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ABSTRACT 

This paper presents an analysis of different Krylov 

subspace methods used to solve non-symmetric, non-linear 

matrix equations obtained after finite element discretization of 

Navier-Stokes equations. Mixed velocity-pressure formulation, 

also known as the primitive variable formulation, which 

consists of two momentum equations and a zero-velocity-

divergence constraint representing mass conservation is applied 

(2D problem). Matrix equations obtained are solved using 

following Krylov subspace methods: Least Squares Conjugate 

Gradient, Bi-Conjugate Gradient, Conjugate Gradient Squared, 

Bi-Conjugate Gradient Stabilized and Bi-Conjugate Gradient 

Stabilized (ell). Also, a comparison between these iterative 

methods and direct Gaussian elimination was made. Findings 

presented in this paper show that Least Square Conjugate 

Gradient method with its stability, which has been abandoned 

by many authors as the slowest, has became very fast when the 

'element-by-element' method is applied. 

Lid-driven cavity is chosen to be the test case, and results 

obtained for two different Reynolds numbers; Re = 400 and Re 

= 1000, and for two discretization schemes (10x10 and 48x48; 

uniform and non-uniform) are compared with the results 

presented in literature. 

INTRODUCTION 
The finite element application in solving Navier-Stokes 

equations can be generally divided into two different 

approaches: primitive variables formulation [2] and stabilized 

finite element method including penalty method [3], pressure 

stabilized methods ([4], [5], [6], and [7]) and pressure 

projection methods [8] and [9]. The primitive variables 

formulation is the most straight forward finite element 

procedure for the solution of the non-linear Navier-Stokes 

equations. To avoid a singular matrix appearance frequently 

encountered (and satisfy Ladyzhenskaya-Babuška-Brezzi 

condition [10], [11]) when this approach is applied a reduced 

interpolation proposed by Taylor and Hood [12] is adopted. 

The basic idea proposed by Taylor and Hood is that 

interpolation functions for pressure are one order less than for 

velocity. Since then, there has been controversy such as this 

approach is mathematically expedient and it can be used only in 

cases when viscous effects dominate. However, the main goal 

of this paper is not to analyze different finite element 

techniques, but to analyze the behaviour of Krylov subspace 

methods used to solve matrix equations obtained when 

primitive variables formulation is applied. 

NOMENCLATURE 
 
ui 

vi 
[m/s] 
[m/s] 

Velocity component in xi direction 
Velocity component in yi direction 

P [N/m2] Pressure 

t [s] Time 

gi [m/s2] Gravitational acceleration in xi direction 

ρ
 

[kg/m3] Fluid density 

V2 [-] Laplacian operator in two dimensions 

Ni [-] Interpolation functions for velocities 

Npi [-] Interpolation functions for pressure  

r 

A 

AT 

[-] 

[-] 

[-] 

Number of nodes 

Matrix 

Transpose of A 

 

Special characters 

𝜓(i),𝜙(i) 

𝜔 

[-] 
[-] 

Polynomials of degree i  
Scalar 

ε [-] Tolerance  

λ [-] Relaxation factor 

 

GOVERNING EQUATIONS 
Considering 2D incompressible flow of a fluid having 

constant properties, the governing differential equations are: 
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where i; j = 1; 2. 

Applying Galerkin approach (weighting functions equal to 

the interpolation functions), on a general element within a two-

dimensional flow,   
   

 and      are selected as nodal variables 

and interpolated: 
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                                ∑                                     (3) 

 

To avoid standard derivations, which are presented in many 

text books such as Lewis et al. [13], the final equations in the 

matrix form is given only: 
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where 
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Coefficients of convective matrices (equations 4 and 5) are 

given in the following text: 
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where the velocity components u and v are specified in the 

element. An eight noded isoparametric element was used in the 

analysis presented in this paper. As it has been known diffusive 

terms K11ij and K22ij are symmetric in nature while the 

convective matrix C is asymmetric. 

One of the greatest problems in CFD is a solution of 

pressure field, and this problem was analyzed by Patankar and 

Spalding in early seventies [14], [15]. They proposed Semi-

Implicit Method for Pressure-Linked Equations so-called 

SIMPLE, based on a guess-and-correct procedure. Later, 

Patankar improved SIMPLE by algorithm SIMPLER (SIMPLE 

Revised) in the early eighties. In this algorithm the discretized 

continuity equation is used to derive a discretized equation for 

pressure, instead of a pressure correction equation as in 

SIMPLE. 

Results presented in this paper are obtained using algorithm 

SIMPLER. Generally speaking, there are few reasons for this 

decision. Firstly, the resulting pressure field corresponds to the 

velocity field. Therefore, the application of the correct velocity 

fields results in the correct pressure field. 

Secondly, SIMPLER algorithm is often used as the default 

procedure in commercial CFD codes. 

Except these two algorithms there are few more such as 

SIMPLEC, SIMPLEX and PISO in use recent years [16]. 

ITERATIVE SOLVERS 
 

As problem sizes grow, the storage requirement becomes a 

burden, even on a modern computer. For this reason, alternative 

solution strategies have been developed - iterative methods. 

This family includes the following methods: Jacobi iteration, 

Gauss-Seidel, Line Relaxation, Successive Over-relaxation, 

methods based on Conjugate Gradient [17], or Minimum 

Residual [18]. Also, Multigrid method ([19], [20]) based on a 

mesh hierarchy construction using one of the previous methods. 

Performance of Jacobi iteration, Gauss-Seidel, Line Relaxation, 

Successive Over-relaxation is highly dependent on the diagonal 

dominance of the coefficient matrices, the mesh size and the 

boundary conditions. For the SOR method, the estimate of the 

optimal over-relaxation parameter for general problems is still 

an open question. 

A discretization (finite difference, boundary element, finite 

element or finite volume) of the Navier-Stokes equations gives 

a set of nonlinear, non-symmetric algebraic (matrix) equations: 

       (7) 

Algorithms of methods presented in the following text 

(except BiCGStab(ell)) with and without preconditioning can 

be found in [21] where transient heat conduction was analyzed. 

 

Least Squares Conjugate Gradient Method 

Multiplying both sides of equation (7) by A
T
 gives: 

A
T
 r = A

T
b – A

T
Ax                                                             (8) 

The new matrix A
T
A is always symmetric. 

 

Bi-conjugate Gradient Method 

The main characteristic of the bi-conjugate gradient method 

is in replacing the orthogonal sequence of residuals (conjugate 

gradient method) by two mutually orthogonal sequences [22]. 

Instead, solving system equations (7), using this method 

involves solving the following system equations [23]: 

      (9) 

                                    ̃    
As it was mentioned above two sequences of residuals are 

updated: 

 

                      

  ̃     ̃             ̃                                                          

and two sequences of search directions: 

                          

  ̃     ̃               ̃                                                            
For symmetric positive definite systems, this method gives 

the same results as the conjugate gradient method, but at twice 

the cost per iteration. 
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 For non-symmetric matrices, it could be shown that 

convergence behaviour may be quite irregular, and the method 

may break down. The breakdown situation, which may occur  

when      ( ̃            )   , can be avoided by so-called 

look-ahead strategies. Also, the problem can appear if chosen 

decomposition fails. However, this problem can repaired using 

another decomposition. 

 

Conjugate Gradient Squared Method 

Conjugate gradient squared method developed by 

Sonneveld [24] has been derived from the bi-conjugate 

gradient method to deal with non-symmetric, non-positive real 

systems of equations. 

The main idea for introducing this method is to avoid using 

the transpose of A as it is in the BiCG and to gain faster 

convergence for roughly the same computation cost. 

In this method the residual and direction vectors are chosen 

according to: 

     𝜙            

     𝜓                                                                  
Convergence is usually twice as fast as for the BiCG 

method, but it has a very often highly irregular behaviour. In 

cases where initial guess is very close to the solution this 

method will diverge. This is the main reason for taking initial 

guess equal to 11 during calculations in the case which has 

been analyzed and results presented in this paper. 

Despite this problem, the CGS method works quite well in 

many cases. The only problem is that the polynomials are 

squared and rounding errors tend to be more damaging than in 

the standard BiCG method. 

 

Bi-conjugate Gradient Stabilized Method 

The bi-conjugate gradient stabilized method was developed 

by Van der Vorst [22] to solve non-symmetric linear systems 

avoiding the often irregular convergence patterns of the 

conjugate gradient squared method. Instead of computing the 

conjugate gradient squared method sequence the following 

equations will be solved: 

     𝜙      𝜓           

𝜓          𝜔        𝜔         𝜔                                                            

where 𝜔    is chosen to minimize     . 

 

Bi-conjugate Gradient Stabilized Method (ell) 

The BiCGStab (ell) method is developed by Sleijpen and 

Fokkema [25], and it combines advantages of BiCG and 

GMRES(ell)- Generalized Minimum Residual [18]. 

As it was mentioned earlier the irregular convergence, 

breakdown situations are main disadvantages of BiCG method, 

while GMRES can be very expensive in computational cost as 

well as memory required. 

Although the BiCGStab (ell) method performs well for a 

class of problems, it breaks down in the case where the 

coefficient matrix has eigenvalues close to the imaginary axis. 

Since 1993, the BiCGStab (ell) method has been used to solve 

non-symmetric linear (non-linear) equations obtained after 

discretization of different partial equations. Although for serial 

an extensive work has been done for parallel computers [26]. 

NUMERICAL RESULTS AND DISCUSSION 
The analysis considers a fluid of constant properties inside a 

square cavity, in laminar motion [27]. Lid driven cavity flow is 

very often used as a benchmark case for validations of 

numerical techniques in solution of either steady or unsteady 

flows [28]. 

As mentioned earlier, the cavity is divided by 10x10 and 

48x48 uniform and non-uniform meshes. Geometry with 48x48 

non-uniform mesh is given in Figure 1.  

 

 
Figure 1 Non-uniform mesh 48x48 

 

Flow is defined by two Reynolds numbers Re=400 and 

Re=1000. 

Following boundary conditions are applied: 

1. U = (0; 0) for y = -1 or x = 0 or x = 1; 

2. U = (1; 0) for y = 0; 

3. P = (0; 0) for x = 0. 

Non-linear solution of the equations analyzed is found using 

well-known Picard scheme: 

                          (10)  

where λ usually takes values between 0 and 1. In the analysis 

presented in this paper λ was taken to be 0.5. Tolerance ε, 

which is defined as: 

             

    
   (11) 

was set to 1.e
- 2

 and 1.e
-3

. At the same time, the maximum error 

value for iterative solvers during calculations was set to 1.e
-5

. 

Results obtained are compared with results published by 

Spalding et al. [14] where finite difference method based on the 

SIMPLE pressure-correction technique of Patankar and 

Spalding was applied, Leonard [29] where he used 

so-called QUICK (Quadratic Upstream Interpolation for 

Convective Kinematics) method based on a control volume 

integral formulation, Burgaff [30], and Perić et al. [31] where 
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finite volume was applied (second order central difference 

scheme - CDS). Also results published by Ghia et al. [32] are 

used for the comparison. 

Velocity and pressure distributions, as well as shear stress, 

drag and lift of the moving lid are the most desirable variables 

of almost every calculation. 

Velocity distributions in x and y directions for Re=1000 and 

48x48 mesh are presented in Figures 2 and 3.  

As expected, better results are obtained when the finer mesh 

48x48 is used in comparison to the coarser 10x10 mesh (results 

obtained for the 10x10 mesh are not included in this paper). 

Also, it can be noticed that moving lid creates a strong vortex 

which position depends on Re number, and two secondary 

vortices in the lower corners. 

A comparison with results presented in literature for 

Re=400 is presented in Figure 4, where velocity component in 

x-direction was analyzed. A good agreement of results obtained 

using FEM with results presented by Burgaff can be noticed in 

the Figure 4. Also, it can be clearly seen that better results are 

obtained using finer grid. A further comparison with results 

published by Leonard [29] and Perić et al. [31] (results noted as 

FVM) is presented in the Figure 5 where velocity of moving 

lid was defined by Re=1000. An excellent agreement with 

results published by Perić et al. and Ghia et al. is shown in the 

Figure 5. Figure 6 illustrates a comparison between results 

obtained using FEM and FVM [31] and FDM ([29]). In this 

case velocity in y-direction across the horizontal central plane 

was chosen. As in the previous example an excellent agreement 

with results published by [31] is obvious. 

From the Figure 2 to the Figure 6 is shown that FEM using 

mixed velocity-pressure interpolation in comparison with other 

numerical methods, for this particular case, delivers very 

reliable results. 

An analysis of the behaviour of Krylov subspace methods is 

presented in the following text. Residual norm, error, number 

of inner and outer iterations, and CPU time are chosen to be 

relevant criterions in the analysis. 

Figure 7 illustrates trends of residual norm when Least squares 

conjugate gradient (LSCG) method is applied. Residual norms 

for first, second, third and the last outer iterations are presented. 

The number of inner iterations was limited to 500. In the 

Figure 7 a monotonically decreasing trend of residual norms 

can be noticed. 

 

 
Figure 2 Non-uniform mesh 48x48. Velocity component in x-

direction (U) 

 
Figure 3 Non-uniform mesh 48x48. Velocity component in y-

direction (V) 

 

At the same time, Figure 8 presents trends of residual 

norms for Bi-conjugate gradient (BiCG) method. From the 

Figure 8 it can be seen that trends of the residual norm 

decrease from one outer iteration to another. 

At the same time trends of residual norm during inner 

iterations within an outer iteration is oscillatory. The number of 

inner iterations was limited to 200. 
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Figure 4 Velocity component in x-direction (U) for Re=400 

compared to results published in literature 

 
Figure 5 Velocity component in x-direction (U) for Re=1000 

compared to results published in literature 

 
Figure 6 Velocity component in y-direction (V) for Re=1000 

compared to results published in literature 

 
Figure 7 Residual norm for the LSCG method 

 
Figure 8 Residual norm for the BiCG method. 

Finally, Figure 9 (BiCGStab(ell=2)) present residual norms 

for BCGStab(ell) method. From figure it can be seen that trend 

of residual norm is more stable and decrease during both inner 

and outer iterations than for BiCG method. In this case the 

number of inner iterations was limited to 100. 

 
Figure 9 Residual norm for the BiCGStab (ell=2) method 

 

Error analysis for chosen Krylov subspace methods is 

presented in Figures 10 and 11. The error is defined by the 

following relation: 

      
‖ ‖

‖  ‖
 

From Figures 10 and 11 it can be seen that error trends 

follow residual trends for methods chosen. Error trends of least 

squares conjugate gradient and Gaussian elimination methods 

are monotonically decreasing, while on the other hand for bi-
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conjugate gradient and conjugate gradient squared (CGS 

specially ) methods are rapidly oscillatory. 

 
Figure 10 Error analysis (BiCG, CGS, LSCG) 

 
Figure 11 Error analysis of BiCGStab (ell) methods 

CPU time with number of inner and outer iterations used for 

calculations are presented in Figures 12 and 13 and Table 1 for 

Re=400 and non-uniform 48x48 mesh, Table 2 for Re=1000 

and ε= 10
-2

, Table 3 for Re=1000 and ε= 10
-3

 using LSCG 

method, Table 4 for Re=1000 and ε= 10
-3

 using 

BiCGStab(ell=2) method, and Table 5 for Re=1000 and ε= 10
-3

 

using BiCGStab(ell=4) method. 

 
Figure 12 CPU time for the Gaussian elimination, LSCG, and 

BiCG methods 

It should be expected that an increase of ell values for 

BiCGStab (ell) method will cause a decrease of CPU time 

(faster convergence) and a decrease of outer iterations. This 

conclusion has been drawn by some researchers when they used 

this method to solve linear non-symmetric matrix equations 

[33]. Unfortunately, matrix equations obtained after finite 

element discretization of Navier-Stokes equations are non-

linear and non-symmetric, so this conclusion is not valid 

anymore. 

 
Figure 13 CPU time for BiCGStab (ell) methods 

Table 1 presents CPU time for Re=400 and tolerance ε= 10
-2

. 

The fastest but irregular convergence was achieved by CGS 

method. To achieve results presented in diagrams and Table 1 

an initial value of order 11 for the CGS method had to be taken.  

Solver CPU [s] No. of outer 

iterations 

No. of inner 

iterations 

BiCGStab 

(ell=2) 

257.3 49 100 

 

BiCGStab 

(ell=3) 

173.3 22 100 

 

BiCGStab 

(ell=4) 

111.5 21 50 

 

BiCGStab 

(ell=5) 

318.3 48 50 

 

BiCGStab 

(ell=6) 

258 32 50 

 

BiCGStab 

(ell=7) 

377 40 50 

 

BiCGStab 

(ell=8) 

141.7 13 50 

 

LSCG 113 24 100 

BiCG 609.4 73 200 

CGS 40 8 300 

Gauss 1366.6 11  

Table 1 CPU time, number of inner and outer iterations for 

Re=400 

As it has been known the behaviour of CGS method is 

highly irregular when initial guess is very close to the solution. 

Also this method does not converge for any number of inner 

iterations. The fastest convergence of BiCGStab (ell) method 

was gained when ell was 4. 
Also, a very fast convergence of LSCG can be noticed (only 

2 [s] slower than BiCGStab (4)). 

Results obtained for Re=1000 are presented in Table 2 where 

the fastest convergence was gained by LSCG method (except 

CGS method). Also, it has to be mentioned that LSCG method 

converged for any number of inner iterations. 

A tolerance decrease to the value of 10
-3

 caused an increase 

of CPU time and results obtained are presented in Tables 3, 4 

and 5. In these tables a very fast convergence of LSCG method 
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can be noticed. Also, BiCGStab (ell) method does not converge 

for any number of inner iterations for 2 ≤ell≤8. 

 

Solver CPU [s] No. of outer 

iterations 

No. of inner 

iterations 

BiCGStab 

(ell=2) 

1169.2 27 150 

 

BiCGStab 

(ell=3) 

779.3 12 150 

 

BiCGStab 

(ell=4) 

1124.23 39 50 

 

BiCGStab 

(ell=5) 

762.4 21 50 

 

BiCGStab 

(ell=6) 

1046.7 24 50 

 

BiCGStab 

(ell=7) 

872.2 17 50 

 

BiCGStab 

(ell=8) 

791.3 13 50 

 

LSCG 110.3 25 100 

BiCG 952.4 73 200 

CGS 26 4 300 

Gauss 3476.9 16  

Table 2 CPU time, number of inner and outer iterations for 

Re=1000 

CPU [s] No. of outer 

iterations 

No. of inner 

iterations 

1045.9 459 50 

4470.14 1001 100 

3512.5 487 150 

2353.9 270 200 

1540.4 120 300 

1159.7 67 400 

944.82 44 500 

957.66 37 600 

Table 3 LSCG - CPU time, number of inner and outer 

iterations for Re=1000 and ε = 10
-3

 

CPU [s] No. of outer 

iterations 

No. of inner 

iterations 

1534.2 52 100 

2579.1 60 150 

4767.2 80 200 

1484 17 300 

5319.5 3 400 

Table 4 BiCGStab(ell=2)- CPU time, number of inner and 

outer iterations for Re=1000 and ε= 10
-3 

CPU [s] No. of outer 

iterations 

No. of inner 

iterations 

1523.67 52 50 

1683.9 29 100 

3564.3 40 150 

12106 103 200 

Table 5 BiCGStab(ell=4)- CPU time, number of inner and 

outer iterations for Re=1000 and ε= 10
-3

 

CONCLUSION 
In this paper Krylov subspace methods employed to solve 

non-linear non-symmetric equations obtained after finite 

element discretization of Navier-Stokes equations where 

analyzed. Also, as it was mentioned earlier, mixed velocity-

pressure formulation as one of finite element techniques was 

applied. 

Results obtained for two values of Reynolds number are 

compared against results already published using other 

numerical methods such as finite difference and finite volume 

methods. From Figure 6 to Figure 8 an excellent agreement 

with other numerical methods (finite volume method specially) 

can be noticed. Obviously, an increase of mesh density (from 

Figure 2 to Figure 5) will give more accurate velocity 

distributions. 

Behaviour of Krylov subspace methods using residual 

norms, error trends with numbers of inner and outer iterations, 

and CPU times as the main goal of this paper is analyzed. All 

trends shown from Figure 9 are expected and agree with 

previous published results. As it can be noticed a different 

number of inner iterations was used in calculations. There is a 

strong evidence that some methods diverge when the number of 

inner iterations is too small. 

At the same time the LSCG method converged for any 

rational number of inner iterations. 

As it was shown earlier a very fast convergence of LSCG is 

achieved when element-by-element technique is applied. Also, 

it can be noticed that the LSCG method became even faster 

than BiCGStab (ell) method for the case analyzed. 
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