy generation. It can be noted that the second law analysis 

makes it possible to compare many different interactions in a 

system, and to identify the major sources of exergy 

destructions/losses. This enables us to identify the region where 

exactly the entropy generation is more in the entire fluid 

regime. 

 

CONVERGENCE OF THE HAM SOLUTION 

h-curves: 

HAM provides us with a great freedom in choosing the 

solution of a nonlinear problem by different base functions. 

This has a great effect on the convergence region because the 

convergence region and the rate of a series are chiefly 

determined by the base functions used to express the solution. 

Therefore, we can approximate a nonlinear problem more 

efficiently by choosing a proper set of base functions and 

ensure its convergency. On the other hand, as pointed out by 

Liao [31], the convergence and rate of approximation for the 

HAM solution strongly depends on the value of auxiliary 

parameter h. By means of the so-called h-curves, it is easy to 

find out the so-called valid regions of auxiliary parameters to 

gain a convergent series solution. The expressions for u and θ 

contain the auxiliary parameters hu and hθ. The h-curves are 

plotted by choosing hu and hθ in such a manner that the 

solutions (33) - (34) ensure convergence [27]. Here to see the 

admissible values of hu and hθ, the h-curves are plotted for 15
th

 

order of approximation in Figures 2 - 3 by taking the values of 

the parameters as: B = 0.1, Br = 0.1, Gr = 0.2, βn  = 0.8, nk = 

0.8, nµ = 0.8, n� = 0.8, φ= π /4, Re = 2, s1 = 1.2, and s2 = 1.2. 

Clearly from the Figs. 2a and 2b, it is found that the admissible 

ranges of hu and hθ are −1.6 < hu < 0 and −1.8 < hθ < 0.3 

respectively. A wide valid zone is evident in these figures 

ensuring convergence of the series. 

 

 
Figure 2 h-curve for velocity gradient at the interface 

 

RESULTS AND DISCUSSION 

The solutions for u1, θ1, u2, θ2 have been computed and 

shown graphically in Figures. The effects of couples stress 

parameter s2, Reynolds number Re, Grashof number Gr, 

viscous dissipation parameter (Br/Ω) on velocity u, temperature 
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θ, entropy generation number Ns and Bejan number Be have 

been studied. 

 

 
Figure 3 h-curve for temperature gradient at the interface 

 

Effect of couple stress parameter (s2): 

From Figures 4, 5 and 7 we notice that as couple stress 

parameter s2 increases, velocity, temperature and Bejan number 

are increasing. As s2 →∞  we get the case of viscous fluid. In 

couple stress fluids a part of energy is used for rotation of the 

particles and creates couple stresses. Since in viscous fluids, 

rotation of particles is not considered. Hence, the velocity of 

viscous fluid is more than that of couple stress fluid (see Fig.4). 

The temperature due to dissipation of energy (depending on 

velocity) changes very slightly (see Figure 5). The same effect 

is seen on the entropy generation number Ns in Figure 6. But 

near the plates effect of couple stresses on Ns is considerable. 

This may be due to more friction near the walls. From Figure 7, 

we see that Bejan number is high at the interface. From the 

limiting case of s2 →∞ , we see that Be for viscous fluids is 

less than that of couple stress fluids. A slight increase in couple 

stress parameter s2, increases Bejan number Be very much at 

the interface. Since Be is minimum near to the plates, entropy 

generation rate in transverse direction is also maximum (at the 

plate) and hence fluid friction dominates near to the plates. 

 

Effect of Reynolds number (Re): 

Figure 8 shows that as Re increases, Ns increases. Also 

it is observed that from the equations (37) and (38), the larger is 

the velocity and temperature gradients, the larger is the entropy 

generation rate. Figure 9 illustrates that as Re increases, Be 

decreases. This implies that in the entire flow region, as Re 

increases the relative increase of dissipation of energy due to 

friction dominates the dissipation of energy due to heat 

transverse flow. The variation of Be near the plates is more 

than what it is at the interface. This indicates that frictional 

forces are increasing rapidly near the walls. 

 

 
Figure 4 Effect couple stress parameter s2 on velocity u for 

B=-0.3, Br=0.1, Gr=1.5, nβ=0.9, n�=0.9, nk=0.9, nµ=0.9, 

φ= π/4 , Re=1, s1=2. 

 

 
Figure 5 Effect couple stress parameter s2 on temperature θ for 

B=-0.3, Br=0.1, Gr=1.5, nβ=0.9, n�=0.9, nk=0.9, nµ=0.9, 

φ= π/4 , Re=1, s1=2. 

 

  
Figure 6 Effect couple stress parameter s2 on entropy 

generation number Ns for B=-0.6, Br=0.1, Gr=0.1, nβ=0.9, 

n�=0.9, nk=1, nµ=0.9, φ= π/4 , Re=1, s1=5, Ω=1. 
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Figure 7 Effect couple stress parameter s2 on Bejan number Be 

for B=-0.6, Br=0.1, Gr=0.1, nβ=0.9, n�=0.9, nk=1, nµ=0.9, 

φ= π/4 , Re=1, s1=5, Ω=1. 

 

  
Figure 8 Effect Reynolds number Re on entropy generation 

number Ns for B=-0.5, Br=0.1, Gr=0.1, nβ=0.9, n�=0.9, nk=1.5, 

nµ=0.9, φ= π/4 , s1=8, s2=8, Ω=1. 

 

 
Figure 9 Effect Reynolds number Re on Bejan number Be for 

B=-0.5, Br=0.1, Gr=0.1, nβ=0.9, n�=0.9, nk=1.5, nµ=0.9, 

φ= π/4 , s1=8, s2=8, Ω=1. 

 

 
Figure 10 Effect Grashof number Gr on entropy generation 

number Ns for B=-0.8, Br=0.1, nβ=0.9, n�=0.9, nk=1.5, nµ=0.9, 

φ= π/4 , Re=0.5, s1=8, s2=8, Ω=1. 

 

 
Figure 11 Effect Grashof number Gr on Bejan number Be for 

B=-0.8, Br=0.1, nβ=0.9, n�=0.9, nk=1.5, nµ=0.9, φ= π/4 , 

Re=0.5, s1=8, s2=8, Ω=1. 

 

 
Figure 12 Effect viscous dissipation parameter (Br/Ω) on 

entropy generation number Ns for B=-0.5, Gr=0.1, nβ=0.9, 

n�=0.9, nk=1, nµ=0.9, φ= π/4 , Re=1, s1=8, s2=8. 
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Figure 13 Effect viscous dissipation parameter (Br/Ω) on Bejan 

number Ns for B=-0.5, Gr=0.1, nβ=0.9, n�=0.9, nk=1, nµ=0.9, 

φ= π/4 , Re=1, s1=8, s2=8. 

 

Effect of Grashof number (Gr): 
From Figure 10, we notice that as Grashof number Gr 

increases, entropy generation number increases. But near the 

plates effect of Grashof number on Ns is considerable. This 

may be due to more friction near the walls. From Figure 11, we 

see that as Grashof number Gr increases, Bejan number Be 

decreases and keeping its value maximum at the interface. Be is 

more than 0.8 in the entire region of the channel. Effect of 

Grashof number due to fluid friction is small. At the interface 

Be attains value more than 0.9. Though as Gr increases, Be 

decreases, this decrease is not high. This may be due to the fact 

that flow generates naturally by gravitational pull. 

 

Effect of viscous dissipation parameter (Br/Ω): 

From Figure 12, we observe that as the viscous 

dissipation parameter (Br/Ω) increases, the entropy generation 

number Ns increases. The greater the viscosity of the fluid, the 

greater the entropy generation rate. It is observed that Ns≅0 at 

the interface of the channel. This implies that at the interface, 

entropy generation is minimum i.e., exergy is maximum 

(available energy) and hence the dissipation of energy is almost 

zero and the thermal process is almost reversible there. When 

(Br/Ω) → 0, the entropy generation number Ns → 1 and 

becomes independent of the transverse distance. This is an ideal 

case which corresponds to the energy due to only the heat 

conduction and the effect of viscous dissipation disappears. 

There is a lowest point of the entropy generation rate at each 

specified value of the viscous dissipation parameter and it 

occurs near the interface. The profiles indicate that at the 

interface y=0, the entropy generation rate is minimum and 

hence the available energy in the transverse direction is 

maximum. 

From Figure 13, we observe that as the viscous 

dissipation parameter (Br/Ω) increases, Bejan number Be 

decreases. This shows that the Bejan number is maximum at the 

interface of the channel and decreases as we move towards the 

channel walls in either direction. We again observe that for 

(Br/Ω) = 0, Be is equal to its maximum theoretical value 

(Be=1), i.e., the fluid friction effect provides no contribution to 

the entropy generation. For all other values of (Br/Ω), the Bejan 

number has a maximum value close to the central line of the 

channel and then decreases near the walls. 

 

CONCLUSIONS 

In this study, the flow of immiscible couple stress fluids 

between two parallel plates due to the constant pressure 

gradient is studied. The approximate analytical series solutions 

are obtained applying homotopy analysis method (HAM).  The 

exergy loss distribution is studied in terms of second law of 

thermodynamics. The entropy generation number Ns at every 

point y between the channels is found. The effect of viscous 

dissipation parameter (Br/Ω) on entropy generation number 

(Ns), Bejan number (Be) is studied through figures. From the 

present study we observe that: 

1. The presence of couple stresses in the fluid decreases the 

velocity and temperature. (As s2 increases, couple stresses 

decrease). 

2. The entropy generation rate is more near the plates in zone I 

than that of zone II. This may be due to the fact that the fluid in 

the lower zone is more viscous. This indicates the more the 

viscosity of the fluid is, the more the entropy generation. 

3. The entropy generation rate is minimum at the interface. This 

indicates that the fluid friction is minimum and exergy is 

maximum at the interface. 

4. Grashof number Gr has little effect on the entropy generation 

rate.  
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