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ABSTRACT 

A real-time response framework based on the Proper 
Orthogonal Decomposition (POD) method is proposed to 
provide a solution that would not only take advantage of the 
great detail and accuracy of a grid-converged 3D computational 
fluid dynamics (CFD) analysis but also calculate, in real-time, 
flow features and loads that result from wind-induced drag and 
lift forces on Photo-Voltaic (PV) systems. The key is to 
generate beforehand and off-line an extensive set of solutions, 
i.e. pressure and shear stress distributions over the PV system 
surface, using CFD within a predefined design space (module 
sizes, wind speeds, topographies, roof dimensions, pitch, etc.). 
These solutions are then organized to form the basis snapshots 
of a POD decomposition matrix. An interpolation network 
using radial-basis functions (RBF) will be employed to predict 
the solution from the POD decomposition given a set of values 
of the design variables. The entire POD matrix and RBF 
interpolation network are stored in a database that can be 
accessed remotely by the wind-load calculator tool and 
therefore predict the solution, flow features and loads, in real 
time. The trained POD-RBF acts as a multifaceted interpolation 
that preserves the physics of the problem and has been tested 
and validated by performing the fast algebraic interpolation to 
obtain the pressure distribution on the PV system surface and 
comparing them to actual grid-converged fully-turbulent 3D 
CFD solutions at the specified values of the design variables 

(wind speed and angle).   
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Dynamic Viscosity 
Density 
POD Snapshot matrix 
POD Covariance matrix 
POD Basis 
Eigenvectors 
Eigenvalues 
POD Amplitudes 
Design parameter space 
Radial-basis function (RBF) 
RBF smoothing parameter 
Interpolation matrix 
Interpolation coefficients 
 
  

INTRODUCTION 

Wind loading calculation for structures are currently 
performed according to the ASCE (American Society of Civil 
Engineer) 7 standard. The values in this standard were 
calculated from simplified models that do not necessarily take 
into account relevant characteristics such as those from full 3D 
effects, end effects, turbulence generation and dissipation, as 
well as minor effects derived from shear forces on installation 
brackets and other accessories. This standard does not have 
provisions to handle the majority of rooftop PV systems, and 
attempts to apply this standard may lead to significant design 
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errors as wind loads are incorrectly estimated. Therefore, an 
accurate calculator would be of paramount importance for the 
preliminary assessments of the uplift and down force loads on a 
PV mounting system, identifying viable solutions from 
available mounting systems, and therefore helping reduce the 
cost of the mounting system installation by streamlining the 
process. The challenge is that although a full-fledged 3D CFD 
analysis would properly and accurately capture the complete 
physical effects of air flow over PV systems, it would be 
unsuitable for this tool, which is intended to be a real-time 
calculator. This is because in order to arrive at a solution that 
can be deemed accurate and grid-independent, CFD routinely 
requires enormous computation times even in powerful and 
massively parallel computer platforms.                                                                

Although CFD is a well-established and proven accurate 
analysis tool, a major drawback of CFD analysis is that it 
requires meticulously structured and generally static meshes in 
order to arrive at accurate solutions; meshes which demand 
significant human interaction time to construct. For this reason 
much of the effort expended in current CFD analysis is directed 
toward the development of suitable CFD grids. The lack of 
automation in this mesh generation process also poses 
significant limitation on the usefulness of CFD analysis for the 
system design. Development of a truly automated, robust CFD 
algorithm for viscous flow applications is a vital step toward 
parametric design optimization. 

The solution approach is based on the POD method to build 
a fast response framework that laps into the power and 
precision of CFD analysis without requiring its extensive setup 
times and massive computational requirements, while 
preserving the physics and thus the accuracy of the solution. 
The concept of POD began over a century ago as a statistical 
tool developed by Pearson [1]. Since that time, this method has 
been redeveloped under various names and in vastly different 
applications. Depending on how the input data is utilized POD 
is also similarly known as Karthunen-Loeve decomposition 
(KLD), principal component analysis (PCA) or singular value 
decomposition (SVD) [2][3]. Furthermore, this technique has 
been implemented in various applications from signal 
processing and control theory, human face recognition, data 
compression, fluid mechanics, parameter estimation and many 
others. The POD can be used to produce a low-order, but high 
quality, approximation of the solution field. More specifically 
POD is often capable of capturing dominant components 
(called principal components) of the data with typically only a 
few modes. This is due to the ability of POD to offer the best 
basis for least-squares approximation defining a set of vectors 
using a rotated coordinate frame, where the angles of rotation 
are denoted as the POD basis [4][5]. The integration of POD 
into design and optimization problems arose due to the 
demanding task of repeatedly solving forward problems while 
varying certain parameters in the process of seeking the 
solution of an ill-posed inverse problem. The POD method 
capitalizes on the correlation between the known direct 
problem and the sought-after solution [6][7]. Of course, the 
primary reason POD is a favourable in solving design and 
optimization problems, is that it provides many desired features 

such as model reduction, error filtration and regularization. An 
application involving design and optimization coupling the 
POD and CFD analysis was recently reported in the literature 
[8] showing significant solution acceleration and adaptability. 
More recently the method was applied to the inverse problem 
of parameter estimation in mechanics and reported in [9]. 

BACKGROUND 

To perform CFD analysis over the parameterized set of PV 
systems, the incompressible viscous flow equations that govern 
the behaviour of air flow must be solved. These are the 
incompressible Navier-Stokes equations, which, in the Eulerian 
frame of reference, have the following form: 
 

  (1) 

 
Where ρ  is the density and is the µ  dynamic viscosity. The 

field variable are the velocity field, , and the pressure, p . All 

field variables are functions of space and time, in a fixed 
domain Ω surrounded by a closed boundary Γ. The explicit 
space-time dependency of each dependent variable has been 
omitted for simplicity of notation.  

To build the POD and interpolation network the first step in 
the implementation of the POD is the creation of the snapshot, 
which is the collection of N sample values of u (field under 
consideration). In this case, u stores the discrete values of wall 
shear stress and pressure. Next, a collection of M snapshots 
denoted as uj (for j = 1, 2  ... M) are generated by altering the 
parameter(s) upon which the field depends on. In the current 
scope, these refer to the module configuration, the pitch, and 
the wind velocities. Each uj is the stored inside rectangular N x 
M matrix U denoted as the snapshot matrix. The goal of POD is 
to establish a set of orthonormal vectors Φj (for j = 1, 2  ... M) 
resembling the snapshot matrix U in an optimal way. The 
matrix Φ is commonly referred to as the POD basis and is 
given by: 

 

Φ = U ⋅ V   (2) 

 
Where V represents the eigenvectors of the covariance 

matrix C and can be easily be derived using the nontrivial 
solution of the general eigenvalue problem denoted as: 

 

C ⋅ V = Λ ⋅ V   (3) 

 
Λ represents a diagonal matrix that stores the eigenvalues λ 

of the covariance matrix C, which is defined as C = UT
∙U. It 

may also serve to note that C is symmetric and positive definite 
and λ is always real and positive. Typically λ is sorted in a 
descending order and can often be attributed to the energy of 
the POD mode (base vector). This energy decreases rapidly 
with the increasing mode number. Since higher modes hold 
little energy (or data) of the system they can be discarded 
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without influencing the accuracy of representation. This is 
known as the truncation of the POD basis and is accomplished 
by deciding which fraction of the energy of the system can be 
neglected in later calculations. The resulting POD basis Φ, 
referred to as the truncated POD basis consist of K < M vectors 
and is given by: 

 

ˆΦ̂ ⋅= U V   (4) 

 
This also corresponds to the truncation of the eigenvector 

matrix, denoted as V̂ , which stores the first Kth eigenvectors of 

C. The truncated POD basis is also known to be orthogonal 

ΦT ⋅Φ = Iand presents optimal approximation properties. Once 

Φ̂  is known, the snapshot matrix U can be regenerated and 

approximated as Φ̂ ⋅U = A , where A stands for the amplitudes 

associated with u
j
. Now referring to the orthogonality of Φ̂ , 

the amplitudes can be determined from ˆ TΦ ⋅A = U . 

At this time, data may begin to be extrapolated for 
information on the current problem. To do this, consider a 
vector p, which stores the parameters on which the solution 
depends. Next, the amplitudes A are defined as a nonlinear 
function of the parameter vector p. The unknown constant 
coefficients of the current combination are gathered in a matrix 
B, as A = B ⋅ F , where F is defined as the matrix of interpolation 
functions, where the set of interpolation functions fi(p) can be 
chosen arbitrarily. However, some choices of interpolation 
functions may lead to an ill-conditioned system of equations for 
the coefficient matrix B. For instance, Radial-basis functions 
(RBF) can be used as the interpolating function of choice due to 
their nice approximation and smoothing properties. One of such 
RBFs is the Hardy inverse Multiquadric [10][11]: 

 

f
i
(p) = f

i
( p − pi ) =

1

p − pi
2

+ c
2

  (5) 

 
Where c is defined as the RBF smoothing factor and pi 

corresponds to the same parameter p used to generate ui (for i = 

1, 2 … M). The matrix of coefficients B can be evaluated by 

simple inversion as B = A ⋅F-1 , where F is the matrix of 
interpolation functions defined as set of M identical vectors f(p) 

defined as {f}
j
= f

j
p − p j( ) . At this point it should be stressed 

that the matrix of amplitudes A and the matrix of coefficients B 
are known using the above relations. Now the following 
equation is arrived at: 

 

ΦT ⋅ U = B ⋅ F   (6) 

 

Using the orthogonality of Φ̂ , it can easily be seen that the 

snapshot matrix U can be approximated as U(p) ≈ Φ⋅ B ⋅ F(p) , 

such that after the coefficient matrix B is evaluated, a low 
dimensional model can be set in vector form as: 

 

ˆ( ) ( )≈ Φ ⋅ ⋅u p B f p   (7) 

 
This model will now be referred to as the trained POD-RBF 

network and is completely capable of reproducing the unknown 
field that corresponds to any arbitrary set of parameters p. This 
can be thought of as a numerical eingenfunction expansion of 
the solution reminiscent of the variation of parameters (or 
integral transform) method for the analytical solution of partial 
differential equations.   
 

PARAMETERIZATION OF THE PV SYSTEM 

CONFIGURATIONS AND SOLID MODELING 

To create the fluid domain for CFD analysis, several 
geometrical configurations were created to represent the roof-
mounted PV systems. Sets of representative values of the 
design variables or parameters were selected so as to cover a 
wide design space. That is, selected standard PV module 
configuration arranged in a rectangular fashion as well as a 
discrete set of pitch angles between 18 degrees, 22.5 degrees, 
and 26.5 degrees. The angles were selected because they are a 
subset of typical roof slopes used in ASCE 7 design tables. The 
solid models were built using SolidWorks® (Dassault 
Systemes, Concord, MA) and the fluid domain was extracted so 
that it extends far away from the region of influence of the 
system 

Commercial PV Modules  
PV modules currently used for residential installations have 

power output of 200 to 260 Watts. This class of modules has 
dimensions of 60” to 66” by 36” to 39” and a frame thickness 
of 1.25” to 2”. Given these ranges, nominal module dimensions 
were selected to be 60” x 39” x 1.5”. 

Arrangement of Solar Panels 
The number of modules selected for the PV array was 

arbitrarily selected but based on common PV array 
configurations and the layout was partially constrained by the 
building dimensions. A total of 27 modules were arranged in 3 
rows and 9 columns. A system with this number of modules 
would have a nominal output rating of 5 to 7 kW. This is also in 
the range of typical residential installations. 

Standard house roof angles 
The base case model is configured as a single-story building 

with a rectangular base and a gable roof. Three different roof 
slopes (18 degrees, 22.5 degrees, 26.5 degrees) were selected 
for the initial evaluations. These represented roof angles used in 
the ASCE 7 wind load tables and are common roof slopes 
found in high wind regions. The final configuration was then 
arbitrarily modeled using the standard 26.5 degree (6:12 gable 
roof).  

CFD ANALYSIS OVER THE PARAMETRIZED SET OF 

PV SYSTEMS 

The fluid domains of the solid models generated were then 
discretized using a combination of tetrahedral and hexahedral 
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cells and tested for grid-convergence using Star-CCM+. A 
realizable κ-ω turbulent model was implemented and 
commonly used values of inlet turbulent intensity were 
imposed. The wind speed was introduced as a third design 
variable or parameter. The grid-converged CFD solution over 
each of the parameterized PV system was then post-processed 
to integrate the wall shear stress and pressure over the entire 
surface of the system to yield the sought after values of wind-
load (uplift or downforce). Due to the nonlinear nature of the 
fluid flow phenomenon, it is expected that the wind-loads will 
exhibit a highly nonlinear relationship with respect to the 
design parameters and possibly a non-monotonic one that can 
lead to multiple minima and/or maxima. 

Computational Domain 
The parameterized model was used to create the 

computational domain. In order to obtain fully developed flow 
and capture flow features downstream and in the vicinity of the 
house/PV panel assembly, a computational domain was built 
using a bounding rectangular box of the dimensions depicted in 
Figure 1. The dimensions correspond to the following locations 
in reference to a coordinate system placed at the geometric 
center of the base of the house. The hydraulic diameter (HD) is 
the chord length of the house (360”), the inlet placed 5 HD 
upstream (-X) of the origin, the outlet placed 10 HD 
downstream (+X) of the origin, the sides placed 5 HD at either 
side (-Z, Z+) of the origin, and the top placed 5HD above (Y+) 
the origin. 

Meshed Computational Domain 
After the computational domain was completed, the mesh 

was generated using predominantly hexahedral cells with 
trimmed cells near the boundaries. The use of thin, prismatic 
cells near the wall boundaries provides appropriate boundary 
layer resolution required in order to make use of the κ-ω SST 
turbulence model. Volumetric mesh controls were used to 
refine the areas near the house and panels. The final mesh was 
arrived at through a grid-convergence study with a number of 
about 10 million cells.  

 

 

Figure 1 Computational domain dimensions. 

 

Figure 2 Meshed computational domain. 

 

Physics Models 
For the analysis, an incompressible flow model with κ-ω 

SST turbulence with two-layer, all y+ wall treatment scheme 

was used. One initial case was run with the κ-ε model to 
initialize subsequent runs with the κ-ω model. The κ-ω SST 
model offers improved performance for boundary layers under 

adverse pressure relative to the κ-ε model. The SST model has 
seen fairly wide application in the aerospace industry, where 
viscous flows are typically resolved and turbulence models are 
applied throughout the boundary layer. Potentially more 
accurate models such as Large Eddy Simulation (LES) and 
Detached Eddy Simulation (DES) are not considered for the 
time being since they require excessively higher mesh 
resolution and computational expense. 

The analysis was initially run in steady state, after which the 
inherently unstable nature of the flow prompted the use of an 
unsteady (transient) solver. A first-order implicit unsteady 
solver was used with a second-order up-winding scheme for 
convective derivatives and flux limiters in all cases.  

Boundary Conditions 
Once the control volume was meshed, the boundary 

conditions were applied to the model. An operating pressure of 
1 atm, an uniform inlet velocity profile (provides maximum 
stresses on roof), a density of 1.18415 kg/m3, a viscosity of 
1.85508e-05 Pa-s, a 5% turbulent intensity, a non-reflective 
pressure outlet, and zero gauge total pressure were applied. 
Also a smooth wall side condition to the ground and symmetry 
to the top of bounding box were applied.  

Validation of POD Interpolation Network  
The first step in the implementation of the POD is the 

creation of the snapshot which is the collection of N sampled 
values of u - the field under consideration. In this case, u stores 
the discrete values of stress (normal and shear). The panel 
configuration consists of 9x3 PV modules arranged as shown in 
Figure 3.  
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Figure 3 Panel configuration of 9x3 standard PV modules. 

Each standard PV module is 39”x60”, so a point distribution 
for POD sampling was setup with 13x20 points per PV module 
separated 3” with a margin of 1.5”. This point configuration 
and spacing is shown in Figure 4. Therefore the number of 
sampled values of wall shear stress and pressure on the panel is 
N=(9x3)x(13x20)=7,020. This N value provides sufficient 
resolution for the wall shear stress and pressure distribution on 
the panel as well as for its integration to render the lift force.  

Next, a collection of M snapshots denoted as uj (for j = 1, 2 

… M) are generated by altering the parameters upon which the 
field depends on. In the current scope, these refer to the wind 
speed (80mph to 200mph, in 20mph increments) and wind 

angle (360° around, in 30° increments) for a total number of 
snapshots generated of M=91. Each u

j is then stored inside a 
rectangular N x M matrix U denoted as the snapshot matrix. 
Note that the dimensions of the snapshot matrix U are 
7,020x91. 

 

Figure 4 Point distribution and spacing on PV module for POD 
sampling. 

 
RESULTS 

CFD Results 
A total of ninety-one (91) configurations were defined by 

altering two input parameters: wind speed (80mph to 200mph, 

in 20mph increments) and wind angle (360° around, in 30° 
increments). The number of CFD runs was reduced to only 
twenty-eight (28) by taking advantage of symmetry and by 

placing PV panels on either side of the gable roof in order to 
render two or four solutions in one CFD run.  

Figure 5 shows plots of representative streamlines colored 
by velocity magnitude and pressure contours on the panel 
surface, roof, and ground. The results shown in Figure 5 
correspond to a wind speed of 100mph and wind angles of 0˚, 
30˚ (or 330˚), and 60˚ (or 300˚). The plots were rendered at a 
specific time value of the time-accurate CFD analysis when the 
total force generated on the panel (monitored during the CFD 
run) was at a maximum value. Notice the clear distinction of 
the pressure gradient on the PV system surface as well as its 
nonlinear behavior.  
 

  

Figure 5 Streamlines colored by velocity and pressure contour 
plot of panel assembly, roof, and ground at 100mph wind 

speed. Configurations are: 0˚ (Top Left), 30˚ (Top Right), 60˚ 
(Bottom). 

 
The analysis configuration schedule is shown in Table 1 

with the resulting values of average pressure in psf. Again, 
these values of average pressure on the PV system were 
rendered at a specific time value of the time-accurate CFD 
analysis when the total force generated on the panel (monitored 
during the CFD run) was at a maximum value.  
 

POD Results 
After the CFD computations were performed for all cases 

and the 7,020x91 POD snapshot matrix U was formed, the 
decomposition was performed and tested. The 91x91 
covariance matrix C was formed as C = UT

∙U followed by a 
standard eigenvalue decomposition which produced the results 
shown in Figure 6. Note that the 91 eigenvalues are displayed 
in logarithmic scale showing a maximum value of about 109 
and a minimum value of about 10-5. More importantly, the 
eigenvalues decrease very rapidly from the largest value to less 
than 103 after the first 12 eigenvalues, indicating that most of 
the system information (energy) is contained and can be 
extracted from the first few eigenvalues using a truncated POD 
basis. 

 
 
 
 

60”

39”

1.5”

1.5”

3”

3”
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Table 1 CFD analysis configuration schedule 
 

 
 

 
Figure 6 Eigenvalues of the POD covariance matrix sorted in 

descending order. 
 

A truncated POD basis Φ̂  was built by using only the first 

12 eigenvalues and eigenvectors V̂  as ˆΦ̂ ⋅= U V . Then the 

POD snapshot matrix was reconstructed as ˆ
w

Φ ⋅U = A where 

the amplitudes are: ˆ TΦ ⋅A = U . The pressure field is then 

obtained from each row of the reconstructed POD snapshot 

matrix 
w

U . To illustrate the accuracy of the POD truncation a 

test is performed comparing the CFD-generated pressure 
distribution and the POD-generated pressure distribution 
truncated after 12 eigenvalues for a wind speed of 140 mph and 

a wind angle of 30°. This comparison is shown in Figure 7(a) 
and 7(b) respectively revealing an almost perfect qualitative 
accuracy. The relative RMS error between these two solutions 
was found to be just 0.025%, again revealing the high accuracy 
of the truncated POD approximation. 

 

 

 
Figure 7 Pressure contours on PV panel at 140 mph and 30°. 

(a) CFD-generated and (b) Truncated POD-generated. 
 

POD-RBF Interpolation Results 
The trained POD-RBF interpolation network shown in 

Eqns. (5)-(7) was implemented and tested. The design 
parameters p where in this case chosen to be the wind speed 

p1=V and the wind angle p2=β in this particular order. In 
addition, the RBF smoothing factor c in Eqn. (5) was chosen so 
as to produce a well-conditioned interpolation capable of 
generating smooth evaluations outside the collocation points 
p1={80,100,…,200}, p2={0,30,…,360}. This is accomplished 
by selecting a value of c that produces an interpolation matrix F 
with a high condition number but within the range of the 
precision used for the floating-point representation of the 
variables (double-precision in this case). For this case, the 
smoothing factor was selected to be: 

P

Pw

Pressure (psf) 
Speed\Angle 

0˚ 30˚  
(330˚) 

60˚ 
(300˚) 

90˚ 
(270˚) 

80 mph -10.39 -8.89 -5.44 -7.57 

100 mph -16.25 -13.89 -8.43 -11.83 

120 mph -23.42 -20.01 -12.15 -17.03 

140 mph -31.90 -27.24 -16.74 -23.17 

160 mph -41.69 -35.59 -21.83 -30.26 

180 mph -52.79 -45.05 -27.60 -38.29 

200 mph -65.20 -55.63 -34.50 -47.26 

     

Pressure (psf) 
Speed\Angle 

120˚ 
(240˚) 

150˚ 
(210˚) 

180˚  

80 mph -8.36 -8.35 -6.44 
 

 

100 mph -13.07 -13.05 -10.05  

120 mph -18.90 -18.79 -14.47  

140 mph -25.91 -25.58 -19.69  

160 mph -33.87 -33.42 -25.72  

180 mph -43.46 -42.31 -32.55  

200 mph -53.76 -52.25 -40.19  
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2 21
(200 80) (360)

4
c = − +   (8) 

 
This value of the smoothing factor resulted in an 

interpolation matrix F exhibiting a condition number based on 

the L-infinity norm of 76 10C = ⋅ , which is within the range of 

double-precision floating point representation. 

Once the interpolation matrix F was formed, the 

interpolation coefficients B were obtained using the POD 

amplitude matrix A as: B = A ⋅F-1 . These interpolation 
coefficients were then employed with the RBF interpolation 

formula in Eqn. (7) to evaluate the pressure distribution on the 

7,020 points distributed on the panel at any arbitrary value of 
the design parameters p1: wind speed and p2: wind angle. 

The POD-RBF interpolation network was tested using two 

CFD solutions that were not originally used as part of the POD 

snapshots. First, Figure 8(a) and 8(b) show the CFD-generated 

(Paverage=-13.15psf) and POD-RBF-rendered (Paverage=-

13.12psf) pressure distribution at a wind speed of 90mph and 

an angle of 0°. The qualitative comparison of the two solutions 
shows virtually no error while a quantitative comparison 

through a relative RMS error reveals a difference of 0.34%, 

demonstrating excellent agreement between the POD-RBF-

rendered pressure distribution and the CFD-generated one, with 

the difference that the POD-RBF network produces instant 

results in any platform while the CFD solution requires several 
hours (or days) of computation to yield a grid-converged results 

in a high-end cluster. 

 

 

 
Figure 8 Pressure contours on PV panel at 90 mph and 0°.     

(a) CFD-generated and (b) POD-RBF-generated. 

 

The second test was carried out at a wind speed of 90mph 

and an angle of 180°. Figure 9(a) and 9(b) show the CFD-
generated (Paverage=-8.14psf) and POD-RBF-rendered (Paverage=-
8.14psf) pressure distribution at a wind speed of 90 mph and an 

angle of 0°. Again, the qualitative comparison of the two 
solutions shows virtually no error while a quantitative 

comparison through a relative RMS error reveals a difference 

of 0.98%, demonstrating very good agreement between the 

POD-RBF-rendered pressure distribution and the CFD-

generated one.  

These two comparison cases provide the validation and 
confidence necessary to implement the POD-RBF interpolation 

network to predict wind load distributions over PV panels at 

arbitrary wind velocities and angles dictated by installation 

requirements and codes. 

 

 

 
Figure 9 Pressure contours on PV panel at 90 mph and 180°.     

(a) CFD-generated and (b) POD-RBF-generated. 

 

Implementation in a Web-based GUI 
A Graphical User Interface (GUI) for the Wind-Load 

Calculator has been developed to take advantage of the trained 

POD-RBF interpolation network in order to provide the 
pressure distribution on the panel at arbitrary values of wind 

speed and wind angle. In addition, it provides the average 

pressure as well as the resulting uplift force on the PV panel. 

This GUI was developed in JavaScript so that it can be 

rendered in HTML5 format from any Web browser on a 
desktop computer, laptop, tablet, or even smartphone. The 

layout is automatically refined to appropriately fit in desktop or 

mobile displays with legends as well as options for contour 

coloring. A rendering of the Wind-Load Calculator Interface 

can be seen in Figure 10. 

PCFD

PPOD

PCFD

PPOD
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Figure 10 Rendering of the Wind-Load Calculator Interface. 

 
CONCLUSION  

The trained POD-RBF interpolation network has been tested 

and validated by performing the fast algebraic interpolation to 

obtain the pressure distribution on the PV system surface and 
comparing them to actual grid-converged fully-turbulent 3D 

CFD solutions at the specified values of the design variables 

(wind speed and angle).  The solar power industry, engineering 

design firms, as well as society as a whole, could realize 

significant savings with the availability of a real-time in-situ 
wind-load calculator that can prove essential for plug-and-play 

installation of PV systems. The success of this project will have 

a direct impact on the installation process of PV systems by 

allowing readily-available off-the-shelf components and 

modules to be assembled and mounted without the need for 

extensive engineering analysis behind the scene. Additionally, 
this technology allows for automated parametric design 

optimization in order to arrive at the best fit for a set of given 

operating conditions. All these tasks are currently prohibitive 

due to the massive computational resources, effort, and time 

required to address large-scale CFD analysis problems, all 

made possible by a simple but robust technology that can yield 
massive savings for the solar power industry. 
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