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ABSTRACT 

This paper analyzes cross diffusion effects on the steady, 

mixed convection heat and mass transfer along a semi-infinite 

vertical plate embedded in a micropolar fluid in the presence of 

traverse magnetic field. The governing nonlinear partial 

differential equations and their associated boundary conditions 

are transformed into a system of coupled nonlinear ordinary 

differential equations using a special form of Lie group 

transformations, namely, the scaling group of transformations 

and then solved numerically using the implicit finite difference 

method. The non dimensional velocity, microrotation, 

temperature and concentration along with the non dimensional 

rate of heat and mass transfer at the plate are presented 

graphically for different values of coupling number, magnetic 

parameter (M), mixed convection parameter (Ri), Soret number 

(Sr) and Dufour number (Df). In addition, the skin-friction 

coefficient and the wall couple stress are shown in a tabular 

form. 

NOMENCLATURE 

 

B Buoyancy parameter ( ) ( )C T
C Tβ β= ∆ ∆  

0B  Magnetic field coefficient 

C Concentration of the field 

Cp Specific heat at constant pressure 

sC  Concentration susceptibility 

C
∞

 Free stream concentration 

fC  Skin-friction coefficient 

D Mass diffusivity 

Df Dufour number  ( T

s p

D K C

C C Tν

∆
=

∆
) 

f Dimensionless stream function 

g Dimensionless microrotation  

g* Acceleration due to gravity 

Gr Grashof number ( * 3 2

T
g TLβ ν= ∆ ) 

j Dimensional Micro-inertia density 

k Thermal conductivity 

k1 Mean absorption coefficient 

kT Thermal diffusion ratio 

L Characteristic length 

mw Wall couple stress 

M Non-dimensional magnetic parameter  ( ) ( )2 2

0 ReB Lσ µ=  

Mw Non-dimensional couple stress on  the wall 

N Coupling number (
κ

κ µ
=

+
) 

Nu Dimensionless Nusselt number 

Pr Prandtl number, non-dimensional
ν

α
=  

( )
w

q x  Heat flux 

( )
m

q x  Mass flux 

Re Reynolds number, dimensionless 

Ri Mixed convection parameter (
2

Re

Gr
= ) 

s Dimensionless concentration 

Sc Schmidt number, non-dimensional 
D

ν
=  

Sh Sherwood number 

Sr Soret number ( T

m

D K T

T Cν

∆
=

∆
) 

T  Temperature 

Tm Mean fluid temperature 

T∞  Free stream temperature 

( )U x  
Free stream velocity 

,u v  Velocity components in the x
−

- and y
−

-directions respectively. 

,  yx  Cartesian coordinates along the plate and normal to it 

ˆ ˆ,  yx  Lie Group transformations of co-ordinate axes 

 

Greek symbols 

α Thermal diffusivity 

α i’s Lie Group transformation parameters  (i = 1 to 6) 

βT Coefficient of thermal expansion 
βC Coefficient of solutal expansion 

γ Spin-gradient viscosity 

η Non-dimensional similarity variable 
θ Dimensionless temperature 

θ̂  Lie Group transformation of temperature 
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ϑ Non-dimensional micro-inertia density (
2

Re

L

j
= ) 

κ Vortex viscosity 

λ Spin-gradient viscosity (
j

γ

ρν
= ) 

µ Viscosity of the fluid 

ν Kinematic viscosity 

ρ Density of the base fluid 
σ Electrical conductivity 

τw Wall shear stress 

ϕ Dimensionless concentration 

φ̂  Lie Group transformation 

ψ Stream function 

ψ̂  Lie Group transformation of stream function 

ω  Microrotation component 

ω̂  Lie Group transformation of micromotion component 

 

INTRODUCTION 

Mixed convection flows are of great interest because of 

their various engineering, scientific, and industrial applications 

in heat and mass transfer. Mixed convection of heat and mass 

transfer occurs simultaneously in the fields of design of 

chemical processing equipment, formation and dispersion of 

fog, distributions of temperature, moisture over agricultural 

fields, groves of fruit trees, and damage of crops due to freezing 

and pollution of the environment. Extensive studies of mixed 

convection heat and mass transfer of a non-isothermal vertical 

surface under boundary layer approximation have been 

undertaken by several authors. The majority of these studies 

dealt with the traditional Newtonian fluids. It is well known 

that most fluids which are encountered in chemical and allied 

processing applications do not satisfy the classical Newton’s 

law and are accordingly known as non-Newtonian fluids. Due 

to the important applications of non-Newtonian fluids in 

biology, physiology, technology, and industry, considerable 

efforts have been directed towards the analysis and 

understanding of such fluids. A number of mathematical 

models have been proposed to explain the rheological 

behaviour of non-Newtonian fluids. Among these, the fluid 

model introduced by Eringen [1] exhibits some microscopic 

effects arising from the local structure and micro motion of the 

fluid elements. Further, they can sustain couple stresses and 

include classical Newtonian fluid as a special case. The model 

of micropolar fluid represents fluids consisting of rigid, 

randomly oriented (or spherical) particles suspended in a 

viscous medium where the deformation of the particles is 

ignored. Micropolar fluids have been shown to accurately 

simulate the flow characteristics of polymeric additives, 

geomorphologic sediments, colloidal suspensions, 

haematological suspensions, liquid crystals, lubricants etc. The 

heat and mass transfer in micropolar fluids is also important in 

the context of chemical engineering, aerospace engineering and 

also industrial manufacturing processes. The problem of free 

convection, heat and mass transfer in the boundary layer flow 

along a vertical surface submerged in a micropolar fluid has 

been studied by several investigators. 

In recent years, several simple boundary layer flow 

problems have received new attention within the more general 

context of magneto hydrodynamics (MHD). Several 

investigators have extended many of the available boundary 

layer solutions to include the effects of magnetic fields for 

those cases when the fluid is electrically conducting. The study 

of magneto-hydrodynamic flow for an electrically conducting 

fluid past a heated surface has important applications in many 

engineering problems such as plasma studies, petroleum 

industries, MHD power generators, cooling of nuclear reactors, 

the boundary layer control in aerodynamics, and crystal growth. 

In addition, there has been a renewed interest in studying MHD 

flow and heat transfer in porous media due to the effect of 

magnetic fields on flow control and on the performance of 

many systems using electrically conducting fluids. The problem 

of MHD mixed convection heat and mass transfer in the 

boundary layer flow along a vertical surface submerged in a 

micropolar fluid has been studied by several investigators. 

Seddeek [2] investigated the analytical solution for the effect of 

radiation on flow of a magneto-micropolar fluid past a 

continuously moving plate with suction and blowing. 

Mahmoud [3] analyzed the effects of slip and heat 

generation/absorption on MHD mixed convection flow of a 

micropolar fluid over a heated stretching surface. Tzirtzilakis et 

al. [4] studied the action of a localized magnetic field on forced 

and free convective boundary layer flow of a magnetic fluid 

over a semi-infinite vertical plate.   Hayat [5] studied the effects 

of heat and mass transfer on the mixed convection flow of a 

MHD micropolar fluid bounded by a stretching surface using 

Homotopy analysis method.  Das [6] considered the effects of 

partial slip on steady boundary layer stagnation point flow of an 

electrically conducting micropolar fluid impinging normally 

towards a shrinking sheet in the presence of a uniform 

transverse magnetic field.  

In most of the studies related to heat and mass transfer 

process, Soret (mass fluxes can also be created by temperature 

gradients) and Dufour (energy flux caused by a concentration 

gradient) effects were neglected on the basis that they are of a 

smaller order of magnitude than the effects described by 

Fourier’s and Fick’s laws. But these effects are considered as 

second order phenomena and may become significant in areas 

such as hydrology, petrology, geosciences, etc. The Soret 

effect, for instance, has been utilized for isotope separation and 

in mixture between gases with very light molecular weight and 

of medium molecular weight. The Dufour effect was recently 

found to be of order of considerable magnitude so that it cannot 

be neglected [7]. Alam and Rahman [8] have investigated the 

Dufour and Soret effects on mixed convection flow past a 

vertical porous flat plate with variable suction. Chamkha [9] 

has focused on the numerical modelling of the effects of Soret, 

Dufour and radiation on heat and mass transfer by MHD mixed 

convection from a semi-infinite, isothermal, vertical and 

permeable surface immersed in a uniform porous medium.  

Rawat and Bhargava [10] presented a mathematical model for 

the steady thermal convection heat and mass transfer in a 

micropolar fluid saturated Darcian porous medium in the 

presence of significant Dufour and Soret effects and viscous 

heating. Srinivasacharya and RamReddy [11] studied Soret and 

Dufour effects on the mixed convection from a semi-infinite 

vertical plate embedded in a stable micropolar fluid with 

uniform and constant heat and mass flux conditions.  

The Lie group analysis, also called symmetry analysis, has 

been developed by Sophius Lie to find point transformations 
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which map a given differential equation to itself. This method 

reduces the number of independent variables by one and 

consequently the governing partial differential equations are 

transformed into ordinary differential equations with the 

associated boundary conditions. This method has drawn the 

attention of several researchers [12-18]  to analyze various 

convective phenomena subject to various flow configurations 

arising in fluid mechanics, aerodynamics, plasma physics, 

meteorology and some branches of engineering. 

Inspired by the investigations mentioned above, the aim of 

this paper is to consider the effects of transverse magnetic field, 

Soret and Dufour effects on the mixed convection heat and 

mass transfer along a vertical plate with variable heat and mass 

flux conditions embedded in a micropolar fluid. The governing 

nonlinear partial differential equations of boundary layer 

problem are transformed into a system of coupled nonlinear 

ordinary differential equations using a scaling group of 

transformations. The Keller-box method given in Cebeci and 

Bradshaw [19] is employed to solve this nonlinear system of 

equations. The results thus obtained are compared that of the 

existing results and found to be in good agreement. 

MATHEMATICAL FORMULATION 

Consider a steady, laminar, incompressible, two-

dimensional mixed convective heat and mass transfer along a 

semi infinite vertical plate embedded in a free stream of 

electrically conducting micropolar fluid with velocity ( )U x , 

temperature T∞  and concentration C∞ . Choose the co-ordinate 

system such that x axis is along the vertical plate and y axis 

normal to the plate. The plate is maintained with variable heat 

flux ( )
w

q x  and mass flux ( )
m

q x .  A uniform magnetic field of 

magnitude B0 is applied normal to the plate. The magnetic 

Reynolds number is assumed to be small so that the induced 

magnetic field can be neglected in comparison with the applied 

magnetic field. The Boussinesq approximation is invoked for 

the fluid properties to relate density changes, and to couple in 

this way the temperature and concentration fields, 

( ) ( )( )1 T CT T C Cρ ρ β β∞ ∞ ∞= − − − −  to the flow field. In 

addition, the Soret and Dufour effects are considered.   

 Using the Boussinesq and boundary layer 

approximations, the governing equations for the micropolar 

fluid are given by 

 

0
u v

x y

∂ ∂
+ =

∂ ∂
                                    (1)  

( )

( ) ( )( )

( )

2

2

*

2

0

( )
( )

( )

T C

uu dU x u
u v U x

x y dx y

g T T C C
y

B U x u

ρ ρ µ κ

ω
κ ρ β β

σ

∞ ∞

∂ ∂ ∂
+ = + + +

∂ ∂ ∂

∂
+ − + − +

∂

−

 
 
 

               (2) 

2

2
2

u
j u v

x y yy

ω ω ω
ρ γ κ ω

   ∂ ∂ ∂ ∂
+ = − +   

∂ ∂ ∂∂   
                    (3) 

2 2

2 2

T

s p

DKT T T C
u v

x y C Cy y
α

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
                (4) 

2 2

2 2

T

m

DKC C C T
u v D

x y Ty y

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
                   (5) 

where u and v are the components of velocity along x  - 

and y - directions respectively, ω is the component of 

microrotation whose direction of rotation lies normal to the xy  

- plane, g* is the gravitational acceleration, T is the 

temperature, C  is the concentration, βT is the coefficient of 

thermal expansions, βc is the coefficient of solutal expansion. 

Cp is the specific heat capacity, B0 is the coefficient of the 

magnetic field, µ is the dynamic coefficient of viscosity of the 

fluid, κ is the vertex viscosity, j is the micro-inertia density, γ is 

the spin gradient viscosity, σ is the magnetic permeability of the 

fluid, υ is the kinematic viscosity of the fluid, α is the thermal 

diffusivity, D is the molecular diffusivity, KT is the thermal 

diffusion ratio, Cs is the concentration susceptibility, Tm is the 

mean fluid temperature.  Equations (1) - (3) represent the 

conservation of mass, conservation of momentum and 

conservation of angular momentum, respectively. The last term 

of the Equation (2) stands for the Lorenz force term. The term 

( )2

0
( )B U xσ ρ  represents the imposed pressure force in the 

inviscid region of the conducting fluid and ( )2

0
B uσ ρ  

represents the Lorentz force imposed by a transverse magnetic 

field to an electrically conducting fluid. The Equations (4) and 

(5) denote energy and concentration equations respectively. 

The boundary conditions for the velocity, microrotation, 

temperature and concentration distributions for the present 

problem can be considered as: 

0u = , 0v = , 0ω = , ( )w

T
k q x

y

∂
− =

∂
, ( )xq

y

C
D m=

∂

∂
−    

      at  0y =       (6a) 

( )u U x→ , 0ω = , T  →T∞ , C→ C∞   as y → ∞           (6b) 

The boundary condition ω = 0 in Eq. (6a), represents the case 

of concentrated particle flows in which the microelements close 

to the wall are not able to rotate, due to the no-slip condition. 

 

Introduce the following non – dimensional variables 

Re Re
,  ,  ,  ,  Re ,  

,  ( )
Re

( ) ( )
, Re,

Re

( ) ( )
, Re

Re

w w

m m

U Lx y u v
x y u v

L L U U

L
U x U x

U

q x q x
T T T x

kLk

q x q x
C C C x

DLD

ν

ω
ω

θ

ϕ

∞

∞ ∞

∞

∞

∞

∞

= = = = =

= =

= + = ∆

= + = ∆















     (7) 

and the stream function ψ in view of (1) through u
y

ψ∂
=

∂
, 

v
x

ψ∂
= −

∂
 in to Eqs. (2) – (5), we get 
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( )

2 2 3

2 3

1
.

1

1
i

x
y x y x Ny y

N
R x B M x

N y y

ψ ψ ψ ψ ψ

ω ψ
θ ϕ

∂ ∂ ∂ ∂ ∂
− = + +

∂ ∂ ∂ ∂ −∂ ∂

∂ ∂
+ + + −

− ∂ ∂

  
   
   

                (8) 

2 2

2 2
2

1

N

y x x y Ny y

ψ ω ψ ω ω ψ
λ ϑ ω

 ∂ ∂ ∂ ∂ ∂ ∂
− = − + 

∂ ∂ ∂ ∂ −∂ ∂ 
           (9) 

22

2 2Pr
f

x
x x x D

y x x y y y y

ϕψ θ ψ θ ψ θ
θ

∂∂ ∂ ∂ ∂ ∂ ∂
− + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂
       (10) 

22

2 2r

x
x x x S

y x x y y Sc y y

θψ ϕ ψ ϕ ψ ϕ
ϕ

∂∂ ∂ ∂ ∂ ∂ ∂
− + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂
         (11) 

The transformed boundary conditions are 

0,
y

ψ∂
=

∂
0,

x

ψ∂
=

∂
0,ω = 1,

y

θ∂
= −

∂
1,

y

ϕ∂
= −

∂
at 0y =    (12a) 

,x
y

ψ∂
→

∂
  0,ω →   0,θ →   0ϕ →  as y → ∞     (12b) 

where N
κ

κ µ
=

+
, (0 1)N≤ <  is the Coupling number, 

2Re
i

Gr
R = is the mixed convection parameter, 

* 3 2 ,
T

Gr g TLβ ν= ∆ is the Grashof number, Re is the Reynolds 

number, ( ) ( )2 2

0 ReM B Lσ µ= is the magnetic field parameter, 

( )jλ γ ρν=  is the spin-gradient viscosity, ( )2
ReL jϑ = is 

the micro-inertia density, ( ) ( )f T s pD D K C C C Tν= ∆ ∆  is the 

Dufour number and ( ) ( )r T m
S D K T T Cν= ∆ ∆  is the Soret 

number. 

 

SIMILARITY SOLUTIONS VIA LIE GROUP ANALYSIS 

We now introduce the one-parameter scaling group of 

transformations which is a simplified form of Lie group 

transformation Γ: 

1 32

5 64

ˆˆ ˆ, , ,

ˆˆ ˆ, ,

x xe y ye e

e e e

ε α ε αε α

ε α ε αε α

ψ ψ

ω ω θ θ ϕ ϕ

= = = 


= = = 
                     (13) 

where 1α , 2α , 3α , 4α , 5α , 6α  are transformation parameters 

and ε  is a small parameter. This scaling group of 

transformations transform co-ordinates (x, y,ψ ,ω ,θ ,ϕ ) 

to ( )ˆˆ ˆ ˆˆ ˆ, , , , ,x y ψ ω θ ϕ . Equations (8) to (11) and boundary 

conditions Eq. (12) are invariant under the point 

transformations (13). 

Substituting the transformations (13) into Eqs. (8) – (11) and 

boundary conditions (12), we get 

( )

( ) ( )

( ) ( )( ) ( )

1 2 3 1

2 3 2 4

1 5 1 6 2 31

2 2
2 2

2

3
3

3

ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ1
ˆ

ˆˆ1 1

ˆˆ ˆ ˆ
ˆ

i

e e x
y x y x y

N
e e R x

N N yy

e Be M e x e
y

ε α α α ε α

ε α α ε α α

ε α α ε α α ε α αε α

ψ ψ ψ ψ

ψ ω

ψ
θ ϕ

+ − −

− −

− − − − −−

 ∂ ∂ ∂ ∂
− = +  

∂ ∂ ∂ ∂ ∂  
∂ ∂  

+ +  
− − ∂∂   

 ∂
+ + − 

∂  

    (14) 

( ) ( )

( )

1 2 3 4 2 4

2 34

2
2

2

2
2

2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ
ˆ2

ˆ1

e e
y x x y y

N
e e

N y

ε α α α α ε α α

ε α αε α

ψ ω ψ ω ω
λ

ψ
ϑ ω

+ − − −

−−

 ∂ ∂ ∂ ∂ ∂
− = 

∂ ∂ ∂ ∂ ∂ 

 ∂
− + 

− ∂ 

  (15) 

( ) ( )

( )
( )

2 3 5 2 3 5

1 2 5

1 2 6

2 2 2
2

2 2

ˆ ˆˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ

ˆˆ ˆˆˆ ˆ
ˆ ˆ ˆPr

f

e x x e
y x x y

e x
xD e

y y y

ε α α α ε α α α

ε α α α
ε α α α

ψ θ ψ θ

ψ θ ϕ
θ

− − − −

− + −
− + −

 ∂ ∂ ∂ ∂
− +  ∂ ∂ ∂ ∂ 

∂ ∂ ∂
= +

∂ ∂ ∂

    (16)  

( ) ( )

( )
( )

2 3 6 2 3 6

1 2 6

1 2 6

2 2 2
2

2 2

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ

ˆˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ
f

e x x e
y x x y

e x
xD e

y Sc y y

ε α α α ε α α α

ε α α α
ε α α α

ψ ϕ ψ ϕ

ψ ϕ θ
ϕ

− − − −

− + −
− + −

 ∂ ∂ ∂ ∂
− + 

∂ ∂ ∂ ∂ 

∂ ∂ ∂
= +

∂ ∂ ∂

              (17) 

The boundary conditions (12) becomes 

ˆ
0,

ŷ

ψ∂
=

∂
 

ˆ
0,

x̂

ψ∂
=

∂
ˆ 0,ω = ( )2 5

ˆ
1,

ˆ
e

y

ε α αθ −∂
= −

∂

( )2 6
ˆ

1,
ˆ

e
y

ε α αϕ −∂
= −

∂
 

                                                    at 2ˆ 0ye
εα− =                (18a) 

( )2 3 1 ˆ,e e x
y

ε α α εαψ− − −∂
→

∂
  ˆ 0,ω →   ˆ 0,θ →   ˆ 0ϕ →   

                                                    as 2ŷe
εα− → ∞            (18b) 

Since the group transformations (13) keep the system invariant, 

we then have following relationships among the parameters 

1 2 3 1 2 3 2 4

1 5 1 6 1 2 3

1 2 3 4 2 4 4 2 3

2 3 5 1 2 5 1 2 6

2 3 6 1 2 6 1 2 5

2 2 3

2 2

2 2

2 2

α α α α α α α α

α α α α α α α

α α α α α α α α α

α α α α α α α α α

α α α α α α α α α

+ − = − = − = − = 


− − = − − = − = − 



+ − − = − = − = − 


− − = + − = − + −


− − = + − = − + − 

                  (19) 

Solving the linear system Eq. (19), we have the following 

relationship among the exponents 

1 3 4α α α= =  and 2 5 6 0α α α= = =   (20) 

Hence, the set of transformations Γ reduces to 

11

1

ˆˆ ˆ, , ,

ˆˆ ˆ, ,

x xe y y e

e

ε αε α

ε α

ψ ψ

ω ω θ θ ϕ ϕ

= = = 


= = = 
         (21) 

Expanding the Lie Group of point transformations in one 

parameter using the Taylor’s series in powers of ε , keeping the 

terms up to the first degree (neglecting higher powers of ε ), 

we get 

1 1
ˆˆ ˆ, 0, ,

ˆ ˆ0, 0

x x x y yεα ψ ψ ψεα

θ θ ϕ ϕ

− = − = − = 


− = − = 
                (22) 

The corresponding characteristic equations of (22) are given by 

1 1 10 0 0

dx dy d d d dψ ω θ ϕ

εα εα εα
= = = = =                           (23) 

Solving the above characteristic equations, we have following 

similarity transformations 

ˆˆ ˆ ˆˆ ˆ ˆ, ( ), ( ), ( ), ( )y xf xgη ψ η ω η θ θ η ϕ ϕ η= = = = =   (24) 
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Substitute the Eq. (24) into Eqs. (14) to (17), we get 

( )

( ) ( )

21
''' '' ' '

1 1

1 ' 1 0
i

N
f ff g f

N N

R B f Mθ ϕ

   
+ + − +   

− −   

+ + − + =

   (25) 

( ) 2 '' 0
1

N
g g f f g fg

N
λ ϑ

 
 
 

′′ ′ ′− + − + =
−

                      (26) 

1
'' 0

Pr
f

f f Dθ θ θ ϕ′′ ′ ′+ − + =                                                (27) 

�

��
��� + ��� − ��� + 	
�

�� = 0    (28) 

 
( ) ( )

( ) ( )

(0) 0, 0 0, 0 0,

' 0 1, ' 0 1 0

f f g

atθ ϕ η

′= = =

= − = − =
                                       (29a) 

( ) ( )

( ) ( )

1, 0,

0, 0

f g

atθ ϕ η

′ ∞ → ∞ →

∞ → ∞ → → ∞
                                        (29b) 

The wall shear stress and the wall couple stress 

are ( )
0 0

,
w w

y y

u
m

y y

ω
τ µ κ κω γ

= =

   ∂ ∂
= + + =   

∂ ∂   
.The 

dimensionless wall shear stress
2

2
w

f
C

U

τ

ρ ∞

= , wall couple 

stress
2

w

w

m
M

L Uρ
∞

= , are given by  ( )
2

Re 0
1

fC f x
N

 
′′=  

− 
 

and ( )0
w

M g x
λ
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RESULTS AND DISCUSSION 

        The governing Equations (25) to (28) have been solved 

numerically using the Keller-box method [19]. This method has 

a second - order accuracy, unconditionally stable and is easy to 

be programmed. The calculations are repeated until some 

convergent criterion is satisfied and the calculations are stopped 

when ''(0)fδ ≤ 10
-8

, '(0)gδ ≤10
-8

, '(0)δ θ ≤ 10
-8

 and '(0)δ ϕ ≤ 

10
-8

. In the present study, the boundary conditions for η at ∞ are 

replaced by a sufficiently large value of η where the velocity 

approaches 1, whereas the temperature and concentration 

approach zero. In order to see the effects of step size (∆η) we 

ran the code for our model with three different step sizes as ∆η 

= 0.001, ∆η = 0.01 and ∆η = 0.05 and in each case we found 

very good agreement between them on different profiles. After 

some trials we imposed a maximal value of η at ∞ as 6 and a 

grid size of ∆η as 0.01. In order to study the effects of the 

coupling number N, magnetic field parameter M, Prandtl 

number Pr, Schmidt number Sc, Dufour number Df and Soret 

number Sr on the physical quantities of the flow, the remaining 

parameters are fixed as B = 1, λ = 1, Pr =0.7, Sc=0.2 and ϑ  = 

0.1.  

 In the absence of coupling number N, Magnetic 

parameter M, Soret number Sr, Dufour number Df and 

buoyancy parameter B with Ri = 1, λ = 1, ϑ  = 0, and Sc = 0.2 

the results of non-dimensional skin-friction '' (0)f and Nusselt 

number Nu have been compared with the values of 

Ramachandran et al. [20], and it was found that they are in 

good agreement, as shown in table 1. 

 Fig. 2 depict that the variation of coupling number (N) 

on the profiles of non-dimensional velocity, microrotation, 

temperature and concentration with similarity variable η. The 

coupling number N characterizes the coupling of linear and 

rotational motion arising from the micromotion of the fluid 

molecules. Hence, N signifies the coupling between the 

Newtonian and rotational viscosities. As N →1, the effect of 

microstructure becomes significant, whereas with a small value 

of N the individuality of the substructure is much less 

pronounced. As κ → 0 i.e. N → 0, the micropolarity is lost and 

the fluid behaves as nonpolar fluid. Hence, N → 0 corresponds 

to viscous fluid. It is observed from Fig. 2 that the velocity 

decreases with the increase of N. The maximum of velocity 

decreases in amplitude and the location of the maximum 

velocity moves farther away from the wall with an increase of 

N. The velocity in case of micropolar fluid is less than that in 

the viscous fluid case.  It is seen from Fig. 3 that the 

microrotation component decreases near the vertical plate and 

increases far away from the plate with increasing coupling 

number N. The microrotation tends to zero as N → 0 as is 

expected. It is noticed from Fig. 4 that the temperature 

increases with increasing values of coupling number. It is clear 

from Fig. 5 that the non-dimensional concentration increases 

from Newtonian case to non-Newtonian case.  

 The non-dimensional velocity, microrotation, 

temperature and concentration profiles, for different values of 

magnetic parameter M is illustrated from Figs. 6 - 9. It is 

observed from Fig. 6 that momentum boundary layer thickness 

decrease i.e., velocity increase as the magnetic parameter (M) 

increases. From Eq. (2) when ( )U x u
∞

≥  (i.e. imposed pressure 

force dominates Lorentz force imposed by a transverse 

magnetic field normal to the flow direction, the effect of the 

magnetic interaction parameter is to increase the velocity. 

Similarly, ( )U x u∞ ≤ , the effect of the magnetic interaction 

parameter is to decrease the velocity. From Fig. 7, it is clear 

that the microrotation component increases near the plate and 

deceases far away from the plate for increasing values of M. It 

is noticed from Fig. 8 that the temperature decreases with 

increasing values of magnetic parameter. It is clear from Fig. 9 

that the non-dimensional concentration decreases with 

increasing values of M.  The magnetic field gives rise to a 

motive force to an electrically conducting fluid, this force 

makes the fluid experience acceleration by decreasing the 

friction between its layers and thus decreases its temperature 

and concentration. 

 Figures 10 to 13 depict that the effect of mixed 

convection parameter Ri on the profiles of non-dimensional 

velocity, microrotation, temperature and concentration. Fig. 10 

explains that the dimensionless velocity rises as Ri increases. 

The higher value of Ri leads to the greater buoyancy effect in 

mixed convection flow, hence it accelerate the flow. The non-
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dimensional velocity of the fluid is increasing from pure forced 

convection (as Ri → 0) to pure free convection (Ri > 1). It is 

seen from Fig. 11, that the magnitude of the microrotation 

increases with an increase in mixed convection parameter Ri. 

From Fig. 12, it is observed that the non-dimensional 

temperature of the fluid flow is decreasing from pure forced 

convection case (Rii → 0) to the pure free convection case (Ri 

> 1). It is clear from Fig. 13 that the non-dimensional 

concentration decrease as Ri increases.  

 The effect of Soret number Sr and Dufour number Df on 

the non-dimensional velocity, microrotation, temperature and 

concentration is shown in Figures 14 to 17. It is observed from 

Figure 14 that the velocity decreases with the increase of 

Dufour number Df (or decrease of Soret number Sr). It is 

noticed from Fig. 15 that the microrotation component 

decrease near the vertical plate and increase far away from the 

plate with increasing Dufour number (or decreasing of Soret 

number), showing a reverse rotation near the two boundaries. 

The reason is that the microrotation field in this region is 

dominated by a small number of particles spins that are 

generated by collisions with the boundary. It is clear from 

Figure 16 that the temperature of the fluid increases with the 

increase of Dufour number (or decrease of Soret number). 

Figure 17 explains that the non-dimensional concentration of 

the fluid decreasing with increase of Dufour number Df (or 

decrease of Soret number Sr). 

 Table 2 shows that the effects of the coupling number N, 

Soret number Sr and Dufour number Df, mixed convection 

parameter Ri and the magnetic parameter M on the skin friction 

Cf,  the dimensionless wall couple stress Mw, heat transfer rate 

(Nusselt number Nu) and mass transfer rate (Sherwood number 

Sh). It is seen from this table that the skin friction, the wall 

couple stress heat and mass transfer rates decrease with the 

increasing coupling number N.  For increasing value of N, the 

effect of microstructure becomes significant; hence the wall 

couple stress decreases. It is clear that skin friction, Nusselt 

number and Sherwood number are increasing as mixed 

convection parameter Ri is increasing, where as the wall couple 

stress decrease. As explained earlier, increasing effect of 

convection cooling as a result of the great buoyancy effect for 

large Ri. The effect of magnetic parameter is to increase the 

skin friction coefficient, Nusselt number, Sherwood number 

and decrease the wall couple stress. Further, it is observed that 

the skin friction coefficient and Nusselt number are decreasing 

and that of wall couple stress and Sherwood number are 

decreasing with the increasing of Dufour number Df (or with 

the decrease of Soret number Sr). 

 

Table 1 Comparison of results for a vertical plate in viscous 

fluids without stratification case Ramachandran et al. [20] for 

Ri = 1.0 

 )0(''f  Nu 

Pr [13] Present [13] Present 

0.07 1.8339 1.833887 0.7776 0.777615 

7 1.4037 1.403650 1.6912 1.691297 

 

 

Table 2 Effect of N,Ri, M, and Sr, Df on skin friction, wall 

couple stress, Heat and Mass Transfer rates.   

   

 
Figure 2 Profile for various values of coupling parameter N 

 

 
Figure 3 Microrotation Profile for various values of coupling 

parameter N 

N Ri M Df Sr - f''(0) - g''(0) 1/θ(0) 1/φ(0) 

0.0 0.5 1.0 0.03 2.0 2.1168     0.0000 0.6965  0.3991 

0.3 0.5 1.0 0.03 2.0 1.7620     0.0291 0.6711 0.3876 

0.6 0.5 1.0 0.03 2.0 1.3132     0.0886 0.6301 0.3683 

0.9 0.5 1.0 0.03 2.0 0.5946     0.2848 0.5300 0.3185 

0.5 0.0 1.0 0.03 2.0 1.1154     0.0555 0.5954 0.3500 

0.5 0.5 1.0 0.03 2.0 1.4783 0.0627 0.6466 0.3761 

0.5 1.0 1.0 0.03 2.0 1.7871 0.0686 0.6841 0.3956 

0.5 1.5 1.0 0.03 2.0 2.0627 0.0735 0.7143 0.4114 

0.5 0.5 0.0 0.03 2.0 1.3285 0.0613 0.6354 0.3716 

0.5 0.5 1.0 0.03 2.0 1.5045 0.0633 0.6466 0.3761 

0.5 0.5 2.0 0.03 2.0 1.6621 0.0649 0.6557 0.3798 

0.5 0.5 3.0 0.03 2.0 1.8061 0.0663 0.6635 0.3829 

0.5 0.5 1.0 0.03 2.0 1.5045 0.0633 0.7402 0.3700 

0.5 0.5 1.0 0.06 1.0 1.4838 0.0628 0.7327 0.4050 

0.5 0.5 1.0 0.12 0.5 1.4754 0.0626 0.7235 0.4253 
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Figure 4 Temperature Profile for various values of coupling 

parameter N 

 

 

 

 
Figure 5 Concentration Profile for various values of coupling 

parameter N 

 
Figure 6 Velocity Profile for various values of magnetic 

parameter M  

Figure 7 Microrotation Profile for various values of magnetic 

parameter M 

 

 
 

 
Figure 8 Temperature Profile for various values of magnetic 

parameter M 

 

 
Figure 9 Concentration Profile for various values of magnetic 

parameter M 
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Figure 10 Velocity Profile for various values of mixed 

convection parameter Ri 

 

 
Figure 11 Microrotation Profile for various values of mixed 

convection parameter Ri 

 

 
Figure 12 Temperature Profile for various values of mixed 

convection parameter Ri 

Figure 13 Concentration Profile for various values of mixed 

convection parameter Ri 

 

Figure 14 Velocity Profile for various values of Soret (Sr) and 

Dufour (Df) numbers 
 

Figure 15 Microrotation Profile for various values of Soret (Sr) 

and Dufour (Df) numbers 
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Figure 16 Temperature Profile for various values of Soret (Sr) 

and Dufour (Df) numbers 
 

Figure 17 Concentration Profile for various values of Soret (Sr) 

and Dufour (Df) numbers 

CONCLUSION  

• In this paper, a boundary layer analysis for mixed 

convection heat and mass transfer in an electrically 

conducting micropolar fluid over a vertical plate with 

variable heat and mass flux conditions in the presence of a 

uniform magnetic field, Soret and Dufour effects is 

considered. Numerical results indicates that the higher 

values of the coupling number N (i.e., the effect of 

microrotation becomes significant) result in lower skin 

friction, wall couple stress, and also the lower non-

dimensional heat and mass transfer coefficients in the 

boundary layer compared to that of Newtonian fluid case 

(N = 0). As Ri increase the skin friction coefficient heat 

and mass transfer rates increases while the wall couple 

stress decreases. The increase in the magnetic parameter M 

increases the skin friction coefficient, wall couple stress, 

non-dimensional heat and mass transfer coefficients (Nu 

and Sh). The decrease in Soret number (Sr) (or increase in 

Dufour number Df) results in lower skin friction and heat 

transfer rates and higher wall couple stress and mass 

transfer rates. 
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