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ABSTRACT 
Heat transfer characteristics for a laminar fully developed 

flow in an internally corrugated circular tube with axially 
uniform heat flux with peripherally uniform temperature are 
obtained using the method of fundamental solution and the 
radial basis functions. The internal shape of the tube is 
modelled by cosine function. The nonlinear governing equation 
of temperature field problem was converted into the hierarchy 
of non-homogenous problems using the Picard iteration 
method. The non-homogenous part of the equation was 
interpolated using the radial basis functions. On each iteration 
step the solution of the governing equation consists of general 
solution as linear combination of fundamental solutions and 
particular solution. Boundary conditions were satisfied using 
the boundary collocation method. The results of the numerical 
experiments, that are velocity profiles, temperature field, 
friction factor, Nusselt number, errors of method were 
presented.  

INTRODUCTION 
Heat transfer at fully developed steady laminar flow in 

circular pipes belongs to the classical problems in heat transfer 
analysis {[1], chapter 8}. Usually the authors consider heat 
transfer at constant surface heat flux or constant surface 
temperature. In literature one can find considerations related to 
heat transfer at fully developed steady laminar flow in non-
circular conduits. In paper [2] square conduct was considered 
by means of point matching method. Flow and heat transfer 
characteristics in corrugated ducts confined by sinusoidal and 
arc curves were considered in paper [3] using  finite difference 
technique. The numerical results for triangular, sine, rhombic 
and trapezoidal ducts are given in paper [4], where author use 
least-squares matching techniques. In paper [5] analytical-
numerical method based on Gram-Schmidt orthonormalization 

was used and as an example ducts of circular segment cross 
section were considered. The effects of duct shape on the heat 
transfer at fully developed laminar flow were considered in 
paper [6]. 

 One of non-circular conduits important from practical 
standpoint of heat transfer is an internal finned tubes. The flow 
and heat transfer characteristics investigations have been 
carried out for several finned geometries under various physical 
and operating conditions. In this paper review other papers and 
our analysis are limited only to laminar and fully developed 
flow.  

In papers [8] and [10] only fully developed laminar flow 
was considered in finned tubes. In paper [8] authors using finite 
element method consider tubes with short triangularly shaped 
fins. Whereas in paper [10] flow region was divided in two sub-
regions in which governing equation and some boundary 
conditions are fulfilled exactly and only matching velocity and 
its normal derivatives between sub-regions are fulfilled 
approximately.  

The theoretical analysis of laminar flow and heat transfer in 
internally finned tubes was considered in papers [7], [9], [11-
29]. Moreover, in paper [28] authors present the experimental 
verification of theoretical analysis. The shapes of the cross 
sections of  the tube considered in these papers are given in 
Figure 1. To the best of our knowledge as of yet the internally 
corrugated tubes, presented in Figure 2, haven’t been 
considered in the literature. Fully developed laminar flow and 
heat transfer in such tubes is the subject of this paper. 

In the aforementioned papers for the numerical analysis of 
laminar flow and heat transfer in internally finned tubes 
traditional mesh method namely: finite element method ([9], 
[15], [16], [17], [18], [25], [26], [27], [29]), finite difference 
method ([11], [12], [13], [18], [28]), finite volume method 
([14], [20], [21], [23], [24]) were used. In the last decades the 
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meshless methods became more and more popular because they 
do not need a mesh. One of such meshless methods is the 
method of fundamental solutions (MFS). The advantage of this 
method is its very easy implementation. The MFS was first 
proposed by the Georgian researchers Kupradze and Aleksidze 
[30-31]. Its numerical implementation was carried out by 
Mathon and Johnston [32]. The mathematical analysis 
(convergence and stability) of this method was considered in 
[34-38]. The comprehensive reviews of the MFS for various 
applications can be found in [39-42].  
 

Shape of cross-section Papers 

 
[7], [12], [14], [21], [22] 

 
[8], [9], [22], [23] 

 
[10], [11], [13], [19] 

 
[20] 

 
[16] 

 
[15], [17], [18] 

 
[22] 

 
[25] 

 
[27] 

 
[29] 

 
[26] 

 
[24] 

Figure 1 Shapes of cross section of the tube considered  
in the previous papers 

The purpose of the present paper is application of the MFS 
for laminar flow and heat transfer in the internally corrugated 
tubes. 

NOMENCLATURE 
 
a [m] amplitude of the corrugations  
A [-] dimensionless amplitude of the corrugations 
f [-] friction factor 
M [-] number of interpolation points 
nf [-] number of corrugations  
Nct [-] number of collocation points for the heat flow problem 
Ncv [-] number of collocation points for the fluid flow problem  
Nstf [-] number of source points for the heat flow problem on the 

pseudo-boundary for region of the fluid Ω1 
Nstw [-] number of source points for the heat flow problem on the 

pseudo-boundary for region of the wall Ω2 
Nsv [-] number of source points for the fluid flow problem 
Nu [-] Nusselt number 
p [Pa] Pressure 
P [-] dimensionless wetted perimeter  
r [m] cylindrical coordinate 
R [-] dimensionless cylindrical coordinate 
rc [m] average inner radius of the tube 
Rc [-] dimensionless average inner radius of the tube 
ri [m] inner radius of the tube 
Ri [-] dimensionless inner radius of the tube  
ro [m] outer radius of the tube 
Ro [-] dimensionless outer radius of the tube  
Re [-] Reynolds number 
Stf [-] dimensionless distance between pseudo-boundary and 

boundary of region Ω1 (fluid) for the heat flow problem 
Stw [-] dimensionless distance between pseudo-boundary and 

boundary of region Ω2 (wall) for the heat flow problem 
Sv [-] dimensionless distance between pseudo-boundary and 

boundary for the fluid flow problem 
w [m] axial velocity 
W [-] dimensionless axial velocity 
X [-] dimensionless Cartesian coordinate 
Y [-] dimensionless Cartesian coordinate 
z [m] cylindrical coordinate 
 
Special characters 
γ [-] angle of the repeated element of the tube 
θ [-] angle in cylindrical coordinate system 
θf  [-] dimensionless temperature of the fluid 
θw [-] dimensionless temperature of the wall 
μ [Pa·s] dynamic viscosity 
φ  form of radial basis function  
Φ [-] additional function 
ψ  particular solution for radial basis function for Laplace 

operator 
Ω1  region of the fluid 
Ω2  region of the wall 
 
Subscripts 
av  Average 
f  Fluid 
g  general solution 
p  particular solution 
w  wall  
 
Superscripts 
(i)  iteration step 
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STATEMENT OF THE PROBLEM 
The present paper provides solution of the momentum and 

energy equation for steady, incompressible laminar flow in 
internally corrugated tube. A typical cross section of the 
corrugated tube is depicted in Figure 2. 
 

 
Figure 2 Typical cross-section of the corrugated tube 

(for number of corrugations nf = 4) 
  
Shape of the wall of the tube is described by two radiuses: 

constant outer radius ro and inner radius ri which is given by the 
following formula: 

  










 cosarr ci

     (1) 

where rc is the „average” inner radius of the tube, a is the 
amplitude of corrugations, γ is the angle of the repeated element 
of the tube, which can be given by:  

fn
         (2) 

where nf is the number of corrugations. 
Moreover the outer radius of the tube ro should fulfil the 
following condition: 

arr c 0        (3) 

Introducing the dimensionless quantities:   

,
c

o
o r

rR   ,
c

i
i r

rR   ,1
c

c
c r

rR
cr
aA      (4) 

equation (1) becomes 
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     (5) 

These dimensionless radiuses are shown in Figure 3 where 
the repeated element of the tube is presented. Region of the 
fluid is signed as Ω1 whereas region of the wall is signed as Ω2.  

 

 
Figure 3 The repeated element of the tube  

with dimensionless radiuses 
 

Governing momentum equation 
Steady fully developed laminar flow of incompressible 

Newtonian fluid in the tube with constant cross section is 
governed by equation in the form (in cylindrical coordinates r, 
θ, z):  
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where w(r,θ) is the axial velocity, μ is the dynamic viscosity, 
dp/dz is the constant pressure gradient in z-direction.  
Let’s introduce the following dimensionless variables:  
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Now, the governing equation (6) takes the following form:  
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Introducing additional function:  

     1
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equation (8) takes the following form (Laplace equation):  
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For determination of fluid velocity in region Ω1, governed 
by equation (8) the following boundary conditions should be 
used (resulting from symmetry of the problem and non-slip on 
solid boundary): 

CAABRW  and boundary on   0),(






    (11) 

BCRW boundary on   0),(      (12) 
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For equation (10) these boundary conditions take the forms:  

CAABR  and boundary on   0),(






    (13) 

  BCR boundary on   1R
4
1),( 2      (14) 

Dimensionless average fluid velocity Wav is defined by: 
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Product of friction factor f and Reynolds number Re can be 
expressed as:  
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where P is dimensionless wetted perimeter: 
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Governing energy equation 

The analysis is based on the following assumptions:  
1) heat flux through the outer boundary of the tube on unit 

length of the tube is constant;  
2) heat transfer in axial direction can be neglected;  
3) temperature profile in cross sections of the tube is steady 

(heat transfer between the wall and the fluid is fully 
developed).  
On the base of above assumption energy equation has form: 
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where θf(R,θ) is dimensionless temperature of the fluid in 
region Ω1, which is defined as: 
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where Tf(r,θ) is temperature in the point (r,θ), To is temperature 
on the wall DE, kf is the thermal conductivity of fluid, qav is 
average heat flux through external surface of the tube. 

Average dimensionless temperature of fluid is defined as: 
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and Nusselt number is obtained as: 
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The governing equation for steady heat transfer in the wall 
of the tube has the form:  
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where θw(R,θ) is dimensionless temperature of the wall in 
region Ω2. Definition of θw(R,θ) is similar to the definition of 
dimensionless temperature of the fluid θf(R,θ) (equation (18)) 
but instead of Tf(r,θ) there is wall temperature Tw(r,θ) and 
instead of kf there is thermal conductivity of the wall material 
kw. 

For heat transfer governed by equation (17) for region Ω1 
and equation (20) for region Ω2 the following boundary 
conditions are used:    
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CEBDRw  and boundary on   0),(








   (25) 

BCRw boundary on   0),(      (26) 

where K = kw/kf is dimensionless thermal conductivity of wall, 
n is normal direction.  

These boundary conditions result from the symmetry of the  
problem, continuity temperature and heat flux on boundary BC 
and given temperature To on the outer wall of the tube.  

Boundary value problem of flow and heat transfer in 
corrugated tube is formulated by coupled system of equations  
(10), (18), (22) with boundary conditions (13-14), (23-26). 
Problem is non-linear due to equation (18) in which on the 
right-hand side the average value of fluid temperature is 
unknown.  

THE PROPOSED METHOD OF SOLUTION 
 
The proposed method of solution for the fluid flow problem  

Fluid flow problem is governed by non-homogeneous 
equation (8) transformed to Laplace equation (10) with 
unknown function Φ. Using the MFS the approximate solution 
of equation (10) takes the following form: 

   



Nsv

j
jj rcYX

1
ln,      (27) 

where Nsv is the number of source points on pseudo-boundary, 
cj (j = 1,2,...,Nsv) are unknown coefficients, rj is distance 
between the point (X,Y) and the source point (Xj,Yj): 

   22
jjj YYXXr      (28) 

The pseudo-boundary has similar shape as the boundary of the 
considered region and is located in distance Sv from the 
boundary of region Ω1. 
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The unknown coefficients cj (j = 1,2,…,Nsv) are calculated 
using the boundary collocation method at Ncv collocation 
points which are located on the boundary of region Ω1 [43]. The 
distribution of source points and collocation points is depicted 
in Figure 4. 
 

 
Figure 4 Distribution of source points and collocation points 

for the fluid flow problem 
 
The proposed method of solution for the heat flow problem 

In order to solve the problem of heat flow in the region Ω1 
described by nonlinear equation (18) the Picard iteration 
method is used. In the method the value of temperature from 
previous iteration step is used in the right-hand side of equation 
(18). This way the nonlinear equation (18) is transformed into 
the hierarchy of non-homogenous equations in the following 
form: 
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where i is iteration step number. The right-hand side of the 
above equation in i-th iteration is signed by function g(i), which 
can be interpolated using radial basis functions (RBFs) at M 
interpolation points which are located inside of region Ω1. At 
any point (X,Y) in region Ω1 function g(i)(X,Y) can be expressed 
by: 
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


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m
mm

i rYXg
1

)( ,       (30) 

where φ is assumed form of RBF, rm (m = 1,2,...,M) is distance 
between the point (X,Y) and m-th interpolation point (Xm,Ym): 

   22
mmm YYXXr      (31) 

In order to determine the unknown coefficients αm the 
following system of equations should be solved: 
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The solution of the non-homogenous equation (29) in i-th 
iteration step has the form: 

     YXYXYX i
fp
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where θfg is general solution of homogenous equation, whereas 
θfp is particular solution of non-homogenous equation. 

The particular solution has the following form: 
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where ψ is the particular solution for the assumed form of the 
RBF for Laplace operator: 

   mm rr  2       (35) 

Coefficients αm (m = 1,2,...,M) in equation (34) are known from 
interpolation of the right-hand side of equation (29) by solving 
system of equations (32). 

In the paper multiquadric function (MQ) was used as RBF. 
The MQ has the following form: 

  22 crr mm        (36) 

where c is the shape factor. The particular solution for MQ for 
Laplace operator has the following form: 
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The general solution in i-th iteration step is the solution of 
the homogenous equation: 

0)(2  i
fg        (38) 

The solution of above equation using MFS can be written as a 
linear combination of fundamental solutions: 
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where Nstf is the number of source points. The source points 
are located on the pseudo-boundary which is in distance Stf 
from the boundary of considered region Ω1.  

Using the MFS the approximate solution of equation (22) 
has a similar form: 
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


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n
nnw rhYX

1
ln,      (40) 

where Nstw denotes number of source points. The pseudo-
boundary is located in distance Stw from the boundary of the 
considered region Ω2. 

Coefficients dj (j = 1,2,...,Nstf) and hn (n = 1,2,...,Nstw) can 
be calculated using the boundary collocation method in Nct 
collocation points. The distribution of the interpolation points 
inside the region Ω1, collocation points on the boundaries of the 
considered regions Ω1 and Ω2 and source points on pseudo-
boundaries for the heat flow problem is illustrated in Figure 5. 
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Figure 5 Distribution of source points, collocation points and 

interpolation points for the heat flow problem 
 

NUMERICAL ALGORITHM OF THE PROPOSED 
METHOD 

In Table 1 subsequent steps of the proposed method are 
presented. 
 

Table 1 Numerical algorithm of the proposed method 

STEP 1 Input dimensionless parameters describing the 
considered region: γ, A, Ro and dimensionless 
thermal conductivity of wall K. 

STEP 2 Input parameters of the proposed method: for the 
fluid flow problem (Nsv, Sv) and for the heat flow 
problem (Nstf, Nstw, M, Stf, Stw, c). 

STEP 3 Solve the problem described by equation (10) and 
boundary conditions (13-14). 

STEP 4 Calculate dimensionless average fluid velocity Wav 
and product of f·Re. 

STEP 5 Take 1/ )0(
sr 

)0( ff   in the whole region Ω1 and i = 

1. 

STEP 6 Interpolate the right-hand side of equation (29) 
using RBFs. 

STEP 7 Fulfill the boundary conditions (23-26) for the 
region Ω1 and Ω2. 

STEP 8 Calculate average fluid temperature θf av. 

STEP 9 Check end condition for iteration process: 
If tol  STOP 
If tol  take i = i + 1 and go to STEP 6 

(δ – error of iteration process convergence,  
tol – assumed tolerance of δ) 

 
 
Dimensionless average fluid velocity Wav and dimensionless 

average fluid temperature θav are calculated numerically. 
In order to fulfil boundary conditions (in STEP 3 and 

STEP 7) two methods can be applied. If number of source 
points equals number of collocation points than the system of 
equations is solved using Gaussian elimination. If number of 
collocation points is greater than number of source points the 
system of equations is solved by means of singular value 
decomposition (SVD) method.  

RESULTS 
Numerical experiments were conducted for some selected 

parameters of considered region (nf  = {3; 4; 5; 6};  
A = {0,1; 0,2; 0,3; 0,4}). In each of all analyzed problems 
dimensionless thermal conductivity K was equaled 50 and 
dimensionless outer radius of the tube Ro was equaled 1,5.   

In Figure 6-9 equivelocity lines are presented for the same 
number of corrugation (nf = 3) and different dimensionless 
amplitudes of corrugation (A = {0,1; 0,2; 0,3; 0,4}). The 
corresponding values of dimensionless average fluid velocity 
Wav and product of friction factor and Reynolds number f·Re 
are presented in Table 2. The greater the amplitude of 
corrugation the smaller fluid velocity (and dimensionless 
average velocity) and the greater product of friction factor and 
Reynolds number f·Re.  

Equivelocity lines for the same dimensionless amplitude of 
corrugation (A = 0,2) and different number of corrugations  
(nf = {3; 4; 5; 6}) are presented in Figure 10-13. In Table 3 
dimensionless average fluid velocity Wav and product of friction 
factor and Reynolds number f·Re are summarised. The average 
fluid velocity Wav and product f·Re decreases with increasing 
number of corrugation nf. 

In Figure 14-17 isotherms are presented for different 
dimensionless amplitudes of corrugation (A = {0,1; 0,2; 0,3; 
0,4}) and the same number of corrugations (nf = 3). The 
corresponding values of dimensionless average fluid 
temperature θf av and Nusselt number Nu are summarised in 
Table 4. On the base of these results the following relation can 
be observed – the greater amplitude of the corrugation A the 
greater average fluid temperature and the greater Nusselt 
number Nu. 

Isotherms for different number of corrugations (nf = {3; 4; 
5; 6}) and the same dimensionless amplitude of corrugation 
(A = 0,2) are illustrated in Figure 18-21. In Table 5 the 
corresponding values of dimensionless average fluid 
temperature θf av and Nusselt number Nu are presented. One can 
be observed – the greater number of corrugations the greater 
dimensionless average fluid temperature θf av and the greater 
Nusselt number Nu. 

In Table 6 root mean square (RMS) errors of fulfilment 
boundary conditions for the fluid flow problem are 
summarised. The errors were obtained for nf = 3; A = 0,3; 
Ncv = 80; Nsv = 45 and Sv = 0,4. 
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Figure 6 Equivelocity lines for nf = 3; A = 0,1 

 

 
Figure 7 Equivelocity lines for nf = 3; A = 0,2 

 

 
Figure 8 Equivelocity lines for nf = 3; A = 0,3 

 

 
Figure 9 Equivelocity lines for nf = 3; A = 0,4 

 
Table 2 Average fluid velocity Wav and product f·Re for 

different values of corrugation amplitude 
nf A Wav f·Re 

3 

0,1 0,1207 64,04 
0,2 0,1092 64,66 
0,3 0,0940 66,44 
0,4 0,0785 69,83 

 
Figure 10 Equivelocity lines for nf = 3; A = 0,2 

 

 
Figure 11 Equivelocity lines for nf = 4; A = 0,2 

 

 
Figure 12 Equivelocity lines for nf = 5; A = 0,2 

 

 
Figure 13 Equivelocity lines for nf = 6; A = 0,2 

 
Table 3 Average fluid velocity Wav and product f·Re for 

different values of corrugation amplitude 
A nf Wav f·Re 

0,2 

3 0,1092 64,66 
4 0,1017 62,26 
5 0,0946 59,41 
6 0,0845 55,83 
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Figure 14 Isotherms for nf = 3; A = 0,1 

 

 
Figure 15 Isotherms for nf = 3; A = 0,2 

 

 
Figure 16 Isotherms for nf = 3; A = 0,3 

 

 
Figure 17 Isotherms for nf = 3; A = 0,4 

 
Table 4 Average fluid temperature θ f av and Nusselt number Nu 

for different values of corrugation amplitude 
nf A θf av Nu 

3 

0,1 -0,5153 3,88 
0,2 -0,4596 4,35 
0,3 -0,3604 5,55 
0,4 -0,2581 7,75 

 

 
Figure 18 Isotherms for nf = 3; A = 0,2 

 

 
Figure 19 Isotherms for nf = 4; A = 0,2 

 

 
Figure 20 Isotherms for nf = 5; A = 0,2 

 

 
Figure 21 Isotherms for nf = 6; A = 0,2 

 
Table 5 Average fluid temperature θ f av and Nusselt number Nu 

for different values of corrugation amplitude 
A nf θ f av Nu 

0,2 

3 -0,4596 4,35 
4 -0,3989 5,01 
5 -0,3526 5,67 
6 -0,3213 6,22 
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Table 6 RMS errors of fulfilment boundary conditions  
for the fluid flow problem 

boundary condition RMS error 

AB 0),(






R  8,2425·10-7 

BC 0),(  R  2,2363·10-6 

CA 0),(






R  1,2000·10-5 

 
The convergence of iteration process was obtained for all 

analysed cases. RMS errors of iteration process convergence is 
presented in Table 7 (example for nf = 3; A = 0,3). The errors 
were obtained for Nstf = 80; Nstw = 20; Nct = 310; Stf = 0,25; 
Stw = 0,4; M = 518; c = 0,1. The RMS error of interpolation 
was equal 3,2118·10-2. 

 
Table 7 RMS errors of iteration process convergence 

iteration step 
i 

RMS error 

1 1,4257·10-2 
2 3,3325·10-3 
3 4,5883·10-4 
4 1,1289·10-4 
5 2,5741·10-5 
6 5,9877·10-6 
7 1,3969·10-6 
8 3,2634·10-7 
9 7,6278·10-8 
10 1,7831·10-8 

 
The Table 8 presents RMS errors of fulfilment boundary 

conditions for the heat flow problem for nf = 3; A = 0,3. The 
presented results were obtained for Nstf = 80; Nstw = 20; 
Nct = 310; Stf = 0,25; Stw = 0,4; M = 518; c = 0,1.   

 
Table 8 RMS errors of fulfilment boundary conditions  

for the heat flow problem 
boundary condition RMS error 

AB 0
),(







 Rf  3,7385·10-6 

CA 0
),(







 Rf  4,2363·10-6 

BD 0),(






 Rw  8,9495·10-7 

DE 0),(  Rw  1,0273·10-6 

CE 0),(






 Rw  7,7662·10-7 

BC (I condition) ),(),(  RR wf   3,0033·10-6 

BC (II condition) 
n
RK

n
R wf







 ),(),(   5,6437·10-2 

 

CONCLUSIONS 
In the paper the fluid and heat flow problem was considered 

numerically using the MFS and RBFs. The following 
conclusions can be drawn from this study: 

1. Product of friction factor and Reynolds number f·Re 
increases with increasing dimensionless amplitude of 
corrugation A and decreases with increasing number of 
corrugations nf. 

2. Nusselt number Nu increases with increasing 
dimensionless amplitude of corrugation A and with 
increasing number of corrugations nf. 

3. Application of the MFS and the RBFs give satisfying 
results. The worse fulfilled boundary condition was the 
second condition on BC boundary for the heat flow 
problem (condition for continuity heat flux in normal 
direction n).  
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